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including spin-orbit and tensor terms. II. Charge exchange
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We present the formalism of linear response theory both at zero and finite temperature in the case of
asymmetric nuclear matter excited by an isospin flip probe. The particle-hole interaction is derived from a general
Skyrme functional that includes spin-orbit and tensor terms. Response functions are obtained by solving a closed
algebraic system of equations. Spin strength functions are analyzed for typical values of density, momentum
transfer, asymmetry, and temperature. We evaluate the role of statistical errors related to the uncertainties of the
coupling constants of the Skyrme functional and thus determine the confidence interval of the resulting response
function.
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I. INTRODUCTION

Transport properties of neutrinos play a crucial role in
understanding the realization of several astrophysical sce-
narios as supernova explosions, neutron star mergers, or the
evolution of protoneutron stars [1–7]. The neutrino mean
free path (NMFP) within dense nuclear matter at finite tem-
perature is thus a key ingredient to understand the behavior of
these astrophysical objects. When the neutrino passes through
the various layers of nuclear matter several processes may
take place as elastic scattering or absorption. In their seminal
article, Iwamoto and Pethick [8] showed that the NMFP could
change by a factor of 2 to 3 in a range of densities around
saturation since the neutrino can excite a collective nuclear
mode and thus lose energy and momentum substantially.

In a previous series of articles [9–11], we have studied the
properties of NMFP using Skyrme functionals [12] for pure
neutron matter (PNM) at both zero and finite temperature.
However, the PNM assumption for a stellar medium is not
realistic since a non-negligible fraction of protons is usually
present [13–15] as well. Considering an environment includ-
ing both protons and neutrons is thus crucial.

In Ref. [16], the authors have studied both neutron and
charged reaction rates of neutrinos in dense nuclear matter.
The work included only partially the in-medium effect at the
single particle level only, thus neglecting possible collective
modes. The main outcome of the article is that the NMFP is
dominated by the reaction νe− + n → p + e−. Such a result
is also confirmed by other authors using different types of
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approximations [17–19]. Since NMFP is used for example
in neutrino transport radiation of hydrodynamics simulations
[20], the exact value of such a quantity has a direct im-
pact on other relevant astrophysical observables as neutrino
luminosities.

A fully quantitative calculation of the NMFP requires the
knowledge of the nuclear strength function, which is usually
determined via the random phase approximation (RPA) or
linear response (LR) formalism, based on the particle-hole
(ph) interaction between particles below and above the Fermi
level. The LR of asymmetric nuclear matter to isospin-flip
probes has been calculated in Ref. [21] using a zero-range
Skyrme interaction restricted to its central part, including both
direct and exchange terms. We present here results based on
a general Skyrme interaction, which also includes spin-orbit
and tensor components. This is of fundamental importance
since the latter has been shown to play a significant role in
affecting the nuclear response function [9,11,22–26].

The article is organized as follows. In Sec. II we briefly
summarize the formalism for the computation of the asym-
metric nuclear matter response to probes producing isospin
flip. The results for several Skyrme functionals are presented
and analyzed in Sec. III, where we discuss the effect of the
spin-orbit and tensor terms on the response function, and
also consider probes related to different isospin operators.
In Sec. IV, we discuss the impact of parameter uncertainties
on the response functions. Finally, our main conclusions are
given in Sec. V.

II. LINEAR RESPONSE FORMALISM

The LR formalism for asymmetric nuclear matter has
already been presented in previous articles [11,26] but for
no charge-exchange processes. Our aim here is to extend the
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calculation to probes represented by external fields of the form∑
j

eiq·r j �
(S)
j τ±

j , (1)

where �
(S)
j refers to the operator 1 or σ z

j , respectively, for total
spin S = 0, 1, and τ±

j are the usual isospin raising and lower-
ing operators. The response functions for this kind of probes
imply (n, p) and (p, n) charge exchange reactions, where a
proton converts into a neutron and vice versa. More precisely,
the operators τ+ and τ− create particle-hole excitations of two
different species, namely pn−1 and np−1, respectively. Both
channels are such that the total isospin and its third component
are equal to 1. In the following, we will focus on the operator
τ+, which requires the ph interaction between pn−1 states
only. Whenever necessary, excitations created by τ− may be
simply obtained just by exchanging proton and neutron labels.

