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Neutron-star deformation due to anisotropic momentum distribution of neutron-star matter
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Herein, we present a theoretical study of how Fermi-surface distortion affects symmetric nuclear matter, pure
neutron matter, and neutron-star matter. The results indicate that, for the binding energy of symmetric nuclear
matter, the generally accepted value extracted from the Bethe-Weizäcker mass formula for nuclei can constrain
the degree of anisotropy because of Fermi-surface deformation δ � 0.05. The value of δ starts to affect the
stiffness of the equation of state for symmetric nuclear matter and pure neutron matter when δ � 0.01. Moreover,
if the Fermi surface is distorted, the results indicate that neutron stars can be deformed into an oblate shape. This
deformation depends on two factors: the stiffness of the corresponding equation of state and value of δ. The
corresponding deformation near the maximum neutron-star mass comes from the anisotropic pressure within
these stars, which is caused by the distortion of Fermi surface predicted by the equation of state of the models.
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I. INTRODUCTION

Neutron stars (NSs) are excellent objects for studying
gravity and dense-matter physics because they are extremely
compact and dense with a typical compactness of approx-
imately 0.4 and a density that is several times larger than
the nuclear saturation density. However, despite the signifi-
cant progress made to date, the equation of state (EOS) of
high-density nuclear matter remains uncertain, which leads
to the degeneracy of the corresponding NS EOSs and use of
gravitational theory to describe NSs [1–9].

In the standard picture of nuclear and NS core matter,
the quasiparticle momentum distribution is assumed to be
homogeneous and isotropic such that the Fermi surface is
spherical (i.e., rotationally invariant) with radius kF . This as-
sumption can be understood from Fermi-liquid theory, which
asserts that a system of quasiparticles with the momentum
distribution nFL(k) = θ (kF − k) remains stable provided any
variation δn(k) leads to an increase in the energy of the
system. However, the distortion or deformation of the Fermi
surface can be demonstrated using the Pomeranchuck insta-
bility mechanism if the corresponding condition is violated
(see Refs. [10–12] and references therein). The phenomeno-
logical impact of the distortion or deformation of the Fermi
surface appears in diverse branches of physics; therefore, we
have reported several studies related to this phenomenon.
For example, various studies have investigated the impact of
the deformation of the Fermi surface in a bipolar Fermi gas
[13], trapped Fermi gases with different spin populations [14],
and ultracold Fermi gas atoms [15]. Moreover, the pressure-
induced Fermi-surface deformation in lithium and its rela-
tion to the observed complexity behavior were investigated
[16]. In addition, a homogeneous superconductor with broken
spin-isospin symmetry has been shown to lower its energy
by transitioning to a novel superconducting state where the

Fermi surfaces are deformed to a quasiellipsoidal form at zero
total momentum of the corresponding Cooper pairs [17]. In
another study, the phases of asymmetric nuclear matter with
broken space symmetries were studied [18]. The impact of
the Fermi-surface deformation induced by interactions in the
momentum distribution of spin-polarized asymmetric nuclear
matter was investigated in Ref. [19] (see references therein for
details). Other studies have reported the local anisotropy in
post-Newtonian gravity, which is caused by the distortion of
the Fermi surface of the electron gas and the application of this
matter in white dwarfs and supermassive stars [20]. To sim-
plify the picture, it is usually assumed that the baryons, which
are the constituents of the symmetric nuclear matter (SNM),
pure neutron matter (PNM), and NS matter, are point particles.
Baryons are composite particles composed of three quarks;
therefore, we expect that, through the excluded-volume effect,
the compositeness of the corresponding baryons in nuclear
or NS matter would macroscopically manifest itself as an
inhomogeneous distribution of matter. Furthermore, this in-
homogeneity effect may distort the appearance of the Fermi
surface. In Ref. [21], we discuss how the excluded volume
affects the properties of SNM, PNM, and slow-rotating NSs.

In this study, we use an approach similar to that of
Refs. [19,20] to study how the distortion of the Fermi surface
of nucleon gas affects the SNM, PNM, and NS matter. We
assume that the Fermi momentum of matter depends on the
polar angle θ , which is the angle between the z axis and the
radial direction in spherical coordinates. In fact, the Fermi
momentum k f is calculated using the following equation:

k f (θ ) ≡ k f [1 + δP2(cos θ )]. (1)

Equation (1) describes the shape deformation up to
quadrupole order. P2(cos θ ) is the Legendre polynomial with
l = 2 and δ is a parameter that measures the degree of
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anisotropy because of Fermi-surface distortion [the surface
of objects may be described quite generally by an expansion
in spherical harmonics Y m

l (θ, φ)]. For example, for a nucleus
[22], the l = 0 term is the monopole term, which is associated
with the breathing mode; the l = 1 term is the dipole term,
which has no relation to shape deformation; and the l = 2
term is related to quadrupole deformation. The expansion to
l = 2 and m = 0 is sufficient to describe nuclei with azimuthal
symmetry, such as nuclei of prolate or oblate shape. Similarly,
we need to consider up to l = 2 to describe the Fermi-surface
deformation up to the quadrupole term.

