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Response functions, differential cross sections, and total cross sections for several (anti)neutrino induced
reactions on 2H, 3He, and 3H are calculated in momentum space for (anti)neutrino energies up to 160 MeV, using
the AV18 nucleon-nucleon potential and a single-nucleon weak current operator. This work is a continuation of
our earlier investigations [J. Golak et al., Phys. Rev. C 98, 015501 (2018)].
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I. INTRODUCTION

Neutrinos interactions with atomic nuclei are important
not only for nuclear physics but also for other domains like
particle physics and astrophysics. Nuclei serve as neutrino
detectors in experiments focusing on neutrino properties,
such as oscillation measurements, as well as in experiments
where neutrinos from the interior of stars or from supernova
explosions carry important information. That is why a deep
understanding of neutrino induced processes on nuclei is
necessary for both the interpretation of current experiments
and the planning of new undertakings [1,2]. For example, the
use of the deuteron in heavy water detectors in the Sudbury
Neutrino Observatory (SNO) for solar neutrinos motivated the
theoretical efforts by Nakamura et al. [3,4], Shen et al. [5], and
Baroni and Schiavilla [6] to provide accurate predictions for
inclusive neutrino scattering off the deuteron.

The results of Ref. [3], a large part of the results given in
Ref. [4], and the more recent predictions in [5] were obtained
within the so-called standard nuclear physics approach [7],
using the AV18 nucleon-nucleon (NN) force [8] and aug-
menting the single-nucleon current with two-nucleon (2N)
contributions linked to this potential. The latest calculations
in this group, by Baroni and Schiavilla [6], were in contrast
fully based on chiral effective field theory (χEFT) input.
The results of all these calculations performed in coordinate
space were quite similar, which suggested that the theoretical
predictions had a very small uncertainty in the low-energy
neutrino regime.

We could confirm these findings by performing in-
dependent calculations in momentum space [9]. Namely,
we investigated 2N and three-nucleon (3N) reactions with
(anti)neutrinos in the framework very close to the one of
Ref. [5] but with the single-nucleon current operator. For all
the studied reactions on the deuteron, we presented results for

the total cross sections, however, we restricted ourselves to the
lower (anti)neutrino energies. We found that the few percent
deviations between our strictly nonrelativistic results and the
predictions presented in Ref. [5] originate from the relativistic
kinematics, especially the phase space factor, employed in
Ref. [5]. Thus our calculations for the reactions with the
deuteron passed a necessary test before we embarked on 3N
calculations.

In Ref. [9] we collected important references, which dealt
with calculations for neutrino scattering on heavier than A = 2
nuclei and related processes like muon capture or the triton β

decay [10–17]. Here we mention only early calculations of the
ν̄e + 3He → e+ + 3H and ν̄μ + 3He → μ+ + 3H processes
by Mintz et al., who used an elementary particle model [18]
dealing with nonbreakup reactions, and especially work by
Gazit et al., who performed a number of calculations for
neutrino induced breakup reactions with the 3H, 3He, and 4He
nuclei [19–21], in which final-state interactions were included
via the Lorentz integral transform method [22]. Heavier light
nuclei, including 12C, were investigated with the Green’s
function Monte Carlo method [23–25] and using an extended
factorization scheme in the spectral function formalism [26].

Our calculations in Ref. [9] for the (anti)neutrino-3He and
(anti)neutrino-3H inelastic scattering were limited only to
examples of the essential nuclear response functions; we did
not calculate any total cross sections. In the present paper
we continue our work for the (anti)neutrino reactions with
the trinucleons. Within the same framework, described in
Ref. [9], we performed several thousand Faddeev calculations
to gather information necessary to compute the differential
(with respect to the lepton arm) and total cross sections.
This information was stored in the form of the response
functions calculated on a sufficiently dense two-dimensional
grid defined by the internal nuclear energy and the magnitude
of the three-momentum transfer. The very time consuming