A. Residual interaction

The residual interaction or ph interaction is currently
defined as the second functional derivative of the energy

functional [27,28] so that the matrix elements we are inter-
ested in can be obtained as

〈pn−1|Vph|pn−1〉 = δ2〈E〉
δρnpδρpn

, (2)

where ρnp and ρpn represents off-diagonal matrix elements
of the one-body density. Because the Skyrme functional [12]
does not contain explicit charge exchange terms [30], there
are no rearrangement contributions, so that the ph interac-
tion coincides with the particle-particle interaction 〈pn|V |np〉.
Note that only the Pauli exchange term contributes to that
interaction.

Hereafter, the different ph channels will be labeled (S, M ),
where S stands for the total spin and M its projection. More-
over, we will follow the standard notation [11,29] and indicate
a general matrix element as V (SM;S′M ′ )

ph (k1, k2, q), where k1, k2

are the hole momenta, q is the transferred momentum, and
we omit the proton and neutron indices in order to simplify
the notation. For the general Skyrme functional defined in
Ref. [12], the ph interaction can be written as

V (SM;S′M ′ )
ph (k1, k2, q) = δ(S, S′)δ(M, M ′)

[
W (S,1)

1 (q) + W (S,1)
2 (k1 − k2)2

] + 8C∇s
1 δSS′δS1δMM ′δM0q2

+ 4CF
1

{
(−)M (k12)−M (k12)M ′δSS′δS1 − 1

2δSS′δS1δM0δM ′0q2}
+ 4qC∇J

1 (δS′0δS1M(k12)−M + δS′1δS0M ′(k12)M ′ ) , (3)

where the parameters W (S,T =1)
i are defined as

1

4
W (0,1)

1 = 2Cρ,0
1 + 2Cρ,γ

1 ρ
γ

0 −
[

2C	ρ
1 + 1

2
Cτ

1

]
q2 , (4)

1

4
W (1,1)

1 = 2Cs,0
1 + 2Cs,γ

1 ρ
γ

0 −
[

2C	s
1 + 1

2
CT

1

]
q2 , (5)

1

4
W (0,1)

2 = Cτ
1 , (6)

1

4
W (1,1)

2 = CT
1 . (7)

The constants CX
1 with X = 	s, F, . . . , are the coupling constants of the density functional. If the functional has been obtained

from an effective interaction, these coupling constants can also be expressed in terms of the interaction parameters as shown in
Ref. [11]. Finally, it is worth noticing that the charge-exchange process is not coupled to the nn−1 and pp−1 excitations, contrarily
to the nonisospin flip processes [26].

B. The nuclear strength function

The calculation of the response function requires the prior knowledge of the RPA ph propagator, which itself satisfies the
following Bethe-Salpeter (BS) equation:

G(pn−1,SM )
RPA (k1, q, ω) = G(pn−1 )

HF (k1, q, ω) + G(pn−1 )
HF (k1, q, ω)

∑
S′M ′

∫
d3k2

(2π )3
V (SM;S′M ′ )

ph (k1, k2, q)G(pn−1,S′M ′ )
RPA (k1, q, ω). (8)

The Hartree-Fock (HF) propagator is independent of (S, M ).
At variance with the nonisospin flip case [26], it has now the
form

G(pn−1 )
HF (k, q, ω) = nn(k) − np(k + q)

ω − [εp(k + q) − εn(k)] + iη
, (9)

where ετ=n,p are the HF single particle energies

ετ (k) = k2

2m∗
τ

+ Uτ . (10)

As usual, m∗
τ stands for the effective mass and Uτ is the single

particle potential [31], excluding the k2 dependence which
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is absorbed into the effective mass. The occupation number
nτ (k) is either a step function θ (k(τ )