To estimate the allowed value of δ, we used the range of
SNM and PNM EOSs extracted from experimental heavy-ion-
collision data, the accepted SNM binding energy extracted
from the Bethe-Weizäcker mass formula for nuclei, and the
range of SNM binding energy for the region extracted from
FOPI experimental data near twice the saturation density.
Furthermore, we investigate how the allowed value of δ affects
the stiffness of the EOS of the SNM and PNM at relatively
high densities and the corresponding NS properties.

In Sec. II, we briefly discuss the formalism used to calcu-
late the EOS, which involves the relativistic mean-field (RMF)
approach and the corresponding NS properties. In Sec. III, we
present and discuss the results. In Sec. IV, we summarize the
conclusions of this investigation.

II. FORMALISM

In this section, we briefly discuss the formalism that was
used to calculate the EOS of SNM, PNM, and NS matter.
This formalism considers the angle dependence of the Fermi
momentum defined in Eq. (1) within the RMF approach.
Moreover, we present the formalism used to calculate NS
properties, including deformation, where we use an approach
introduced by Hartle and Thorne [23–25].

A. Model of nuclear and neutron-star matter

The Lagrangian density of the RMF model is given by the
following equation [7]:

L = LN + LM + Lint, (2)

where the contribution of free nucleons is

LN =
∑

N

ψN (iγμ∂μ − MN )ψN , (3)

with the sum taken over all nucleons (protons and neutrons).
Note that the interactions between nucleons are mediated
by the exchange of scalar, vector, and isovector (σ , ω, and
ρ, respectively) mesons, which also have self-interactions;
therefore, the interaction terms are as follows [26]:

Lint =
∑

N

gσ σψNψN −
∑

N

gωVμψNγ μψN

−
∑

N

gρbμψNγ μτψN − 1

3
b2σ

3− 1

4
b3σ

4+ 1

4
c3(VμV μ)2

+ d2σ (VμV μ) + f2σ (bμbμ) + 1

2
d3σ

2(VμV μ). (4)

For free mesons, the Lagrangian density takes the following
form:

LM = Lσ + Lω + Lρ, (5)

where

Lσ = 1
2

(
∂μσ∂μσ − m2

σ σ
)
, (6)

Lω = − 1
2

(
1
2ωμνω

μν − m2
ωVμV μ

)
, (7)

Lρ = − 1
2

(
1
2ρμνρ

μν − m2
ρbμbμ

)
. (8)

Within the mean-field approximation, σ , V μ(V0, 0), and
bμ(b0, 0) are σ , ω, and ρ fields, respectively, and ωμν and
ρμν are the antisymmetric tensors of ω and ρ meson fields.
Because NS matter should obey the β-stability condition,
leptons should appear in the NS matter. The contribution of
noninteracting leptons (i.e., electrons and muons) to the total
Lagrangian density is as follows:

LL =
∑

L

ψL(iγμ∂μ − mL )ψL. (9)

To simplify the problem, we assume that the Fermi surface
of leptons is not distorted; therefore, the expression for the
zero component of the vector (lepton number) density and
the energy density and pressure derived from Eq. (9) take the
standard forms [27].

Using the RMF calculation procedure [27], we obtained the
following nucleon number densities for matter with a distorted
Fermi surface:

ρ∗
N = 2

∫ kN
f (θ )

0

d3k

(2π )3 , N = p, n. (10)

Similarly, scalar number densities for protons and neutrons
are expressed as follows:

ρ∗
s N = 2

∫ kN
f (θ )

0

M∗
N√

k2 + M∗ 2
N

d3k

(2π )3 , (11)

where M∗
N = MN + gσ σ . The total energy density can be

calculated as follows:

ε =
∑

N=n,p

ε∗
N + gω(ρ p + ρn)

+ 1

2
gρ (ρ p − ρn) + U +

∑
L=e,μ

εL, (12)

where the meson contribution is as follows:

U = 1
2 m2

s σ
2 − 1

2 m2
ωV 2

0 + 1
2 m2

ρb2
0

+ 1
3 b2σ

3 + 1
4 b3σ

4 − 1
4 c1V

4
0

− d2σV 2
0 − f2σb2

0 − 1
2 d3σ

2V 2
0 , (13)

and the nucleon contributions are as follows:

ε∗
N = 1

4π3

∫ kN
f (θ )

0

√
k2 + M∗ 2

N d3k. (14)
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The distortion of the Fermi surface leads to unequal pressure
in the tangential (Pt ) and radial (Pr) directions. The explicit
expressions for Pt and Pr are as follows:

Pr/t =
∑

M=n,p

1

3
P∗ N

r/t − U +
∑

L=e,μ

1

3
PL, (15)

with [20]

P∗ N
r = 1

4π3

∫ kN
f (θ )

0
cos2(θ )

k2√
k2 + M∗ 2

N

d3k,

P∗ N
t = 1

4π3

∫ kN
f (θ )

0

1

2
[1 − cos2(θ )]

k2√
k2 + M∗ 2

N

d3k. (16)

In Sec. II B, we discuss the approximation of the correspond-
ing densities, energy density, and pressures, all of which are
useful for the proposed application.