2469-9985/2019/100(6)/064003(13) 064003-1 ©2019 American Physical Society

https://orcid.org/0000-0002-5210-6910
https://orcid.org/0000-0001-5487-4035
https://orcid.org/0000-0001-6519-9645
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.100.064003&domain=pdf&date_stamp=2019-12-26
https://doi.org/10.1103/PhysRevC.98.015501
https://doi.org/10.1103/PhysRevC.98.015501
https://doi.org/10.1103/PhysRevC.98.015501
https://doi.org/10.1103/PhysRevC.98.015501
https://doi.org/10.1103/PhysRevC.100.064003


J. GOLAK et al. PHYSICAL REVIEW C 100, 064003 (2019)

calculations of the response functions allowed us later to
calculate, essentially in no time at all, other observables of
interest. To this end simple two-dimensional interpolations
were used. This method was of course first carefully tested for
the reactions on the deuteron, where the results of the direct
calculations exist and only then applied to the trinucleons. The
results of our calculations are available upon request.

The paper is organized in the following way. Since we
defined all the elements of our formalism in Ref. [9], in Sec. II
we restate only crucial definitions and provide the connec-
tion between the response functions and the cross sections.
In Secs. III and IV we show selected results for neutrino
reactions on the deuteron and the trinucleons. In particular
we discuss the properties of the 2N and 3N weak response
functions and the resulting differential and total cross sections.
Finally, Sec. V contains concluding remarks and outlook.

II. CROSS SECTIONS AND RESPONSE FUNCTIONS

Our treatment of the kinematics of the 2H, 3He, and 3H
(anti)neutrino induced disintegration processes is the same.
We start from the exact relativistic form of the energy and
momentum conservation laws but later we employ nonrela-
tivistic formulas in the nuclear sector, consistent with our non-
relativistic 2N and 3N dynamics. Here we restrict ourselves
to initial (anti)neutrino energies E � 160 MeV and we have
found for all the considered reactions a very small difference
(not exceeding 1 %) between the results for kinematical
quantities based on the exact relativistic formulas and their
approximate nonrelativistic analogs.

For a given initial (anti)neutrino energy E and a final lepton
scattering angle θ , we calculate the range of the outgoing
lepton energies E ′ and express the internal energy of the
nuclear system Ec.m. in terms of E , θ , and E ′. This information
is necessary to evaluate the differential and total cross sections
for the (anti)neutrino induced disintegration processes. In the
following the initial (anti)neutrino and final lepton momenta
are denoted as k and k′, respectively.

The formalism of neutrino scattering off nuclei is well
established; see, for example, Ref. [27]. For the charged-
current (CC) induced processes it stems directly from the
Fermi theory but it has to be modified to include additionally
the neutral-current (NC) based processes. For the lowest order
processes the transition matrix element can be written as a
contraction of the nuclear part Nλ and the leptonic part Lλ,
where the latter is expressed in terms of the Dirac spinors and
gamma matrices in a standard way [9]. Therefore, we focus
on the matrix elements

Nλ = 〈� f P f m f | jλ|�i Pi mi 〉 (2.1)

of the nuclear weak charged or neutral current jλ between
the initial |�i 〉 and final |� f 〉 nuclear states, where the total
initial (final) nuclear three-momentum is denoted by Pi (P f ),
mi is the initial nucleus spin projection, and m f is the set
of spin projections in the final state. We evaluate the crucial
nuclear matrix elements Nλ in momentum space and all
information about our framework can be found in Ref. [9] and
in references therein. Our predictions for all the CC induced

reactions are prepared only for the electron flavor. However,
for the NC reactions, results are the same for all three flavors.

We assume a system of coordinates where the three-
momentum transfer, Q ≡ k − k ′, is parallel to the (quanti-
zation) z axis and use the spherical components for Nλ. The
standard steps lead to the final form of the cross section

d 3σ

dE ′ d	′ = G2
F cos2 θC

(2π )2 F (Z, E ′)
|k′|
8E

(V00R00 + VMMRMM

+VPPRPP + VZZRZZ + VZ0RZ0), (2.2)

where the notation in Eq. (2.2) is the same as in Ref. [9].
While the Vi j functions arise from the analytically known

leptonic arm [9], the nuclear response functions, which are
the essential dynamical ingredients in Eq. (2.2), originate
from the integration of various products of the nuclear matrix
elements over the whole nuclear phase space available for the
fixed final lepton momentum:

RAB =
∑

mi,m f

∫
df δ(Ec.m. − E f )〈� f P f m f | jA|�i Pi mi 〉

× (〈� f P f m f | jB|�i Pi mi〉)∗. (2.3)

The labels AB = 00, MM, PP, ZZ , and Z0 stem from the var-
ious components of the current operator, and the df integral
denotes the sum and the integration over all final nuclear states
with the fixed internal energy Ec.m. = E2N or Ec.m. = E3N.
The direct integration would allow one to evaluate contri-
butions from any part of the phase space. In particular, for
the reactions on 3He and 3H it would be possible to obtain
contributions from the two- and three-body breakup channels.
However, the numerical cost of such calculations needed for
the total cross section, which is the main objective of the
present paper, is very high. Thus we decided to compute the
3N response functions in a much more economical way, using
closure and employing the special Faddeev scheme [28,29]. In
Ref. [9] we compared results based on these two quite differ-
ent approaches and found a very good agreement. The results
for all the 3N response functions presented in this paper are
obtained with the second, faster method. This closure-based
scheme could be formulated also for the 2N system but in
that case the integration over the phase space is well under
control and perfectly practical as will be explained in the
following. Thus all the 2N response functions are calculated
as in Ref. [9], by direct integrations.

It is very important to realize that while the differential
cross section d 3σ

dE ′ d	′ depends on three kinematical variables,
E , θ , and E ′, the response functions are defined in terms
of the internal nuclear energy Ec.m. and the magnitude of
the three-momentum transfer Q. We will use this feature to
facilitate the calculations.

We follow the path paved by Refs. [3–6], whose authors
investigated inclusive neutrino scattering on the deuteron with
configuration space methods. Those very advanced investiga-
tions were performed with traditional and chiral NN potentials
and included weak nuclear current operators with one- and
two-body contributions, the latter adjusted to the NN force.
Here we continue our work from Ref. [9] with the AV18
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FIG. 1. Rectilinear grid of (E2N, Q) points used to store the re-
sponse functions for the νe + 2H → e− + p + p reaction (tiny dots)
and the actual (E2N, Q) points used to evaluate the total cross section
(circles) in the triangle-like area for the initial neutrino energy E =
160 MeV. Border lines for two smaller energies, 50 and 100 MeV,
are also shown.

NN potential [8] and the single-nucleon current operator
defined in Ref. [15], previously employed, for example, in
Refs. [11,15]. Since we restrict ourselves to low (anti)neutrino
energies, E � 160 MeV, we expect, based on the results of

Ref. [5], that 2N contributions in the current operators would
lead to effects smaller than 2–4%. Our expectation can be
further supported by the very recent results for the cross sec-
tions in inclusive neutrino scattering off the deuteron that were
calculated by Baroni and Schiavilla in Ref. [6] for essentially
the same range of initial (anti)neutrino energies but in a chiral
effective field theory framework. The authors included higher
order terms (up to N4LO) to the 2N weak current operator but
found small effects of these contributions beyond the leading
order. Their results were quite close (systematically larger
by approximately 2%) to the earlier predictions of Ref. [4]
using semiphenomenological NN forces and related current
operators. Taking into account the findings of Refs. [6,9], we
can consider our predictions for the 3N reactions to be quite
reliable, albeit clearly leaving room for improvement.