F − k) at zero temperature
or a Fermi-Dirac distribution

nτ (k) = [
1 + exp(ετ (k)−μτ )/T

]−1
, (11)

at finite temperature.
Once the BS equation is solved, we calculate the response

function of the system as

χ (pn−1,SM )(q, ω) = 2
∫

d3k
(2π )3

G(pn−1,SM )
RPA (k, q, ω) . (12)

Finally, the strength function is

S(pn−1,SM )(q, ω) = − 1

π

Imχ (pn−1,SM )(q, ω)

1 − e−(ω̃−μp+μn )/T
, (13)

where ω̃ = ω − (Up − Un). We observe that using the detailed
balance theorem we can relate the pn−1 to np−1 strength
functions as

S(pn−1,SM )(q, ω) = e−(ω̃−μp+μn )/T S(np−1,SM )(q,−ω). (14)

The method used to solve the BS equation has been
discussed in Refs. [26,29]. Essentially, it implies a closed
linear system for several momentum integrals of the RPA
propagator. This linear system can then be cast in a matrix
form as

AX = B , (15)

where A is the interaction matrix containing the ph matrix
elements as well as momentum integrals of the HF propagator,
X contains the unknown momentum integrals of RPA propa-
gators, including the response function, and B contains only
momentum integrals of HF propagators. These matrices are
explicitly given in Appendix B.

III. RESULTS

We now come to the presentation and discussion of the re-
sponse functions at zero and finite temperature using different
functionals and for various isospin asymmetries, defined by
the parameter

Y = ρn − ρp

ρ0
, (16)

where ρn(p) is the neutron (proton) density and ρ0 = ρn + ρp.
The PNM case corresponds to the value Y = 1, while the
isospin saturated symmetric nuclear matter (SNM) is obtained
for Y = 0. Asymmetric nuclear matter (ANM) corresponds
to intermediate values of Y . Hereafter, we will consider two
representative asymmetries, namely Y = 0.21 which corre-
sponds roughly to the asymmetry of 208Pb and Y = 0.5 which
is the typical value of nuclear matter in β equilibrium within
a neutron star.

We present results obtained with the following Skyrme
functionals: SLy5 [32], T22, T44 [33], and Skxta [34].
The former contains central and spin-orbit terms, the other
three also include a tensor term. The first three functionals
have been derived using the same Saclay-Lyon fitting protocol
while the fourth one was obtained with a different protocol.
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FIG. 1. The imaginary part of the dynamical susceptibility
−1000 Im χ S,T (q, ω)/π of asymmetric nuclear matter as a function
of energy, for the Skyrme interaction SGII at saturation density of
symmetric nuclear matter, Y = 0.2, and zero temperature. Solid and
dashed lines correspond to S = 1 and 0 channels, respectively. The
location of the collective states is indicated by vertical lines. The
transferred momentum q/kF is (a) 0.01, (b) 0.09, (c) 0.14, (d) 0.22,
(e) 0.45, and (f) 0.65.

For the reasons explained below, we also present results for
the central part of the Skyrme SGII interaction [35].

A. Results with central terms only

The formalism of the charge exchange linear response the-
ory has been already presented and discussed in Ref. [21], but
limited to the central part of the SGII. Because our algorithm
to obtain the response function is more complex that the one
of Ref. [21], we have decided to perform the same calculations
to benchmark our results. In this way we have detected that the
value of parameter x3 used in [21] was erroneously divided by
a factor of ten.1 We have thus checked that both algorithms
give exactly the same results, provided the same parameters
are introduced.

In Fig. 1, we display the strength function obtained with the
central part only of the SGII interaction at saturation density
and Y = 0.2 for spin channels S = 1 (solid lines) and S = 0
(dashed lines). The different panels refer to different values
of transfer momentum q/kF . A comparison with Fig. 3 of
Ref. [21] shows that although qualitatively in agreement, there
are significant quantitative differences, in particular in the
location of the collective states.