B. Approximation of anisotropic momentum
distribution in matter

The number density can be expressed exactly; therefore,
the explicit form of Eq. (10) is as follows:

ρ∗
N =

[
1

3π2
kN 3

f + 1

105π2
((2δ + 21)δ2)kN 3

f

]
, (17)

where the second term appears because of the Fermi-surface
distortion, which includes terms up to third order in δ. Other
densities and pressures cannot be exactly expressed in analyt-
ical forms; however, they can be approximated by expanding
the solution in powers of δ (we assume that δ is a small
number). Therefore, to be consistent with the expression for
ρ∗

N , we included only up to third order in δ for other quantities.
Note that scalar number densities of nucleons [Eq. (11)] can
be analytically expressed as follows:

ρ∗
s N = ρs N + �ρs N (δ), (18)

with

ρs N = M∗
N

2π2

⎧⎨
⎩kN

F

√
kN2

F + M∗2

N

− M∗2

N ln

⎡
⎣kN

F +
√

kN2

F + M∗2

N

M∗
N

⎤
⎦
⎫⎬
⎭, (19)

and

�ρs N (δ) ≈ 1

π2

⎧⎨
⎩δ2

[
kN

f
3

5
+ 9kN

f
7

40M∗4

N

+ kN
f

5

5M∗2

N

]

+ δ3

[
2kN

f
3

105
+ 3kN

f
7

28M∗
N

4 + 2kN
f

5

35M∗
N

2

]⎫⎬
⎭. (20)

The first expression is summed over all orders of kN
f /M∗

N ;
however, based on the assumption that kN

f /M∗
N < 1, the sec-

ond expression is obtained by expanding the exact integral ex-
pressions and retaining up to third order in δ. We retained only

the leading-order terms of kN
f /M∗

N . Using an approximation
similar to that used for expressing nucleon energy densities,
�ρs N (δ) [Eq. (14)], we obtain

ε∗
N = εN + �εN (δ), (21)

with

εN = 1

8π2

⎧⎨
⎩kN

f

√
kN

f
2 + M∗2

N

(
2kN

f
2 + M∗

N
2)

− M∗
N

4 ln

⎡
⎣kN

f +
√

kN
f

2 + M∗
N

2

M∗
N

⎤
⎦
⎫⎬
⎭, (22)

and

�εN (δ) ≈ 1

π2

⎧⎨
⎩δ2

[−3kN
f

7 + 8kN
f

5M∗2

N + 8kN
f

3M∗4

N

40M∗3

N

]

+ δ3

[−15kN
f

7 + 24kN
f

5M∗2

N + 8kN
f

3M∗4

N

420M∗3

N

]⎫⎬
⎭.

(23)

For a spherical Fermi surface (δ = 0), radial pressure Pr and
tangential pressure Pt of the nucleon matter are the same (i.e.,
P = Pr = Pt ). However, for a distorted Fermi surface, Pr �= Pt

and the average pressure (or θ -independent pressure) P is as
follows:

P = 1
3 (Pr + 2Pt ). (24)

When the deformation of the Fermi surface is considered, the
radial and tangential pressures can be calculated as follows:

P∗ N
r/t = PN + �PN

r/t (δ), (25)

where the nucleon isotropic pressure is as follows:

PN = 1

8π2

⎧⎨
⎩kN

f

√
kN

f
2 + M∗

N
2
(
2kN

f
2 − 3M∗

N
2)

+ 3M∗
N

4 ln

⎡
⎣kN

f +
√

kN
f

2 + M∗
N

2

M∗
N

⎤
⎦
⎫⎬
⎭, (26)

and the correction for radial pressure is as follows:

�PN
r (δ) ≈

(
3kN

f
9 − 4kN

f
7M∗2

N + 8kN
f

5M∗4

N

)
δ

20M∗5

N π2

+ 11
(
3kN

f
9 − 3kN

f 7M∗2

N + 4kN
f

5M∗4

N

)
δ2

70M∗5

N π2

+ 4
(
7kN

f
9 − 5kN

f 7M∗2

N + 4kN
f

5M∗4

N

)
δ3

35M∗5

N π2
, (27)
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while the correction for tangential pressure is as follows:

�PN
t (δ) ≈

(−3kN
f

9 + 4kN
f

7M∗2

N − 8kN
f

5M∗4

N

)
δ

40M∗5

N π2

+
(
3kN

f
9 − 3kN

f 7M∗2

N + 4kN
f

5M∗4

N

)
δ2

14M∗5

N π2

+
(−7kN

f
9 + 5kN

f 7M∗2

N − 4kN
f

5M∗4

N

)
δ3

70M∗5

N π2
. (28)

Based on these pressures and energy densities, and assuming
we know the Fermi momentum of each constituent, we can
calculate the EOSs of each corresponding type of matter. Note
that, for PNM, we only required kn

f to determine the EOS
whereas we need kn

f = kp
f as input to calculate the EOS for

SNM. However, for the EOS of the NS core, we need to
apply β stability and the neutrality conditions to determine
the Fermi momentum of each constituent. Moreover, for the
NS matter, we assume only that it is composed of nucleons
and leptons. To simplify our calculation, we average out over
a complete solid angle the corresponding θ dependence of
the Fermi momentum given the β stability and neutrality
conditions such that 〈k f (θ )〉 = k f . In this manner, we obtain
k f = [C(δ)ρ]1/3 with C(δ) = 105π2

[35+δ2(21+2δ)] . The following ap-
proximate forms of the conditions are used to determine the
Fermi momentum of each constituent:

(i) Neutrality

〈ρ p〉 = ρe + ρμ.