III. RESULTS FOR (ANTI)NEUTRINO SCATTERING ON 2H

Calculating the total cross section for (anti)neutrino in-
duced breakup reactions for many initial (anti)neutrino en-
ergies, starting for each energy anew, could lead in fact to a
waste of computer resources. As we show in Fig. 1 for the
νe + 2H → e− + p + p reaction, while calculating the total
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FIG. 2. Nuclear inclusive response functions R00 (a), RMM (b), RPP (c), RZZ (d), and RZ0 (e) for the ν̄e + 2H → e+ + n + n reaction as a
function of the internal 2N energy E2N and the magnitude of the three-momentum transfer Q. The results are obtained with the AV18 NN
potential and the single-nucleon CC operator, which contains the relativistic corrections, employing the nonrelativistic kinematics.
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FIG. 3. Same as Fig. 2, but for the νe + 2H → e− + p + p reaction.

cross section for increasing initial antineutrino energies, the
dynamical information in the form of response functions is
taken from a part of the (E2N, Q) domain, which necessarily
overlaps with the region corresponding to lower energies. This
is also true for the reactions with the trinucleons. That is
why calculating response functions on a sufficiently dense
grid and using stored values for interpolations to integral
(E2N, Q) points appears to be advantageous. The same stored
response functions can be used not only to generate the
total cross sections but also to calculate the intermediate
differential cross sections d3σ/(dE ′ d	′) and dσ/dθ . Yet
another advantage of storing response functions becomes
clear for the NC induced processes, where the same response
functions are used for the neutrino and antineutrino induced
reactions.

Before embarking on 3N calculations, this approach was
tested in the 2N system, where results of the direct calcula-
tions of the total cross sections as defined, for example, in
Eq. (2.22) of Ref. [9] and predictions based on the response
function interpolations could be easily compared. The various
sets of response functions should be prepared with great care,
taking into account the character of their dependence on E2N

and Q. We decided to use simple rectilinear grids, which
forced us to use many points on the whole grid, even if a
sharp maximum was strongly localized, leading, however, to

very accurate predictions. This feature of our calculations is
clearly visible in Fig. 1.

In Figs. 2–4 we show the three sets of the response func-
tions obtained for the ν̄e + 2H → e+ + n + n, νe + 2H →
e− + p + p, and νe(ν̄e) + 2H → νe(ν̄e) + p + n reactions. We
use different E2N and Q ranges in the figures to display the
particular features of the response functions. Note that the
figures are not drawn with all calculated points, so the actual
grids for two-dimensional interpolations are in fact much
denser. All the response functions have a maximum in the
vicinity of the (0,0) point but their shapes and heights are
very different. The response functions R00 and RZ0 originating
at least partly from the N0 nuclear matrix elements are, for
all three reactions, dwarfed by the response functions RMM ,
RPP, and RZZ , which are by two orders of magnitude more
pronounced. Note that for each E2N > 0 there is an interval
[0, Qmin] which cannot be physically realized for any initial
neutrino energy and for which the values of the response
functions are simply set to zero.

From the response functions it is straightforward to com-
pute the differential and total cross sections. To this end one
interpolates the response functions in two dimensions over the
(E2N, Q) grid points to the particular (Ē2N, Q̄) value resulting
from the (E , θ, E ′ ) set. We used three different methods
to interpolate the response functions. While the first two
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FIG. 4. Same as Figs. 2 and 3, but for the weak NC driven ν̄e + 2H → ν̄e + p + n and νe + 2H → νe + p + n reactions.

methods employed consecutive cubic spline (from Ref. [30]
or Ref. [31]) interpolations, first along the Q direction and
then along the E2N direction, the third method was a straight-
forward bilinear interpolation. In this way we could control
the quality of interpolations, since we required that results for
all considered observables, obtained by the three methods, did
not deviate from the average by more than 1%. Additional

points were added to the grid, when that criterion was not
met. Since the 2N calculations are relatively easy, we could
consider grids that contained from 7200 to 17 200 points. This
procedure was especially important for the 3N case, where
we did not calculate cross sections directly but fully relied
on response function interpolations. In the following we show
results based on the interpolation scheme from Ref. [30].
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FIG. 5. Triple differential cross section d3σ/(dE ′ d	′ ) for the ν̄e + 2H → e+ + n + n (dashed line), νe + 2H → e− + p + p (dash-dotted
line), ν̄e + 2H → ν̄e + p + n (solid line), and νe + 2H → νe + p + n (dotted line) reactions for the initial (anti)neutrino energy E = 100 MeV
at three laboratory scattering angles: θ = 27.5◦ (a), θ = 90◦ (b), and θ = 152.5◦ (c) as a function of the final lepton energy E ′. The results are
obtained with the AV18 potential and with the single-nucleon current, employing the nonrelativistic kinematics.
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FIG. 6. Differential cross section dσ/dθ for the ν̄e + 2H → e+ + n + n (a), νe + 2H → e− + p + p (b), ν̄e + 2H → ν̄e + p + n (c), and
νe + 2H → νe + p + n (d) reactions as a function of the laboratory scattering angle θ for initial (anti)neutrino energy E = 50 MeV (dotted
line), 100 MeV (dashed line), and 150 MeV (solid line). The results are obtained with the AV18 potential and with the single-nucleon current,
employing the nonrelativistic kinematics.