As already stressed in Ref. [21], an important point is
the presence at T = 0 of collective oscillations at negative
energies, for small momenta. This is related to the absence of
Coulomb effects, which certainly modify the single particle
spectrum for protons. A possible way to simulate Coulomb
effects in infinite nuclear matter would be adding a repulsive
shift to the proton mean field (see, e.g., [36]). In the present

1Incidentally we have also detected a misprint in Eq. (24) of [21],
the factor (k2

F (−τ )/k2
F (τ ))2 has to be replaced by k2

F (−τ )/k2
F (τ ).
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FIG. 2. Strength function S(α)(q, ω) in asymmetric nuclear matter for the spin channels α = (S, M ), using the four ph interactions
considered here. Two different values of the asymmetry parameter are considered, ρ/ρ0 = 0.5 and the transfer momentum is q/kF = 0.2.
The Hartree-Fock strength function is also displayed (dotted line) to exhibit the effects of the ph interaction.

case, as the neutron Fermi energy lies higher than the proton
one, (n, p) transitions at low energy and momentum are
possible in some cases. Such transitions do not exist in the
case of ph excitations of the type np−1, as will be shown later
on in Fig. 7.

The results displayed in Fig. 1 have been obtained by
ignoring the spin-orbit term of interaction SGII. It was shown
in Ref. [37] that the spin-orbit term couples the spin channels
S = 0 and 1, acting differently for channels with different
M component. However, the effect on the response function
is rather small, even at momentum transfer relatively large
as compared to the Fermi momentum. Indeed, by inspecting
Eq. (B1), we observe that the spin-orbit term contributes via
a q4 term and thus becomes negligible for small transferred
momenta. This is not the case of the tensor which plays a role
at both low and high transferred momenta [25,26]. We thus
consider now Skyrme functionals containing both spin-orbit
and tensor terms.

B. Results with the full interaction

In Fig. 2, are shown the strength functions obtained with
the four considered Skyrme functionals, at density ρ/ρ0 =
0.5, transfer momentum q/kF = 0.2, and two values of the
isospin asymmetries Y , for spin channels (S, M ). We observe
that for SLy5 interaction, the only one with no tensor terms,
the response functions in the channels (1,0) and (1,1) are
fully degenerate. As discussed before, the spin-orbit term that
should lift such an M-degeneracy is too small for the selected
transferred momentum and thus no effect is visible. Since the
tensor term in the residual interaction does not scale with q4

but with q2, it is active at lower transferred momentum. We
thus notice that the other three Skyrme functionals (T22, T44,
Skxta) break that degeneracy in the S = 1 channel.

Tensor effects can be small at small transferred momenta
and small asymmetry (see Fig. 2, left panel), but they are
significantly enhanced with increasing asymmetry (see Fig. 2,
right panel) and/or transferred momentum (Fig. 3). This
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FIG. 3. Same as Fig. 2 but for q/kF = 1.
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FIG. 4. Same as Fig. 2 but for q/kF = 1 and ρ/ρ0 = 1.

confirms the intrinsic importance of the tensor on the re-
sponse functions also for charge-exchange processes. One
could naively expect that the tensor interaction affects S = 1
channels only. However, as the spin-orbit term couples both
spin channels, it turns out that the tensor term actually acts
also in the S = 0 channel. The ph interaction should thus
include both spin-orbit and tensor contributions.

To show the global effect of the ph interaction itself, we
have also displayed the HF strength function. We observe
on Fig. 2 that the interaction has indeed a strong effect: the
strength function is shifted towards the high-energy region
and a collective mode appears. For the same asymmetries, but
for a higher value of the transferred momentum (see Fig. 3),
the zero-sound mode is reabsorbed in the continuum part of
the response. This is clearly seen in right panel at Y = 0.5
where the strength is the S = 0 channel present a strong
peak at the edge of the allowed region. If we now come to
the tensor, we see that the effect is small for small trans-
ferred momenta (q2 coupling) whatever the asymmetry is (see
Fig. 2) but becomes more pronounced at higher transferred
momentum (see Fig. 3) where it increases the accumulation
of strength at high energy.