(ii) β stability√
kμ2

F + m2
μ =

√〈
kn2

F (θ )
〉+ M∗2

n

−
√〈

kp2

F (θ )
〉+ M∗2

p + gρb0,√
ke2

F + m2
e =

√〈
kn2

F (θ )
〉+ M∗2

n

−
√〈

kp2

F (θ )
〉+ M∗2

p + gρb0.

(iii) Nucleon density

ρ = 〈ρ p〉 + 〈ρn〉. (29)

In each constituent, the superscripts p, n, e, and μ of the
Fermi momenta and densities indicate that the given quan-
tity corresponds to protons, neutrons, electrons, and muons,
respectively.

C. Neutron-star deformation because
of distorted Fermi surface

If we define the anisotropic pressure factor σ as follows:

σ ≡ Pr − Pt , (30)

then we can write Pr and Pt as a function of average pressure
P and σ [Eq. (24)]:

Pr = P + 2
3σ, (31)

Pt = P − 1
3σ, (32)

FIG. 1. Illustration of adjusting the coordinates of NS pressures
(a) original coordinates and (b) coordinates after rotation.

and the anisotropic energy-momentum tensor can be ex-
pressed as follows:

Tμν =

⎛
⎜⎝

−ε 0 0 0
0 Pr 0 0
0 0 Pt 0
0 0 0 Pt

⎞
⎟⎠. (33)

As shown in Fig. 1, if we rotate Pt by an arbitrary angle
α from the original coordinates (x′, y′, z′) such that in new
coordinates (x, y, z) Pt is in z axes and Pr is in x-y plane,
the total pressure in new coordinates can be defined as a
function of θ , P(θ ) such that if we rotate the P(θ ) into z axes,
P(0) = Pt . Moreover, if rotate P(θ ) into x-y plane, P(3π/2) ≡
P(π/2) = Pr , and the latter satisfies the condition because we
selected P(θ ) as an even function. Using this procedure, we
can express Eq. (33) as an isotropic form of Tμν but with the
θ dependence of the total pressure P(θ ) [25] by defining the
total pressure as follows:

P(θ ) ≡ P + p0 + p2P2(cos θ ), (34)

with p0 = σ/3 and p2 = −2σ/3. Note that Eq. (34) reduces
to Eqs. (31) and (32) if we substitute θ = π/2 and θ = 0 into
P(θ ), respectively. Note that the choice of α is rather arbitrary;
therefore, the results depend on the selected coordinates. For
example, we can also choose other value of α such that
P(0) = Pr and P(π/2) = Pt . In these coordinates, we should
use the different value of p0 and p2. The physics is the same
but the interpretation of the results is coordinate dependent.
In this manner, we can write the energy-momentum tensor in
the following isotropic form:

Tμν =

⎛
⎜⎝

−ε 0 0 0
0 P(θ ) 0 0
0 0 P(θ ) 0
0 0 0 P(θ )

⎞
⎟⎠. (35)

For a spherical NS, we use the Schwarzschild metric as
follows:

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2θdφ2), (36)

where ν(r) and λ(r) are the metric functions. Because we
assume that the anisotropic pressure only perturbatively dis-
torts the spherical shape, we can express the metric of a
deformed NS by modifying the Schwarzschild metric using
the multipole expansion introduced by Hartle and Thorne
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[23,24]. In this approach, ds2 can be expressed as follows:

ds2 = −eν(r)[1 + 2H (r, θ )]dt2

+ eλ(r)

[
1 + 2eλ(r)

r
m(r, θ )

]
dr2

+ r2[1 + 2K (r, θ )](dθ2 + sin2θdφ2), (37)

where

H (r, θ ) = h0(r) + h2(r)P2(cos θ ) + . . . ,

m(r, θ ) = m0(r) + m2(r)P2(cos θ ) + . . . ,

K (r, θ ) = k0(r) + k2(r)P2(cos θ ) + . . . . (38)

Here, k0(r) = 0 [23] because the form of the metric should not
change under a coordinate transformation. To be consistent
with the expansion of the momentum-energy tensor, which
only includes up to the quadrupole order (l = 2), the mul-
tipole expansion of the Schwarzschild metric is truncated at
quadrupole order. In this approximation, ds2 simplifies to

ds2 = −eν(r){1 + 2[h0(r) + h2(r)P2(cos θ )]}dt2

+ eλ(r)

[
1 + 2eλ(r)

r
[m0(r) + m2(r)P2(cos θ )]

]
dr2

+ r2{1 + 2[k2(r)P2(cos θ )]}(dθ2 + sin2θdφ2). (39)

We can now solve the Einstein field equations by separating
the solutions according to the leading-order terms and those
from the multipole expansion (i.e., the l = 0 and l = 2 terms,
respectively). The following gives the expressions for the
Einstein field equations to leading order and includes the
correction because of the multipole expansion:

Gμ
ν = 8πGT μ

ν

�Gμ
ν = 8πG�T μ

ν , (40)

where �Gμ
ν = �0Gμ

ν + �2Gμ
ν and �T μ

ν = �0T μ
ν + �2T μ

ν .
From the first of Eqs. (40) (i.e., the leading-order equa-
tion), we obtain the unperturbed spherical contribution, which
yields the standard Tolman-Oppenheimer-Volkoff equations
for spherical stars:

P′ = −Gεm

r2

[
1 + P

ε

][
1 + 4πr3 P

m

]
[
1 − 2 Gm

r

] (41)

m′ = 4πr2ε, (42)

where the prime in Eq. (42) indicates a derivative with respect
to r. Equation (42) can be numerically solved by using the
boundary conditions m(0) ≈ 0, m(R) ≈ M0, and P(R) ≈ 0,
P(0) ≈ Pc. Here, Pc is the pressure at the center of the NS,
R is the radius of the spherical NS, and M0 is the mass of
the spherical NS. The first part of the second of Eqs. (40)
(�0Gμ

ν = 8π�0T μ
ν ) is the monopole correction, and the sec-

ond part (�2Gμ
ν = 8π�2T μ

ν ) is the quadrupole correction.
For the monopole correction, we obtain �0Gr

r = 8π�0T r
r and

�0Gt
t = 8π�0T t

t . Both relations can be further simplified,
with the final results being

h′
0 =

[
4πGr p0 + Gm0

r

(
ν ′ + 1

r

)]
eλ m′

0 = 0. (43)

Clearly because m0 is zero at the center, m0 becomes zero ev-
erywhere. For the quadrupole correction, we obtain �2Gr

r =
8π�2T r

r , �2Gθ
θ = �2Gφ

φ , and Gθ
r = 0. These equations are

then further simplified to

h2 + eλ

r
Gm2 = 0

h′
2 + k′

2 + r

2
ν ′k′

2 = 4πGreλ p2 + eλ

r2
Gm2

+ eλ

r
Gm2ν

′ + 3

r
eλh2 + 2

r
eλk2

h′
2 + k′

2 = h2

(
1

r
− ν ′

2

)
+ eλ

r
Gm2

(
1

r
+ ν ′

2

)
.

(44)

Note that the expressions for h′
0, h′

2, and k′
2 in Eqs. (43) and

(44) are quite complicated; however, we can obtain much
simpler versions of these relations from energy-momentum
conservation using the Bianchi identity. For the leading order,
we have the following:

P′ = − (P + ε)

2
ν ′, (45)

for the monopole correction, we have the following:

p′
0 = − 1

2ν ′ p0 − (P + ε)h′
0, (46)

and for the quadrupole correction, we have the following:

p2 = −(P + ε)h2 (47)

p′
2 = − 1

2ν ′ p2 − (P + ε)h′
2. (48)

We can simplify the last two equations into expressions for
k′

2 and h′
2 using Eqs. (44), (47), and (48), which gives the

following more compact expressions for k′
2 and h′

2:

k′
2 =

3
2 p2ν

′ + p′
2

P + ε
(49)

h′
2 = − 1

2 p2ν
′ − p′

2

P + ε
. (50)

To simplify the numerical calculation, we considered solv-
ing Eqs. (41), (42), (46), (49), and (50) numerically us-
ing p2 = −2p0. Consequently, we obtained the profile of
P, ε, m, p0, p2, h0, and k2 for each central energy density.
These results are used to describe the deformations occurring
in the NSs because of anisotropic pressure caused by the
distorted Fermi surface. Note that the boundary conditions
used to solve Eqs. (49) and (50) are h0(0) ≈ 0 and k2(0) ≈ 0.

These differential equations, which were obtained from the
Einstein field equations, are quite similar to those obtained
in Refs. [23,28], which considered deformation because of
slow rotation, and to those of Ref. [25], which considered
deformation because of a magnetic field. Note that no factor of
1
2 appears in Eq. (46) because the energy density in the expres-
sion ε for matter does not include l = 0 (monopole) or l = 2
(quadrupole) correction terms. This is in stark contrast with
the corresponding total pressure where we obtain monopole
p0 and quadrupole p2 terms because of the deformed Fermi
surface [see Eq. (34)].

055804-5



R. RIZALDY et al. PHYSICAL REVIEW C 100, 055804 (2019)

Following Refs. [23,24], we define the NS radius as a
general function of θ :

r(r, θ ) = r + ξ0(r) + [ξ2(r) + rk2(r)]P2(cos θ ), (51)

where ξl is:

ξl (r) = (P + ε)

P′ hl (r). (52)

Here l = 0 (2) denotes the monopole (quadrupole) contribu-
tion. From Eq. (51), we obtain two types of radii to locate the
edge of a deformed NS, i.e., the equatorial and polar radii.
These are given by the following equations:

Re = R + ξ0(R) − 1
2 [ξ2(R) + Rk2(R)] (53)

Rp = R + ξ0(R) + [ξ2(R) + Rk2(R)]. (54)

Finally, the degrees of deformation are obtained from the
eccentricity, which is expressed as follows:

e =
√

1 −
(

Rp

Re

)2

. (55)

The mass of a deformed NS is M = M0 + m0(R). Note that
the deformation factors are easily identified if we know ε and
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FIG. 2. (a) Pressure as a function of the ratio of nucleon-to-
nuclear saturation densities. (b) Energy per particle as a function
of the density around the saturation density for SNM with different
δ values obtained from TM1 parameter set. The dashed curves
correspond to various numbers δ deformation, respectively.