The triple differential cross section, d3σ/(dE ′ d	′), for a
fixed lepton scattering angle is a function of the final lepton
energy E ′. In Fig. 5 we show examples of such cross sections
for the initial (anti)neutrino energy E = 100 MeV and for
three different lepton scattering angles θ = 27.5◦, θ = 90◦,
and θ = 152.5◦. These results can be compared with the mid-
dle panels of Figs. 6 and 9 in Ref. [5] and show that the cross
sections rise very rapidly with the final (anti)lepton energy,
changing in the allowed energy range by several orders of
magnitude.

For all four studied reactions we show also in Fig. 6 the
angular distributions of the cross sections, dσ/dθ , which are
given as

dσ

dθ
= 2π sin θ

∫ (E ′ )max

(E ′ )min

dE ′ d3σ

dE ′ d	′ , (3.1)

where (E ′)min = Me (0) for the CC (NC) induced reactions
and the factor 2π arises from the integration over the az-
imuthal angle φ. Clearly, the angular distributions rise with
the incident energy. For the smallest E = 50 MeV they are
all almost symmetric with respect to θ = 90◦. This symmetry
is roughly preserved for the higher energies E = 100 and
150 MeV in the case of the two neutrino induced reactions, but
for the two other reactions the angular distributions become
asymmetric and their maxima are shifted toward forward
angles. This behavior is most evident for the ν̄e + 2H → e+ +
n + n process.

By the final integration over the scattering angle θ we
arrive at the total cross section

σtot =
∫ π

0
dθ

dσ

dθ
. (3.2)

These important observables were first presented in
Refs. [3–6] and our momentum space based results shown in
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FIG. 7. Total cross section σtot for the ν̄e + 2H → e+ + n + n
(dashed line), νe + 2H → e− + p + p (dash-dotted line), ν̄e + 2H →
ν̄e + p + n (solid line), and νe + 2H → νe + p + n (dotted line) re-
actions as a function of the initial (anti)neutrino energy E calculated
directly [9] (symbols) or from the interpolated response functions
(lines) as explained in the text. The results are obtained with the
AV18 potential and with the single-nucleon current, employing the
nonrelativistic kinematics. The inset focuses on the results for E �
40 MeV.

064003-6



FROM RESPONSE FUNCTIONS TO CROSS SECTIONS IN … PHYSICAL REVIEW C 100, 064003 (2019)

 0  20  40  60  80  100

 0

 100

 200

 300

 0
 2
 4
 6

R
00

 [f
m

]  (a) 

E3N [MeV] 

Q [M
eV/c] 

R
00

 [f
m

]

 0  20  40  60  80  100

 0

 100

 200

 300

 0

 10

 20

R
M

M
 [f

m
]

 (b) 

E3N [MeV] 

Q [M
eV/c] 

R
M

M
 [f

m
]

 0  20  40  60  80  100

 0

 100

 200

 300

 0
 2
 4
 6
 8

R
P

P
 [f

m
]

 (c) 

E3N [MeV] 

Q [M
eV/c] 

R
P

P
 [f

m
]

 0  20  40  60  80  100

 0

 100

 200

 300

 0
 2
 4
 6

R
Z

Z
 [f

m
]  (d) 

E3N [MeV] 

Q [M
eV/c] 

R
Z

Z
 [f

m
]

 0  20  40  60  80  100

 0

 100

 200

 300

 0

 1

 2

R
Z

0 
[fm

]  (e) 

E3N [MeV] 

Q [M
eV/c] 

R
Z

0 
[fm

]

FIG. 8. Total inclusive CC response functions R00 (a), RMM (b), RPP (c), RZZ (d), and RZ0 (e) for the CC electron antineutrino disintegration
of 3He as a function of the internal 3N energy E3N and the magnitude of the three-momentum transfer Q. The results are obtained with the
AV18 NN potential and the single-nucleon CC operator, which contains the relativistic corrections.

