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Scattering phase shifts and mixing angles for an arbitrary number of coupled channels on the lattice
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We present a lattice method for determining scattering phase shifts and mixing angles for the case of
an arbitrary number of coupled channels. Previous nuclear lattice effective field theory simulations were
restricted to mixing of up to two partial waves for scattering of two spin-1/2 particles, which is insufficient for
analyzing nucleon-nucleus or nucleus-nucleus scattering processes. In the proposed method, the phase shifts and
mixing angles are extracted from the radial wave functions obtained by projecting the three-dimensional lattice
Hamiltonian onto the partial wave basis. We use a spherical wall potential as a boundary condition along with
a channel-mixing auxiliary potential to construct the full-rank S matrix. Our method can be applied to particles
with any spin, but we focus here on scattering of two spin-1 bosons involving up to four coupled channels. For a
considered test potential, the phase shifts and mixing angles extracted on the lattice are shown to agree with the
ones calculated by solving the Schrödinger equation in the continuum.
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I. INTRODUCTION

Lattice simulations provide a powerful computational ap-
proach to systems of strongly interacting particles, which
is widely used in condensed matter, nuclear, and particle
physics. In particular, lattice gauge theory is the only known
numerical method that allows one to directly solve QCD in
the nonperturbative domain. Here, remarkable progress has
been achieved in the recent decades due to the rapid increase
of computational power and algorithmic efficiency. In par-
ticular, high-precision lattice QCD calculations of hadronic
observables, such as the masses and decay constants, are
already available for physical values of the quark masses [1].
While hadronic reactions and resonance properties can also be
addressed in lattice QCD, such calculations appear to be much
more challenging and require developing reliable methods
for relating the scattering amplitude to discrete finite-volume
spectra accessible in lattice simulations, see Refs. [2–8] for
recent work along this line and [9] for a review article.

Lattice methods have also proven to be very efficient in
describing low-energy nuclear systems in the framework of
chiral effective field theory (EFT). Recently, the chiral expan-
sion of the nucleon-nucleon (NN) potential has been pushed to
fifth order (N4LO) [10–13] within the continuum formulation.
The NN potentials derived in chiral EFT in Ref. [14] allow,
for the first time, for a nearly perfect description of the
neutron-proton and proton-proton scattering data below the
pion production threshold, which is comparable to or even
better than that based on the available phenomenological po-
tentials. Three- and four-nucleon forces have been worked out
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completely up to fourth order (N3LO) of the chiral expansion
[15–18], see also Refs. [19–22] for the derivation of selected
contributions at N4LO and Refs. [23–25] for review articles.
To apply the interactions derived in chiral EFT to few- and
many-nucleon systems, it is necessary to solve the quantum
mechanical A-body problem, which can be achieved using
continuum ab initio methods including Faddeev-Yakubovsky
equations [26], the no-core configuration interaction approach
[27], coupled-cluster expansions [28], the in-medium sim-
ilarity renormalization group approach [29], self-consistent
Green’s function [30], or quantum Monte Carlo methods [31].
Alternatively, a discretized version of chiral EFT [32–34]
has been successfully applied to a broad range of nuclear
systems. This approach has an appealing feature of being well
suited for dealing with strongly clustered systems such as the
famous Hoyle state in 12C [35–37] and some of the low-lying
states of 16O, which often represent a challenge for continuum
methods. See Ref. [38] for a recent review on clustering in
light nuclei. So far, nuclear lattice simulations have been
carried out for light- and medium-mass nuclei and neutron
matter up to third order in the chiral expansion [39–41]. For
a recent lattice EFT study of NN scattering at N3LO see
Ref. [42]. This method was also employed to study the de-
pendence of the triple-α process on the fundamental constants
of nature [43,44], see Ref. [45] for a related discussion, to
investigate the isotopic dependence of nuclear clustering [46]
and to determine the features of the nuclear force essential
for nuclear binding [47]. It is important to emphasize that the
development of chiral EFT interactions is more difficult on
the lattice than in the continuum as it requires establishing
efficient techniques for extracting the scattering amplitude
from the finite-volume discrete spectra and for dealing with
the breaking of rotational [48,49] and Galilean invariance
[50] due to nonzero lattice spacing. Lüscher’s finite-volume
method is one possible approach to compute scattering phase
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shifts on the lattice. For lattice QCD applications, there have
been many recent advances on coupled-channel calculations
and partial-wave mixing using Lüscher’s formalism [51–55].
However, for lattice EFT calculations of heavier nuclear sys-
tems, the large nuclear binding energies and very small finite-
volume scattering energies make it difficult to implement
Lüscher’s method with accuracy. For this reason, a more ro-
bust approach based on the spherical wall boundary conditions
[56] was used in Refs. [42,48,57,58]. This technique is not
only applicable to calculations of NN phase shifts on the
lattice, but can also be combined with the adiabatic projection
method [59,60], which allows one to access nuclear reactions
via lattice simulations, see Ref. [61] for the first ab initio study
of α-α scattering. However, the spherical wall method has so
far only been applied to uncoupled partial waves and the cases
of two coupled channels, which is insufficient for studying
nuclear reactions. The purpose of this paper is to generalize
this technique to an arbitrary number of coupled channels.