σ as a function of P, which we calculate by applying the RMF
approach to the NS core, whereas we use the same EOS as
used in Ref. [21] for the NS crust. In our calculation, we
use the NL3 [29], TM1 [30], and G2 [31] parameter sets to
represent stiff, moderate, and soft EOSs. A detailed discussion
of the properties of the SNM, PNM, and NS matter predicted
by the NL3, TM1, and G2 parameter sets and the tabulation
of the parameter values can be found in Refs. [7,29–31].
Furthermore, we vary the δ value and use all representative
EOSs to study how the EOS stiffness affects NS deformation
through a distorted Fermi surface.

III. RESULTS AND DISCUSSIONS

In this section, we discuss how the distorted Fermi surface
affects the SNM, PNM, and NS matter, as well as the NS
properties.

A. Impact of distorted Fermi surface on nuclear matter

The top panels of Figs. 2–4 show the pressure as a function
of the ratio of nucleon density to nuclear saturation density of
SNM (ρN/ρ0). The bottom panels show the SNM binding en-
ergy as a function of nucleon density at moderate density. The
bottom and top panels of Figs. 5–7 show the PNM pressure
as a function of ρN/ρ0 as well as the PNM binding energy as
a function of neutron density in the low-density region. The
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FIG. 3. Similar to Fig. 2 but for the case predicted by the NL3
parameter set.
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FIG. 4. Similar to Fig. 2 but for the case predicted by the G2
parameter set.

calculations are done for 0 � δ � 0.05. For comparison, we
show the range of EOSs and binding energies extracted from
the experimental data and obtained from chiral effective field
theory. The shaded areas of the top panels of Figs. 2–7 show
the results extracted from heavy-ion experimental data [32],
whereas the shaded areas in the insets of Figs. 2–4 show the
constraint imposed by the SNM binding energy near twice
the saturation density extracted from the FOPI experimental
data [33]. Furthermore, the boxed area around ρ0 indicates
the acceptable range of the SNM binding energy around the
saturation density extracted from the Bethe-Weizäcker mass
formula. The shaded areas in the bottom panels of Figs. 5–7
show the binding energy for PNM at low densities obtained
from the chiral effective field theory calculation [34]. Note
that the sign of δ has no effect because only δ2 enters into the
EOS. The SNM and PNM EOSs are extracted from the heavy-
ion data and the SNM binding energy at saturation density
and at twice the saturation density can be used to constrain δ.
However, the constraint imposed by the SNM binding energy
at saturation density is tighter than the other constraints. Fur-
thermore, the constraint imposed by the SNM binding energy
is relatively independent of the EOS stiffness. Conversely, the
SNM and PNM EOS extracted from the heavy-ion data, and
the binding energy for the PNM at low densities obtained from
chiral effective field theory are sensitive to the EOS stiffness.
Thus, for very stiff PNM and SNM EOSs, such as those

0

70

140

210

280

350

P
(M

eV
 f

m
-3

)

1 2 3 4 5

N/ 0

(a)

=0.0
=0.01
=0.03
=0.05

0

5

10

15

20

25

E
/A

(M
eV

)

0.0 0.03 0.06 0.09 0.12 0.15

N (fm
-3

)

PNM

(b)

FIG. 5. Similar to Fig. 2 PNM predicted by the TM1 parameter
set.

predicted by NL3, the corresponding EOSs are incompatible
with those extracted from the heavy-ion data. However, for
very soft PNM EOSs, as represented by G2, the binding
energy at low densities is incompatible with that obtained
from chiral effective field theory.

The figures show that, for relatively soft EOSs such as
those obtained by using the TM1 and G2 parameter sets,
the Fermi-surface deformation begins to increase the pressure
in the region ρN/ρ0 � 4 if δ � 0.01. For stiffer EOSs, the
corresponding increase in pressure should start to appear at
greater densities. However, we cannot explicitly show this
here because, for very stiff PNM and SNM EOSs (e.g., with
δ = 0.05), our numerically self-consistent RMF EOS calcu-
lation does not converge at relatively high densities and the
calculation stops earlier (i.e., around ρN ∼ 3ρ0). In addition,
the NS-matter binding energy at saturation density is only
compatible with the corresponding constraint when δ � 0.05.
However, given a NS-matter binding energy of twice the
saturation density, the compatibility of the binding-energy
predictions of all parameter sets used depends on the stiffness
of the EOS but, for δ < 0.05, the corresponding binding
energy is quite compatible with the data of Ref. [33]. These
results may indicate that the Fermi-surface deformation for
nucleons with δ � 0.05 in nuclear matter remains compatible
with all constraints if the EOSs are neither excessively nor
insufficiently stiff.
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FIG. 6. Similar to Fig. 3 PNM predicted by the NL3 parameter set.