Figs. 2 and 4 of Ref. [9] agreed very well with the predictions
presented in Ref. [5]. Despite the distinct treatment of
kinematics the differences for none of the reactions for
E � 150 MeV exceed 2% for the single-nucleon current
calculations and 6% for calculations including additionally
two-nucleon currents. In Fig. 7 we display a comparison
of directly obtained results for the total cross sections from
Ref. [5] with the predictions based on the response function
interpolations. The agreement is very good for all four
reactions and for all considered (anti)neutrino energies,
justifying our “economical” approach to calculations of the
cross sections.

IV. RESULTS FOR (ANTI)NEUTRINO
SCATTERING ON 3He AND 3H

We follow the same path for the trinucleons as for the
calculations with the deuteron target. That means that also
in this case we calculate the response functions on a grid of

(E3N, Q) points. As already mentioned, one can evaluate the
response functions by introducing explicit integrations over
the available phase space, in particular differentiating between
the two- and three-body reaction channels. It is also possible
to evaluate the response functions without any resort to ex-
plicit final-state kinematics [9,28,29]. These two approaches
were used and compared successfully in Ref. [9] for a small
number of (E3N, Q) points. Since we wanted to produce full
grids of response functions, we decided to employ the second
scheme. Each 3N grid comprised roughly 2000 points. Even
if some points on the rectilinear grids lied in the nonphys-
ical region, where no calculations are necessary and where
the response functions are just zero, the actual number of
the computations was high. In order to efficiently deal with
so many calculations, we prepared a special computational
framework based on functional programming and algebraic
types to distribute the calculations among several desktop
computers. Our calculations were performed with the AV18
NN potential, neglecting the 3N force, and with the same

064003-7



J. GOLAK et al. PHYSICAL REVIEW C 100, 064003 (2019)

 0  20  40  60  80  100

 0

 100

 200

 300

 0
 1
 2
 3

R
00

 [f
m

]  (a) 

E3N [MeV] 

Q [M
eV/c] 

R
00

 [f
m

]

 0  20  40  60  80  100

 0

 100

 200

 300

 0
 3
 6
 9

R
M

M
 [f

m
]

 (b) 

E3N [MeV] 

Q [M
eV/c] 

R
M

M
 [f

m
]

 0  20  40  60  80  100

 0

 100

 200

 300

 0
 1
 2
 3

R
P

P
 [f

m
]  (c) 

E3N [MeV] 

Q [M
eV/c] 

R
P

P
 [f

m
]

 0  20  40  60  80  100

 0

 100

 200

 300

 0

 1

 2

R
Z

Z
 [f

m
]

 (d) 

E3N [MeV] 

Q [M
eV/c] 

R
Z

Z
 [f

m
]

 0  20  40  60  80  100

 0

 100

 200

 300

 0
 0.4
 0.8
 1.2

R
Z

0 
[fm

]

 (e) 

E3N [MeV] 

Q [M
eV/c] 

R
Z

0 
[fm

]

FIG. 9. Same as Fig. 8, but for the ν̄e + 3H → e+ + n + n + n reaction.

single-nucleon current as in the 2N case. Since we do not
include the proton-proton Coulomb force for the 3N scattering
states, for the CC driven reactions we restricted ourselves to
the antineutrino induced reactions, which reduce the nuclear
charge. We investigated also the NC reactions on 3He and 3H,
although we are aware that our predictions for the weak NC
response functions of 3He might prove inaccurate for some
parts of the phase space, where the proton-proton Coulomb
force becomes important. The strongest Coulomb repulsion
effects can be expected for low relative proton-proton en-
ergies. It is difficult to estimate the size of the neglected
Coulomb force effects on these observables. Our approach is,
however, at least partly justified by a reasonable agreement
between the data and analogous theoretical predictions for
the inclusive response functions in electron scattering on
3He [29].