The density is also an important parameter. To quantify
its effect, we reported in Fig. 4 the strength functions at
saturation density. In this case the effect of the tensor in the
two spin-projection channels is opposite for all functionals:
in the M = 0 channel the tensor leads to a strong attraction
and thus an accumulation of strength at low energy, while the
opposite is true in the M = 1 channel. As expected, such an
effect is absent in SLy5 since it does not contain an explicit
tensor term, and the two curves lie on top of each other.

One can also assess the role of the tensor contribution by
comparing SLy5, T22, and T44 results in Fig. 4. As discussed
in Ref. [33] the Ti j interactions have been fitted with very
similar protocol as SLy5, but including an explicit tensor term.
In order to get some insight of the role played by the tensor,
we have thus repeated the calculations with T44 only, turning
off (on) the tensor coupling constants CF

1 and C∇s
1 . The result

is illustrated in Fig. 5 for Y = 0.21 at saturation density and
transferred momentum q/kF = 1.

We clearly observe that the tensor interaction acts in all
channels and that its effect is quite remarkable especially in
the (1,0) channel. In this case we notice that the calculations
without tensor (solid line) exhibit an accumulation of strength
at high energy, thus meaning a repulsive residual interaction.
As previously discussed, in this case the (1,0) and (1,1) are
essentially degenerate since the spin-orbit contribution is too
small at low transferred momenta to provide a visible effect.
When the tensor is taken into account the response function
(dashed lines) accumulates at low energy thus meaning a
strongly attractive interaction. As already discussed previ-
ously in Refs. [9,22,23,25,26] the tensor has a very important
role in determining the excited states of a nuclear system.

C. Thermal effects

In Fig. 6, we illustrate the impact of temperature on
the response function. For simplicity, we consider the same
values of density and transferred momentum as in Fig. 2,
but now considering a finite temperature of T = 0.1eF and
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FIG. 5. Response function for T44 using q/kF = 1 and ρ/ρ0 = 1
and Y = 0.21. The solid lines refer to the calculation without tensor
while open symbols refer to full interaction.
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FIG. 6. Same as Fig. 2 at Y = 0.21, but at T = 0.1eF (left panel) and T = 0.5eF (right panel).

T = 0.5eF , where eF is the Fermi energy. We consider here
only the case Y = 0.21 since the other asymmetry leads to
very similar results. As is well known [11,21,31,38–40], the
effect of temperature is to wash out the structure of the
response function and spread its strength. Moreover, a system
at finite temperature can de-excite by giving some energy to
the probe. These effects are clearly visible when comparing
with Fig. 2. The strength becomes broader, and in some cases
the collective mode is absorbed into the continuum.

Going from T = 0.1eF to T = 0.5eF we observe that the
limits of the strength function are increased and the peaks
acquire a larger width. By further increasing the temperature,
we may thus observe the complete disappearance of the peaks
observed here and obtaining a smooth strength function over
a large energy domain.

D. Role of the isospin operator

Finally, we investigate the role of the isospin operator τ

in the probe defined in Eq. (1). In the case of asymmetric
nuclear matter two probes are possible: τz for non-isospin flip
process and τ± for charge exchange excitations. In the case of

non-isospin flip probes, the relevant quantum numbers of each
ph pair are the total spin (S), spin projection (M), and isospin
(T ). In the case of isospin-flip the ph pairs are either pn−1

(corresponding to the τ+ operator) or np−1 (for τ−). Also in
this case the pairs are coupled to S and M, the value of T being
equal to 1.

In Fig. 7, we illustrate the difference between the two
probes for the T44 functional and asymmetry Y = 0.21. We
also fix the density of the system to ρ/ρ0 = 1 and the trans-
ferred momentum to q/kF = 1. In panel (a) of Fig. 7, we
report the isospin-flip case for the two operators τ+ (solid
lines) and τ− (dashed lines). We observe that the domain of
energy where the response function exists is quite different in
the case np−1 and pn−1. This shift in the energy domain is due
to the difference of the chemical potential for the two species.
Given the current asymmetry, the result simply shows that it is
more favorable to a pn−1 pair due to the large neutron excess
of the system than the opposite process.