However, a more careful study is required to reach a firmer
conclusion because the parameters in the NL3, TM1, and G2
parameter sets are obtained by assuming an isotropic Fermi
surface of nuclear matter. In detail, fitting the δ parameter
with all the parameters of the RMF models and including
isoscalar and isovector tensor terms in the model might pro-
vide additional effects. The most crucial SNM property is the
binding energy at saturation density (E/N). Other nuclear-
matter isoscalar properties at saturation density can be derived
from the binding energy E (ρ) as follows:

K0 = 9ρ2
0

d2E (ρ)

dρ2

∣∣∣∣
ρ=ρ0

, J0 = 27ρ3
0

d3E (ρ)

dρ3

∣∣∣∣
ρ=ρ0

. (56)

Note that, in the isovector sector, the role of the symmetry
energy at the saturation density J plays a role similar to that of
the binding energy. Other nuclear-matter isovector properties
at saturation density can be derived from J (ρ) and are given
by the following:

L = 3ρ0
dJ (ρ)

dρ

∣∣∣∣
ρ=ρ0

, Ksym = 9ρ2
0

d2J (ρ)

dρ

2∣∣∣∣
ρ=ρ0

,

Kasy = Ksym − 6L, Ksat,2 = Kasy − J0

K0
L. (57)

For completeness, we show in Table I how δ affects the
nuclear-matter properties at ρ0, as predicted when using the
TM1 parameter set. The results show that the Fermi-surface
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FIG. 7. Similar to Fig. 4 but for the case PNM predicted by the
G2 parameter set.

deformation for δ � 0.05 has no significant effect on E/N , K0,
J , L, and Ksat,2. The uncertainties in the nuclear-matter EOS
are mostly because of the poorly known density dependence
of the symmetry energy J (ρ). However, much progress has
been reported in this direction (for details, see Ref. [35]
and references therein). Reference [36] reports a systematic
investigation into the correlation between NS radii and the
angular momentum L and the slope of nuclear-matter incom-
pressibility over a wide range of NS EOSs. The correlations
between NS core-crust properties and the angular momentum
L predicted by different methods have also been studied
in Ref. [37] (and references therein). The uncertainties in

TABLE I. Nuclear-matter properties at the saturation density ρ0

predicted by TM1 with various values for δ. The Fermi momentum
kF , binding energy E , incompressibility coefficient for SNM K0,
symmetry energy J , and other quantities are defined in Eqs. (56)
and (57).

δ 0 0.01 0.05

E/N (MeV) −16.28 −16.28 −16.20
K0 (MeV) 280.47 280.47 280.47
J (MeV) −277.05 −277.05 −277.05
L (MeV) 110.61 110.61 110.66
Ksat,2 (MeV) −520.85 −520.86 −521.02
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FIG. 8. NS mass M as a function of NS radius R for EOSs using
the (a) G2 and (b) NL3 parameter sets. Here we use δ = 0.01, 0.05,
and 0.005.

NS radii and crust properties also have been investigated
[38]. Finally, Ref. [39] discusses the correlation between the
neutron-skin thickness of Pb208 and NS tidal deformation
and the predicted lower bound for the NS radius based on
GW170817 data.

B. Impact of distorted Fermi surface on shape of neutron star

Figure 8 shows the quantity M as a function of the average
radius R predicted using the G2 and NL3 parameter sets for
δ = 0.01, 0.05, and 0.005. Globally, no significant differences
appear in M as a function of R for either parameter set. Some
slight differences appear in the curve of M versus R only in
the region around M � 1M
. However, the differences not
captured in this figure but that significantly affect the NS
shape are due to the difference between the equator radius
Re and the polar radius Rp. We discuss this matter later.
Note also that, for δ = 0.05, the NS EOSs predicted by both
parameter sets converge only up ρ < 5ρ0. Therefore, for both
parameter sets, the corresponding largest mass is only close to
but never reaches the NS maximum mass predicted in the plot
of M versus R. However, we can expect from the M-R trends
predicted when using other values of δ for each parameter
set that the interpolation of M versus R predicted using δ =
0.05 up to the maximum mass might reach exactly the same

FIG. 9. Relation between eccentricity e for EOSs using the G2
and NL3 parameter sets with (a) the energy density at the NS center
(εc ) and (b) M from a NS. Here we use δ = 0.05 and 0.005.

maximum mass as obtained when using other δ values. In
addition, changes in Re and Rp should be similar to those
predicted when using other values for δ. In the discussion
that follows, we use δ = 0.05 and 0.005 to investigate the
maximum effect of varying δ.

The most direct information about the shape of a NS is
available from the degree of deformation, which is known
as the eccentricity e of the NS, where 0 � e � 1. Zero ec-
centricity (Re = Rp) indicates that the NS does not deform at
all (i.e., it remains spherical) and e = 1 (Re � Rp) indicates
that the NS has maximum deformation. Figure 9(a) shows
the eccentricity e as a function of energy density at the NS
center (εc). The difference in eccentricity is predicted by
using the G2 and NL3 parameter set with δ = 0.05 starts
to appear at εc = 250 MeV/fm3, which corresponds to NSs
with M < 1M
. This implies that both parameter sets predict
significantly different deformations for εc > 250 MeV/fm3.

As εc increases, the NL3 parameter set gives NSs that
are more easily deformed than those obtained by using the
G2 parameter set. The maximum eccentricity e predicted by
NL3 is e ≈ 0.5 and appears at εc ∼ 850 MeV/fm3 where, for
the G2 parameter set, the maximum eccentricity e ≈ 0.5 and
appears at εc ∼ 940 MeV/fm3.