We start presenting our results with the 3N weak response
functions, shown in Figs. 8–11. Note that Figs. 8, 9 and 10 in
Ref. [9] are just cross sections for Q = 100/c MeV through
the three-dimensional plots given here in Figs. 8, 11, and 10,
respectively. It is clear that the 3N response functions are

much broader and extend toward higher E3N and Q values than
the corresponding 2N observables, which are very localized.
The differences between various response functions are not so
strong as in the 2N case. The response functions for the CC
electron antineutrino disintegration of 3He and 3H (Figs. 8
and 9) have similar shapes and roughly scale according to
the number of protons in a nucleus. This seems to reflect the
fact that the process described by the single-nucleon current
involves only protons.

In the case of the NC response functions the proton and
neutron contributions to the single nucleon NC operator are
comparable. This leads to similar results for the 3He and 3H
NC response functions displayed in Figs. 10–11.

As in the 2N cases, the response functions are the key
ingredients of the cross sections, where only total or partial
information about the final lepton is retained. The triple
differential cross section d3σ/(dE ′ d	′) for the CC electron
antineutrino disintegration, NC electron antineutrino disin-
tegration, and NC electron neutrino disintegration of 3He
just for one initial (anti)neutrino energy E = 100 MeV at
three scattering angles θ = 27.5◦, θ = 90◦, and θ = 152.5◦
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FIG. 10. Same as Figs. 8 and 9, but for inclusive NC response functions for (anti)neutrino disintegration of 3He.

are displayed in Fig. 12 as a function of the final lepton
energy E ′. All the cross sections soar with increasing E ′ and
they are pulled down only in the vicinity of (E ′)max. At the
selected forward angle the cross section for the CC driven
process assumes the highest values and the results for the NC
reactions with antineutrinos and neutrinos nearly overlap (at
least observed on the logarithmic scale). For the two other
values of θ the antineutrino and neutrino NC cross sections
are clearly separated and the cross section for the neutrino
induced NC breakup of 3He is quite close to the prediction
for the antineutrino induced CC process.

The corresponding predictions for the same reactions on
3H are shown in Fig. 13. At θ = 27.5◦ the cross section for the
CC reaction dominates for 40 < E ′ < 85 MeV but not over
the whole E ′ interval. For θ = 90◦ and θ = 152.5◦ the cross
section for the neutrino induced NC breakup of 3H assumes
higher values than the other two cross sections.

We give only sample results but it is clear that similar
calculations can be used to plan experimental investigations
of the NC and CC (anti)neutrino induced reactions.

As a last step before discussing the total cross section,
we show in Fig. 14 the six angular distributions of the
cross sections, which can be now easily obtained from the

response functions. We do it again for the same incoming
(anti)neutrino energies as in Fig. 6 for the reactions on the
deuteron. The curves are less symmetric compared to the
predictions from Fig. 6, which is clearly visible for the two
higher E values. There is a clear similarity between the
results shown in Figs. 14(a) and 14(b) for the antineutrino
induced CC processes on 3He and 3H, which can be traced
back to the scaling properties of the corresponding response
functions. For the highest energy E = 150 MeV the maxima
for all the cross sections with antineutrinos are shifted toward
forward angles; only for the neutrino induced NC processes
displayed in Figs. 14(d) and 14(f) the maxima are reached
for θ > 90◦.

Finally we arrive at the most important results: the total
cross sections for the studied (anti)neutrino reactions with
the trinucleons. They can be found in Fig. 15 for 3He and
in Fig. 16 for 3H. In the 3He case the cross section for CC
electron antineutrino disintegration takes the highest values
in the whole investigated energy range. It is followed by the
cross section for NC electron neutrino disintegration. The
cross section for NC electron antineutrino disintegration is
approximately two times smaller than the cross section for the
corresponding CC driven process.
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FIG. 11. Same as Fig. 10, but for 3H.