For completeness, we compare in panel (b) of Fig. 7
the strength functions for the operators τ+ (solid lines) and
τ z (dashed lines), under the same conditions as panel (a).
Apart from the fact that there are now more channels, due
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FIG. 7. Response function for T44 using q/kF = 1 and ρ/ρ0 = 1 and Y = 0.21. (a) shows the charge-exchange cases, namely with
operators τ+ (solid lines) and τ− (open symbols), for the different (S, M ) channels. (b) shows the strength functions for the case with no
charge exchange, for the different (S, M, T ) channels.
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FIG. 8. Response function for UNEDF0 and UNEDF1 in the S = 0 channel (dashed line). The color bands represent the 1σ error due to
the statistical uncertainties in the parameters of the functional. See text for details

to the degeneracy breaking of M, the main difference is that
the strength is considerably reduced in the charge exchange
channels. We may thus expect this to have an impact on astro-
physical observables such as NMFP in dense stellar matter [8].

IV. ERROR ANALYSIS

In this section, we provide the first quantitative analysis
of statistical uncertainties on the nuclear response function.
Following Refs. [41,42], the error Vy on a given observable
y(x, a) depending on some independent variable x and a set
of parameters a is obtained as

Vy(x) =
∑

i j

∂y(x, a)

∂ai
Ci j

∂y(x, a)

∂a j
, (17)

where C is the covariance matrix [43]. The partial derivative
respect to parameter space in Eq. (17) is done using a finite-
difference method as discussed in Ref. [44]. To perform such
calculations a critical ingredient is thus represented by C.
Unfortunately very few Skyrme functionals provide published
values for the covariance matrix. In the following we will
restrict to the UNEDF0 [45] and UNEDF1 [46] functionals,
since all relevant statistical informations required to perform
error propagations are available.

The only limitation of this functionals is that they have
been explicitly fitted taking into account only time-even terms
of the functional [12]. This means that essentially the S = 1
channel of the response function is not determined, we thus
consider the response function of the system only in the S = 0
channel.

In Fig. 8, we show the response function S(0,0)(q, ω)
(dashed line) obtained with UNEDF0 and UNEDF1 for the
charge exchange operator τ− (left panel) and τ+ (right
panel). By performing the full error propagation as defined
in Eq. (17), we have obtained the colored bands appearing in
the figure. The band has been drawn to represent one standard
deviation.

We observe that the main features of the response function
are not much impacted by the statistical uncertainties, i.e.,
the attractive/repulsive structure of the response function is
not affected by error. The latter have a strong impact on the

actual height of the peaks. This analysis is relevant for any
model taking the response functions as input. For example,
the calculations on NMFP may be strongly impacted by these
error bars, but further investigations are required.

V. CONCLUSIONS

In this paper we have generalized the LR formalism pre-
sented in Ref. [21] so that Skyrme spin-orbit and tensor
terms can be included. Moreover, the response functions were
calculated for a general Skyrme functional [12], thus provid-
ing more flexibility to study the behavior of some particular
coupling constants. We have investigated the evolution of the
strength function as a function of the density of the system and
the transferred momentum for some representative Skyrme
functionals. We have observed that the presence of an explicit
tensor term induces major effects on the strength function.

Finally, we have generalized the formalism to the case
of arbitrary isospin asymmetry and temperature so that the
current methodology may be easily adopted to perform cal-
culations of astrophysical interest as neutrino mean free path.
In a recent work [9], we have illustrated the role of the tensor
on NMFP for the pure neutron matter case. From the results
presented in the current article, we have shown that the tensor
plays a crucial role on the strength functions also in the
case of isospin-flip probes. We thus may expect to observe
a noticeable impact also in NMFP calculated in asymmetric
matter. We leave this aspect for a future investigation.
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APPENDIX A: βpn FUNCTIONS

To transform the Bethe-Salpeter equation into a closed
linear system of algebraic equations, the propagators have to
be integrated over the momentum with some weights. The HF
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propagator appears in the following integrals:

β
pn
i (q, ω, T ) =

∫
d3k

(2π )3
Gpn−1

HF (k, q, ω, T )Fi(k, q),

Fi(k, q) = 1,
k · q
q2

,
k2

q2
,

[
k · q
q2

]2

,
(k · q)k2

q4
,

k4

q4
,

[
k · q
q2

]3

,

[
k · q
q2

]4

,
(k · q)2k2

q6
. (A1)

The imaginary part of these integrals has been already presented in Ref. [11]. The real part is obtained numerically using the
dispersion relation

Re β
pn
i (q, ω, T ) = − 1

π

∫ +∞

−∞
dω′ Im β

pn
i (q, ω′, T )

ω − ω′ . (A2)

APPENDIX B: MATRIX ELEMENTS

We give here the explicit expressions of the matrices required to determine the strength functions.

1. Channel S = 0

The interaction matrix reads

A =

⎛
⎜⎜⎝

1 − β
pn
0 W̃ 01

1 − q2β
pn
2 W 01

2 −β
pn−1

0 W 01
2 2qβ

pn−1

1 W 01
2

−q2β
pn
2 W̃ 01

1 − q4β
pn
5 W 01

2 1 − q2β
pn
2 W 01

2 2q3β
pn
4 W 01

2

−qβ
pn
1 W̃ 01

1 − q3β
pn
4 W 01

2 −qβ
pn
1 W 01

2 1 + 2q2β
pn
3 W 01

2

⎞
⎟⎟⎠,

where

W̃ 01
1 = W 01

1 + 16q4
(
C∇J

1

)2(
β

np
2 − β

np
3

)
1 + q2

(
β

np
2 − β

np
3

)(
W 11

2 − 2CF
1

) . (B1)

The other two matrices read

X =

⎛
⎜⎜⎜⎝

〈
Gpn−1,pn−1,00

RPA

〉
〈
k2Gpn−1,pn−1,00

RPA

〉
√

4π
3

〈
kY10Gpn−1,pn−1,00

RPA

〉

⎞
⎟⎟⎟⎠, B =

⎛
⎜⎝

β
pn
0

q2β
pn
2

qβ
pn
1

⎞
⎟⎠.