Our paper is organized as follows. In Sec. II, we introduce
the lattice notation, review the method of Ref. [58] to compute
the scattering parameters with up to two coupled channels,
and extend this approach to scattering of particles or nuclear
clusters of an arbitrary high spin. As an application, we
consider in Sec. III the scattering problem of two spin-1
bosons using a toy-model potential, which is similar to the
one from Refs. [57,58]. The main results of our study are
summarized in Sec. IV.

II. SCATTERING OF TWO PARTICLES WITH
ARBITRARY SPIN ON THE LATTICE

A. Calculational setup

We employ a periodic cubic lattice with the length L and
spacing a, and define orthonormal lattice states |r〉 with

r1, r2, r3 = 0, . . . , L − 1,

|r〉 = |r + Lê1〉 = |r + Lê2〉 = |r + Lê3〉 (1)

due to the periodic boundary condition. All quantities in this
section are given in dimensionless lattice units, i.e., they must
be multiplied by an appropriate power of the lattice spacing
a to obtain their physical values. In the following, we briefly
review the method to compute the scattering phase shifts and
mixing angles for up to two coupled channels introduced in
Ref. [58], which will then be generalized to the case of three
or more coupled channels.

We consider the general scattering problem of two particles
with spins s1, s2 and masses m1, m2 interacting with the poten-
tial V (r). The free Hamiltonian in the center-of-mass (c.m.)
system is discretized as [57]

H0|r〉 = 49

12μ
|r〉 − 3

4μ

3∑
i=1

(|r + êi〉 + |r − êi〉)

+ 3

40μ

3∑
i=1

(|r + 2êi〉 + |r − 2êi〉)

− 1

180μ

3∑
i=1

(|r + 3êi〉 + |r − 3êi〉) (2)

using the reduced mass μ = m1m2/(m1 + m2). The above
expression corresponds to the O(a4)-improved free lattice
Hamiltonian. To avoid artifacts induced by the periodic
boundary conditions, it is convenient to use a spherical wall
boundary condition by adding the potential

Vwall(r) = �θ (r − RW ), (3)

where θ is the Heaviside function, RW is the wall radius, and
� is a large positive constant1 [57]. Calculating the scattering
parameters at low momenta usually requires large lattices,
which makes the analysis computationally expensive. It is
more convenient to introduce an auxiliary potential outside of
the range of V , which can be chosen, e.g., of a Gaussian type

Vaux(r) = V0 exp[−(r − RW )2] θ (RW − r) (4)

with V0 � 0 in order to control the eigenenergies of the
Hamiltonian [58]. The complete Hamiltonian including all
contributions is then given by

H = H0 + V + Vwall + Vaux. (5)

B. Projection onto partial waves

The three-dimensional problem can be reduced to the one-
dimensional one by defining radial states for a partial wave
2s+1l j ,

|R〉s,l, j =
∑

r

∑
lz,sz

∑
s1,z

∑
s2,z

C j,l,s
jz,lz,sz

Cs,s1,s2
sz,s1,z,s2,z

× Yl,lz (r̂)δr,R|r〉 ⊗ |s1,z, s2,z〉, (6)

i.e., the lattice sites r with the same radial distance R are
grouped together according to the irreducible representations
of the rotational group. Here, C j,l,s

jz,lz,sz
and Cs,s1,s2

sz,s1,z,s2,z
are the

Clebsch-Gordan coefficients for the spin-orbit and spin-spin
couplings, respectively. The spherical harmonics Yl,lz behave
like Yl,lz (0) = δl,0/

√
4π at the origin. Since the results ob-

tained here do not depend on jz in the continuum limit, we
can choose jz = 0.