The picture is different for 3H, where the cross section
for NC electron neutrino disintegration is roughly two times
larger than the predictions for the two antineutrino induced
reactions, which are close to each other for all the initial
(anti)neutrino energies.

V. SUMMARY

We extended our studies of (anti)neutrino scattering off the
deuteron and trinucleons from Ref. [9], where we presented
our momentum space framework and obtained predictions for
the total cross sections only for the reactions on the deuteron.

10-4

10-3

10-2

10-1

100

 0  20  40  60  80  100

 d
3 σ/

(d
E

’d
Ω

’) 
[1

0-1
6  fm

2 /(
M

eV
sr

)]

 E’ [MeV] 

(a)

10-4

10-3

10-2

10-1

100

 0  20  40  60  80

 E’ [MeV] 

(b)

10-4

10-3

10-2

10-1

100

 0  20  40  60  80

 E’ [MeV] 

(c)

FIG. 12. Triple differential cross section d3σ/(dE ′ d	′ ) for the CC electron antineutrino disintegration of 3He (dashed line), NC electron
antineutrino disintegration of 3He (solid line), and NC electron neutrino disintegration of 3He (dotted line) for the initial (anti)neutrino energy
E = 100 MeV at three laboratory scattering angles: θ = 27.5◦ (a), θ = 90◦ (b), and θ = 152.5◦ (c) as a function of the final lepton energy E ′.
The results are obtained with the AV18 potential and with the single-nucleon current, employing the nonrelativistic kinematics.
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FIG. 13. Same as Fig. 12, but for the reactions on 3H.

For the reactions on the trinucleons we could perform only
feasibility studies in Ref. [9], employing two different meth-
ods to calculate the essential response functions. In the present
paper we provide full information about the cross sections for
CC electron antineutrino disintegration, NC electron antineu-

trino disintegration, and NC electron neutrino disintegration
of 3He and 3H.

The material presented in this paper is based on tens of
thousands of 2N and several thousand 3N scattering calcu-
lations, which were necessary to fill dense two-dimensional
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FIG. 14. Same as Fig. 6, but for the inclusive CC electron antineutrino disintegration of 3He (a), CC electron antineutrino disintegration
of 3H (b), NC electron antineutrino disintegration of 3He (c), NC electron neutrino disintegration of 3He (d), NC electron antineutrino
disintegration of 3H (e), and NC electron neutrino disintegration of 3H (f).
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grids, from which essentially in no time other observables
(threefold differential cross sections, angular distributions of
the cross sections, and, most importantly, the total cross
sections) can be obtained. The results of our calculations in
the form of the tabulated response functions are available to
the interested reader. This whole procedure was first carefully
tested for the reactions on the deuteron, where the observables
had been calculated directly and where accurate predictions
obtained in coordinate space were available.

Our calculations leave room for improvement: they have
been performed with the single-nucleon current operator and
without a 3N force, neglecting additionally the Coulomb force
between two final protons for one of the studied reactions.
Nevertheless our predictions are obtained with the fully real-
istic AV18 nucleon-nucleon potential [8] and are restricted to
the (anti)neutrino energy region, where two-nucleon current
and 3N force effects are not expected to be very important
and should not exceed 10%. Thus we provide important
information about (anti)neutrino interactions with very light
nuclei.

A consistent framework for the calculations of neutrino
induced processes on 2H, 3He, 3H, and other light nuclei
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FIG. 16. Same as Fig. 15, but for three inclusive (anti)neutrino
reactions with 3H.

is still a challenge, despite the recent progress in this field.
There are many models of the nuclear interactions and weak
current operators linked to these forces, but full compatibility
has not been achieved yet. We hope that the work on the
regularization of the 2N and 3N chiral potentials as well as
consistent electroweak current operators will be completed in
the near future. This will allow us to repeat the calculations of
the response functions and related observables within a better
dynamical framework. We believe, however, that the results
presented in this paper constitute an important step toward a
consistent framework for the calculation of several neutrino
induced processes on 2H, 3He, 3H, and other light nuclei.
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