2. Channel S = 1 M = ±1

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − β
pn
0 W̃ 11

1 − q2β
pn
2 W 11

2 −β
pn
0 W 11

2 2qβ
pn
1 W 11

2 −2CF
1 β

pn
0

−2CF
1 q2

(
β

pn
2 − β

pn
3

) −8q3
[
CF

1

]2 β
pn
1

(
β

pn
2 −β

pn
3

)
−β

pn
0

(
β

pn
4 −β

pn
6

)
1+zpn,1

+8
[
CF

1

]2
q4β

pn
1

(
β

pn
4 −β

pn
6

)
1+zpn,1

−q2β
pn
2 W̃ 11

1 − q4β
pn
5 W 11

2 1 − q2β
pn
2 W 11

2 2q3β
pn
4 W 11

2 + 8q5
[
CF

1

]2 β
pn
4 β

pn
3 −β

pn
2 β

pn
6

1+zpn,1 −2q2CF
1 β

pn
2

−2CF
1 q4

(
β

pn
5 − β

pn
8

)
−qβ

pn
1 W̃ 11

1 − q3β
pn
4 W 11

2 −qβ
pn
1 W 11

2 1 + 2q2β
pn
3 W 11

2 −2qCF
1 β

pn
1

−2CF
1 q3

(
β

pn
4 − β

pn
6

) −8q4
[
CF

1

]2 β
pn
3

(
β

pn
2 −β

pn
3

)
−β

pn
1

(
β

pn
4 −β

pn
6

)
1+zpn,1

+8
[
CF

1

]2
q5β

pn
3

(
β

pn
4 −β

pn
6

)
1+zpn,1

−q2
(
β

pn
2 − β

pn
3

)
W̃ 11

1 − q4
(
β

pn
5 − β

pn
8

)
W 11

2 −q2
(
β

pn
2 − β

pn
3

)
W 11

2 2q3
(
β

pn
4 − β

pn
6

)
W 11

2 1 − 2q2CF
1

(
β

pn
2 − β

pn
3

)
−2CF

1 q4
(
β

pn
5 − 2β

pn
8 + β

pn
7

)
+8

[
CF

1

]2
q6

(
β

pn
4 −β

pn
6

)2

1+zpn,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
Gpn−1,pn−1,11

RPA

〉
〈
k2Gpn−1,pn−1,11

RPA

〉
√

4π
3

〈
kY10Gpn−1,pn−1,11

RPA

〉
8π
3

〈
k
∣∣Y11

∣∣2
Gpn−1,pn−1,11

RPA

〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

β
pn
0

q2β
pn
2

qβ
pn
1

q2
(
β

pn
2 − β

pn
3

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

W̃1
11 = W 11

1 + 8
q4[C∇J

1 ]2

1 + zpn,0

(
β

pn
2 − β

pn
3

) + q4[CF
1

]2

[
4
(
β

pn
5 − β

pn
7

) − 8
W 11

2 q2
(
β

pn
4 − β

pn
6

)2

1 + zpn,1

]
, (B2)

zpn,S = W S1
2 q2(β pn

2 − β
pn
3

)
. (B3)

3. Channel S = 1 M = 0

A =

⎛
⎜⎜⎜⎜⎜⎝

1 − β
pn
0 W̃ 10

1 − q2β
pn
2 W 11

2 + qβ
pn
1 α

1,pn
1 − 4CF

1 q2β
pn
3 −β

pn
0 W 11

2 2qβ
pn
1 α

1,pn
3 + β

pn
0 α

1,pn
1 −4CF

1 β
pn
0

−q2β
pn
2 W̃ 10

1 − q4β
pn
5 W 11

2 + q3β
pn
4 α

1,pn
1 − 4CF

1 q4β
pn
8 1 − q2β

pn
2 W 11

2 2q3β
pn
4 α

1,pn
3 + q2β

pn
2 α

1,pn
1 −4CF

1 q2β
pn
2

−qβ
pn
1 W̃ 10

1 − q3β
pn
4 W 11

2 + q2β
pn
3 α

1,pn
1 − 4CF

1 q3β
pn
6 −qβ

pn
1 W 11

2 1 + 2q2β
pn
3 α

1,pn
3 + qβ

pn
1 α

1,pn
1 −4CF

1 qβ
pn
1

−q2β
pn
3 W̃ 10

1 − q4β
pn
8 W 11

2 + q3β
pn
6 α

1,pn
1 − 4CF

1 q4β
pn
7 −q2β

pn
3 W 11

2 2q3β
pn
6 α

1,pn
3 + q2β

pn
3 α

1,pn
1 1 − 4CF

1 q2β
pn
3

⎞
⎟⎟⎟⎟⎟⎠

and

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
Gpn−1,pn−1,10

RPA (q, ω)
〉

〈
k2Gpn−1,pn−1,10

RPA (q, ω)
〉

√
4π
3

〈
kY10Gpn−1,pn−1,10

RPA (q, ω)
〉

4π
3

〈
k2

∣∣Y10

∣∣2
Gpn−1,pn−1,10

RPA (q, ω)
〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

β
pn
0

q2β
pn
2

qβ
pn
1

q2β
pn
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

α
1,pn
1 = 16

[
CF

1

]2 q3
(
β

pn
4 − β

pn
6

)
1 + z̄pn,1

, (B4)

α
1,pn
3 = W 11

2 + 4CF
1 − 8

[
CF

1

]2 q2
(
β

pn
2 − β

pn
3

)
1 + z̄pn,1

. (B5)

W̃ 10
1 = W 11

1 + q2
(
8C∇s

1 − 2CF
1

) + 16
[
CF

1

]2
q3

[
q
(
β

pn
8 − β

pn
7

) − q3

(
β

pn
4 − β

pn
6

)2

1 + z̄pn,1

[
W 11

2 + 6CF
1

]]
, (B6)

z̄pn,S = (
W S1

2 + 6CF
1

)
q2

(
β

pn
2 − β

pn
3

)
. (B7)
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