Note that the radial states have to be normalized by di-
viding them by the square root of their norm. States that
are not linearly independent or have vanishing norm must
be omitted to make the norm matrix invertible. Afterwards,
the Hamiltonian can be projected onto the normalized radial
states. For n coupled channels with

|R〉α := |R〉sα,lα, jα for α = 1, . . . , n, (7)

one has

[HR(R1, R2)]αβ =
n∑

α′,β ′=1

[N−1/2(R1)]αα′[N−1/2(R2)]β ′β

× α′ 〈R1|H |R2〉β ′ , (8)

where N−1/2 is the inverse square root of the norm matrix

[N (R)]αα′ = α〈R|R〉α′ . (9)

1Following Ref. [58], we use the value � = 106 (given in dimen-
sionless lattice units) in the numerical calculations.
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FIG. 1. (a) Spectrum of eigenenergies in the continuum for different partial waves. The last column shows the combined spectrum in all
channels that do not have bound states. (b) The employed potentials in the 3SD1 partial waves (adopted from Ref. [58]). The blue dashed and
red dotted lines show the diagonal 3D1-wave element and the off-diagonal 3SD1-wave element in the 2 × 2 potential matrix, respectively. V0

and U0 give the strengths of the auxiliary and mixing potentials, respectively, RM shows an approximate position of the mixing potential while
RW is the spherical wall radius. The wave function is fitted in the interval [RI , RO].

Multiplying the eigenvectors of the projected Hamiltonian HR

by N−1/2 from the left yields the radial wave functions

ψ (r) = [ψ1(r), . . . , ψn(r)]T . (10)

C. Single-channel case

Outside of the range of the potential, the radial wave
functions are linear combinations of the spherical Hankel
functions h±

l (pr), where p is the momentum in the center-
of-mass system. For a single scattering channel, one obtains a
wave function of the form

ψ (r) = Ah−
l (pr) + Bh+

l (pr), (11)

which allows one to extract the phase shift δl from the S matrix
via

S = B/A = e2iδl . (12)

The coefficients A, B are computed by fitting the spherical
Hankel functions to the wave function in an interval [RI , RO]
outside of the range of the potential. The momentum p is
determined from the eigenenergy of the Hamiltonian using the

lattice dispersion relation

E (p) = 49

12μ
− 3

2μ

3∑
i=1

cos(pi ) + 3

20μ

3∑
i=1

cos(2pi )

− 1

90μ

3∑
i=1

cos(3pi ). (13)

This equation can be expressed in spherical coordinates with

p = (p sin θ cos φ, p sin θ sin φ, p cos θ ). (14)

In order to remove the angular dependence, the dispersion
relation must be projected onto partial waves as well:

Es,l, j (p) =
∫

d
p

∑
lz,sz

∑
l ′z,s′

z

∑
s1,z

∑
s2,z

C j,l,s
0,lz,sz

Cs,s1,s2
sz,s1,z,s2,z

×C j,l,s
0,l ′z,s′

z
Cs,s1,s2

s′
z,s1,z,s2,z

Y ∗
l,lz (p̂)Yl,l ′z (p̂)E (p). (15)

The angular integration can be facilitated by Taylor-expanding
E (p) up to order O(pκ ), which should be sufficiently high
to yield accurate results up to the cutoff momentum π/a.2

2In numerical calculations, we use κ = 30.

TABLE I. Parameters for the lattice calculation depending on the number of coupled scattering channels (nch): lattice length L, interval
[RI , RO] for fitting wave functions, spherical wall radius RW , coefficient V0 of Gaussian auxiliary potential, coefficient U0 of mixing potential
and number of computed eigenvectors neig. The lattice spacing has been chosen as a = 1.9733 fm.

nch L (units of a) RI (units of a) RO (units of a) RW (units of a) V0 (MeV) U0 (MeV) neig

1 35 9.02 12.02 15.02 0 – 10
41 9.02 12.02 18.02 0 – 10
47 9.02 12.02 21.02 0 – 10

2 35 9.02 12.02 15.02 0 20 15
41 9.02 12.02 18.02 0 20 15

3 35 9.02 12.02 15.02 0 10 70
4 35 9.02 12.02 15.02 0 5 110
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FIG. 2. Effects of the Gaussian auxiliary potential. (a) Wave function in the 3H5 partial wave distorted by the auxiliary potential of the
strength V0 = −40 MeV, which corresponds to the outlying data point at p � 65 MeV in the last plot in Fig. 5. (b) Eigenenergies on the lattice
in the 3H5 partial wave as functions of the strength V0 of the auxiliary potential. Large negative values of V0 lead to additional bound states
shown as red dotted lines.

Afterward, the c.m. system momentum can be computed by
solving Es,l, j (p) for p.

D. Scattering with two coupled channels

For two coupled channels, the S matrix must be constructed
as

S = (v+
1 v+

2 )(v−
1 v−

2 )−1, (16)

where v±
1 , v±

2 are linearly independent two-component vec-
tors containing the coefficients in front of the spherical Hankel
functions h±

li
. A simple way to obtain these coefficients would

be to extract them from a complex wave function

ψ (r) =
(

A1h−
l1

(pr) + B1h+
l1

(pr)

A2h−
l1

(pr) + B2h+
l2

(pr)

)
(17)

and its complex conjugate

ψ∗(r) =
(

A∗
1h+

l1
(pr) + B∗

1h−
l1

(pr)

A∗
2h+

l1
(pr) + B∗

2h−
l2

(pr)

)
(18)

using

v−
1 = (A1, A2)T , v−

2 = (B∗
1, B∗

2 )T ,

v+
1 = (B1, B2)T , v+

2 = (A∗
1, A∗

2 )T . (19)

However, the Hamiltonian HR commutes with the time-
reversal operator T so that it holds

ψ∗ = T ψ = ψ ⇒ v±
1 = v±

2 , (20)

i.e., the vectors v±
1 , v±

2 are linearly dependent. Thus, one runs
into the problem of having only one independent solution per
lattice energy. In order to circumvent this problem, an aux-
iliary imaginary potential term that breaks the time-reversal
symmetry can be added to the Hamiltonian:

(HR + U )ψ (r) = Eψ (r) (21)

with

U (r) = U0δr,RM

(
0 i

−i 0

)
(22)

and U0 ∈ R. The radius RM should lie outside the range of
the test potential and can be chosen close to the spherical wall

FIG. 3. Effects of the mixing potential. (a) Eigenenergies on the lattice in the 1P1/
5PF 1 (1D2/

5SDG2) partial waves for the choices of
U0 = 0, 10 and 20 MeV (U0 = 0, 5, and 10 MeV). Large values of the strength U0 of the mixing potential cause the appearance of additional
bound states shown by red dotted lines. (b) Absolute values of the determinant of the S matrix for all eigenenergies in the 3SD1 partial wave as
functions of the strength U0 of the mixing potential. Small in magnitude values of U0 lead to numerical instabilities resulting in a nonunitary S
matrix, i.e., | det S | �= 1.
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radius, RM � RW . Because the matrix in Eq. (22) mixes the
two channels, U (r) will be referred to as the mixing potential.
Finally, the S matrix is decomposed according to the Blatt-
Biedenharn parametrization [62]

S =
(

cos ε sin ε

− sin ε cos ε

)−1(
e2iδ1 0

0 e2iδ2

)

×
(

cos ε sin ε

− sin ε cos ε

)
(23)

with the phase shifts δ1, δ2 and the mixing angle ε. Since the
lattice dispersion relation can yield slightly different momenta
p1, p2 for the two channels at the same energy, we assume
that the phase shift δα is measured at momentum pα and

that the mixing angle is measured at the average momentum
(p1 + p2)/2.

E. Scattering with an arbitrary number of coupled channels

If n > 2 coupled channels must be considered, one needs
n linearly independent wave functions in each channel. The
complex conjugation is not sufficient for this purpose because
it can only generate two independent solutions ψ and ψ∗. In
order to find an alternative approach, we first consider the case
of two coupled partial waves again. The two-channel wave
function

ψ (r) = [ψ1(r), ψ2(r)]T (24)

can be rewritten as

ψ ′(r) = [�ψ1(r),ψ1(r),�ψ2(r),ψ2(r)]T . (25)

To reproduce Eqs. (21) and (22), the radial Hamiltonian and the mixing potential must be modified accordingly:

H ′
R =

⎛
⎜⎜⎜⎜⎜⎝

[HR]11 0 [HR]12 0
0 [HR]11 0 [HR]12

[HR]21 0 [HR]22 0
0 [HR]21 0 [HR]22

⎞
⎟⎟⎟⎟⎟⎠,

U ′ = U0 δr,RM

⎛
⎜⎜⎜⎝

0 0 0 −1
0 0 1 0

0 1 0 0
−1 0 0 0

⎞
⎟⎟⎟⎠. (26)

On the other hand, instead of using Eq. (25), we can regard the wave function vector as having four independent complex
components

ψ ′(r) = [ψ ′
1(r), ψ ′

2(r), ψ ′
3(r), ψ ′

4(r)]T . (27)

A natural extension of Eqs. (26), (27) to three coupled scattering channels is given by introducing

H ′
R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[HR]11 0 0 [HR]12 0 0 [HR]13 0 0
0 [HR]11 0 0 [HR]12 0 0 [HR]13 0
0 0 [HR]11 0 0 [HR]12 0 0 [HR]13

[HR]21 0 0 [HR]22 0 0 [HR]23 0 0
0 [HR]21 0 0 [HR]22 0 0 [HR]23 0
0 0 [HR]21 0 0 [HR]22 0 0 [HR]23

[HR]31 0 0 [HR]32 0 0 [HR]33 0 0
0 [HR]31 0 0 [HR]32 0 0 [HR]33 0
0 0 [HR]31 0 0 [HR]32 0 0 [HR]33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

U ′ = U0 δr,RM

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 1 0 1 −1
0 0 0 1 0 1 1 0 1
0 0 0 1 1 0 1 1 0
0 1 1 0 0 0 0 1 1

−1 0 1 0 0 0 1 0 −1
1 1 0 0 0 0 1 1 0
0 1 1 0 1 1 0 0 0
1 0 1 1 0 1 0 0 0

−1 1 0 1 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ψ ′(r) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ ′
1(r)

ψ ′
2(r)

ψ ′
3(r)

ψ ′
4(r)

ψ ′
5(r)

ψ ′
6(r)

ψ ′
7(r)

ψ ′
8(r)

ψ ′
9(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28)
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FIG. 4. Effects of the mixing potential with different coefficients U0 on the phase shifts and mixing angles for the 1P1/
5PF 1 wave (black

solid line: continuum; red points: lattice). For small coefficients (such as U0 = 0.01 MeV in the left column) and for large coefficients (such
as U0 = 2000 MeV in the right column), outlying data points appear in the plot for the 1P1/

5P1-wave mixing angle.

A generalization to n channels is straightforward:

[H ′
R]α′+(α−1)n,β ′+(β−1)n = [HR]α,βδα′,β ′ ,

U ′
α′+(α−1)n,β ′+(β−1)n = U0δr,RM (1 − δα,β )

× (1 − δα′,β ′ − 2δα,α′δβ,β ′ ) (29)

for α, α′, β, β ′ = 1, . . . , n. The wave function vector has the
form

ψ ′(r) = [ψ ′
1(r), . . . , ψ ′

n2 (r)]T , (30)

where ψ ′
β+(α−1)n denotes the βth wave function for the αth

scattering channel with α, β = 1, . . . , n.

More generally, any Hermitian matrix that produces n
linearly independent solutions in every channel can be used
to define the mixing potential, i.e., it must hold U ′† = U ′ and
the matrix M with

Mα,β =
n∑

α′,β ′=1

[H ′
R + U ′]β+(α−1)n,β ′+(α′−1)nh±

lα′ (31)

must have rank n. The particular choice for the mixing poten-
tial in Eq. (29) is consistent with the one employed for two
channels in Ref. [58].

Each component of the wave function vector has the form

ψ ′
β+(α−1)n(r) = Aαβh−

lα
(pr) + Bαβh+

lα
(pr) (32)
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FIG. 5. Phase shifts in the uncoupled channels (black solid line: continuum; red points and gray circles: lattice). The last plot shows the
3H5-wave phase shift obtained for the auxiliary potential with V0 = 0 MeV, −10 MeV, . . . , −50 MeV at the lattice length L = 35a. The
outlying data point at p � 65 MeV corresponds to the value of V0 = −40 MeV.

with α, β = 1, . . . , n. Since it holds

⎛
⎜⎝

B1β

...
Bnβ

⎞
⎟⎠ = S

⎛
⎜⎝

A1β

...
Anβ

⎞
⎟⎠ (33)

for β = 1, . . . , n, one can construct the S matrix as

S =

⎛
⎜⎝

B11 · · · B1n
...

. . .
...

Bn1 · · · Bnn

⎞
⎟⎠

⎛
⎜⎝

A11 · · · A1n
...

. . .
...

An1 · · · Ann

⎞
⎟⎠

−1

. (34)

The Blatt-Biedenharn parametrization also has to be extended
to n > 2 coupled channels [62]:

S = O−1 diag(e2iδ1 , . . . , e2iδn ) O, (35)

where O is a real orthogonal matrix. (This decomposition is
equivalent to computing the eigenvalues and eigenvectors of
S.) Again, the phase shift δα is assigned to the momentum pα

in scattering channel α. For simplicity, we define the mixing
angles as

εαβ

(
p = pα + pβ

2

)
= tan−1 Oαβ (36)

for α, β = 1, . . . , n and β > α because a real orthogonal
n × n matrix can be given by n(n − 1)/2 real parameters.3

III. TEST CASE: SCATTERING OF TWO SPIN-1
PARTICLES

The method described in Sec. II allows one to determine
scattering phase shifts and mixing angles on the lattice for
an arbitrary number of coupled channels and for any type of
particles. As a concrete example, we consider the scattering
problem of two spin-1 bosons having nearly the same mass
as the deuteron, m1,2 = 2mN = 2 × 938.92 MeV. As a test
potential, we employ the corresponding generalization of
the toy-model potential used for two spin-1/2 fermions in
Refs. [57,58]:

V (r) = C

(
1 + s12(r)

r2
0

)
exp

(
− r2

2r2
0

)
, (37)

3Note that Eq. (36) allows one to extract the mixing angles from
the matrix O, which is sufficient for the purpose of this paper. The
equation can, however, not be used to reconstruct the S matrix from
the phase shifts and mixing angles in a unique way. This problem
could be avoided by parametrizing the orthogonal matrix O in terms
of generators of the rotation group.
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FIG. 6. Phase shifts and mixing angles in the pairs of coupled channels for spin s = 1 (black solid line: continuum; red points: lattice; gray
dashed line: continuum results without channel mixing).

where the spin-dependent part is given by

s12(r) = 3(r · s1)(r · s2) − (s1 · s2)r2. (38)

Here, s1 and s2 denote the spin matrices for the considered
particles. The constants are set to C = −2 MeV and r0 =
0.02 MeV−1, and the lattice spacing is chosen to be a =
(100 MeV)−1 = 1.9733 fm. Notice that by projecting the test
potential onto partial waves one obtains up to four coupled
scattering channels. We calculate the phase shifts and mixing
angles for the following cases:

(i) Uncoupled channels: 3P0, 3P1, 3D2, 3F3, 3G4, 3H5,
5D1;

(ii) Two coupled channels: 3SD1, 3PF 2, 3DG3, 3FH4,
1S0/

5D0, 5PF 2, 5DG3, 5FH4;
(iii) Three coupled channels: 1P1/

5PF 1;
(iv) Four coupled channels: 1D2/

5SDG2.

We further emphasize that the considered potential
possesses four bound states in the 3SD1, 1S0/

5D0, 5PF 2,
and 1D2/

5SDG2 channels with the binding energies
of −0.258 MeV, −0.204 MeV, −0.198 MeV, and
−0.583 MeV, respectively, as visualized in Fig. 1(a). The
binding energies have been obtained by computing the
eigenvalues of the momentum-space Hamiltonian in the
infinite-volume continuum.
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FIG. 7. Phase shifts and mixing angles in the pairs of coupled channels for spin s = 0, 2 (black solid line: continuum; red points: lattice;
gray dashed line: continuum results without channel mixing).

On the lattice, the eigenvectors of the Hamiltonian cor-
responding to the lowest positive eigenenergies have been
used as radial wave functions. The parameters used in our
calculations, which have partly been adopted from Ref. [58],
can be found in Table I while Fig. 1(b) visualizes the different
contributions to the potential on the lattice. Notice that the
Gaussian auxiliary potential can distort the wave function and
may even generate additional bound states, see Fig. 2. This
may result in the appearance of the outlying points in the
calculated phase shifts or mixing angles as will be discussed
below. For this reason, instead of imposing the auxiliary
potential, we have actually varied the lattice size to generate
data at low momenta.

The choice of the mixing potential requires some care, too.
In particular, as shown in Table I, the numerical value of the
strength U0 has been decreased for three and four channels

in order to avoid the appearance of additional bound states as
visualized in Fig. 3(a). On the other hand, choosing too small
in magnitude values of U0 leads to numerical instabilities
causing a violation of unitarity in the calculated S matrix,
see Fig. 3(b). For large or small values of the coefficient U0,
outlying data points may appear in the plots of the phase
shifts and mixing angles, as illustrated in Fig. 4. However,
the outlying points for small coefficients are only caused by
numerical round-off errors. We have verified that they can thus
be removed using numbers with higher precision. Therefore,
any value of U0 should be suitable as long as no additional
bound states are produced by the mixing potential.

In Figs. 5–9, we show the phase shifts and mixing an-
gles for all considered scattering channels, which have been
calculated on the lattice using the method presented above.
To benchmark our calculations, we have also computed the
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FIG. 8. Phase shifts and mixing angles for the 1P1/
5PF 1 wave (black solid line: continuum; red points: lattice; gray dashed line: continuum

results without channel mixing).

FIG. 9. Phase shifts and mixing angles for the 1D2/
5SDG2 wave (black solid line: continuum; red points: lattice; gray dashed line:

continuum results without channel mixing).
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scattering parameters in the continuum. This has been
achieved by solving the radial Schrödinger equation for a fixed
energy E = p2/(2μ). The boundary conditions at r � 0 have
to be chosen in such a way that one obtains a sufficient number
of linearly independent solutions. Finally, the S matrix can
again be extracted from the wave function by fitting spherical
Hankel functions. As shown in Figs. 5–9, the results of the
lattice calculations are in essentially a perfect agreement with
the ones calculated using the continuum approach in the con-
sidered range of c.m. system momenta up to p = 120 MeV.
The cutoff momentum associated with the lattice spacing
of a = (100 MeV)−1 = 1.9733 fm employed in our analysis
is �latt ∼ π/a � 314 MeV. Thus, the lattice and continuum
results are expected to agree for momenta well below �latt .
Indeed, for c.m. system momenta higher than p = 120 MeV,
the deviations between the continuum and lattice results start
to become visible. This observation is in line with the findings
of Refs. [57,58].

We also notice a subtlety in the extraction of phase shifts
in multichannel cases due to the fact that the eigenvalues
e2iδ1 , . . . , e2iδn of the S matrix have no predefined ordering
[62]. Therefore, the multichannel continuum calculation has
been repeated without the off-diagonal elements in the po-
tential matrix, see the gray dashed lines in Figs. 6–9. Then,
the phase shifts in the coupled channels have been ordered
such that they are roughly consistent with the phase shifts
obtained without the coupling. The large differences between
the solid and dashed lines demonstrate the very important role
of channel mixing in the considered toy model. For many-
body systems where no continuum calculation is possible,
the comparison can be performed with lattice data instead. If
the results at very low momenta are available, one may also
possibly identify the partial waves from the threshold behavior

of the eigenphases. Last but not least, we emphasize that the
behavior the phase shifts in the 3SD1, 1S0/

5D0, 5PF 2, and
1D2/

5SDG2 channels with δ(p = 0) = π is consistent with
the appearance of a single bound state in each of these chan-
nels, see Fig. 1(a), in agreement with Levinson’s theorem.

IV. SUMMARY AND OUTLOOK

In this paper, we considered two-particle scattering by
solving the Schrödinger equation on the lattice. A generaliza-
tion of the method used in Ref. [58] for spin-1/2 fermions to
scattering of particles with any spin and an arbitrary number
of coupled scattering channels has been proposed. For the case
of two spin-1 bosons, the proposed method was benchmarked
against the continuum approach and demonstrated to yield
accurate and reliable results for phase shifts and mixing angles
for momenta well below the lattice cutoff. Our study opens
the way to perform ab initio chiral EFT calculations in the
four-nucleon continuum and to access nuclear reactions on
the lattice using the adiabatic projection method. Work along
these lines is in progress.
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