Figure 9(b) shows the eccentricity e as a function of
NS mass M. For both parameters sets, the eccentricity e
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FIG. 10. NS mass M as a function of NS radius R (R, Re, and Rp)
relations using EOSs predicted by using the G2 parameter set with
(a) δ = 0.05 and (b) δ = 0.005.

increases rapidly just before reaching maximum mass and
maximizes at maximum mass. When using the G2 param-
eter set, εc increases rapidly near the maximum mass M =
1.94M
 whereas, it appears around the maximum mass M =
2.77M
 for δ = 0.005 and M = 2.54M
 for δ = 0.05 when
using the NL3 parameter set. Note that the largest mass pre-
dicted by both δ parameters of NL3 are not the same because
for δ = 0.05, the calculation converges until M = 2.54M
.
Figure 9 also shows clearly that the maximum eccentricity
e decreases slightly as δ decreases. However, the rate of
decrease depends significantly on the EOS stiffness.

For more details, we show in Fig. 10 for G2 and in Fig. 11
for NL3 the NS mass M as a function of average radius
R, equatorial radius Re, and polar radius Rp. The significant
differences between Re and Rp appear only at large NS mass,
and the effect is maximal when near the maximum NS mass.
This occurs for all parameter sets. Decreasing δ results in a
decreasing difference between Re and Rp, whereas increasing
the difference between Re and Rp results in an increasing
deformation of the NS. The latter also can be seen more
clearly from two-dimensional plots.

Figure 12 shows two-dimensional plots of Re and Rp

predicted by the G2 and NL3 parameter sets for the max-
imum pressure at the center of the NSs according to δ =
0.05 converge limits. Here, both the G2 and NL3 parameter

FIG. 11. NS mass M as a function of NS radius R (R, Re, and Rp)
when using EOSs predicted by NL3 parameter set with (a) δ = 0.05
and (b) δ = 0.005.

sets are using Pc = 289 MeV/fm3 and Pc = 156 MeV/fm3,
respectively. The stiffest EOS, here represented by the one
of NL3, yield more deformed NSs than the one predicted
by the softest EOS, here represented by the EOS of G2.
The NS shape predicted by NL3 becomes more oblate than
that of G2. Figure 12 also shows that, upon decreasing δ,

FIG. 12. NS shape for the EOS predicted by parameter set
G2 with δ = 0.05 for M = 1.95M
 and with δ = 0.005 for M =
1.92M
; NL3 with δ = 0.05 for M = 2.54M
, and with δ = 0.005
for M = 2.53M
.
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FIG. 13. Spherical radius R as a function of energy density at
NS center εc and for (a) G2 with δ = 0.05, (b) G2 with δ = 0.005,
(c) NL3 with δ = 0.05, and (b) NL3 with δ = 0.005.

Re becomes slightly smaller and Rp becomes slightly larger
than their initial values, which means that the stiffness of the
corresponding EOS changes the NS shape more significantly
than increasing δ in the range of allowed values.

In addition, we show the equatorial and polar radii Re and
Rp as functions of εc in Fig. 13. The NS deformation because
of differences between Re and Rp is clearly more significant
in the region with relatively large εc or large NS mass. The
magnitude of NS deformation depends on two factors: the
EOS stiffness and the value of δ. For completeness, we also
provide the plot of NS mass as the function of εc for G2 and
NL3 parameter sets with δ = 0.005 and δ = 0.05. in Fig. 14
to emphasize this finding.

To understand these results, we plot in Fig. 15 the source of
the anisotropic pressure that is responsible for NS deformation
(i.e., NS σc) as a function of Re and Rp. The value of σc

increases significantly after reaching the critical values for
Re and Rp. Near these critical radii, the NS mass is large
and σc increases up to the maximum value for the maximum

FIG. 14. Mass as a function of εc for G2 and NL3 parameter sets
with δ = 0.005 and δ = 0.05.

mass. Note that, for each parameter set, the slope of σc with
respect to both radii depends slightly on δ. In addition, the
increase in σc predicted by NL3 starts at a larger critical radius
compared with the corresponding critical radius for G2. This
indicates that the behavior of σc depends significantly on the
EOS stiffness and only slightly on δ.

FIG. 15. Anisotropic factor σc at the NS center as a function
of NS star radius (a) Re and (b) Rp obtained by using the EOSs
predicted by using the G2 and NL3 parameter sets with δ = 0.05
and δ = 0.005.
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Note that the difference in Fermi-surface deformation and
the difference with the pure slow-rotation approach [23,24]
lies in the multipole expansion of the energy-momentum ten-
sor. In the slow-rotation approach, the baryon number density,
the mass-energy density, and the fluid pressure are affected by
the rotation because the rotation is the agent of deformation.
Therefore, for slow rotation, both energy density and pressure
in the energy-momentum tensor acquire terms because of the
multipole expansion. However, for deformation caused by
Fermi-surface distortion, the anisotropic pressure factor is the
only agent of deformation. Therefore, only the corresponding
pressure in the energy-momentum tensor acquires terms due
to multipole expansion. The latter is quite similar to the
deformation caused by a magnetic field [25]. Furthermore,
in our calculation, the angular velocity is not included in
the Schwarzschild metric as is done in the calculation of
deformation because of slow rotation [23,24]. Therefore, the
deformation in this calculation is purely from the anisotropic
momentum distribution. The global impact is also different,
and the deformation caused by slow rotation and magnetic
field tends to make the NS shape more prolate, whereas the
deformation due Fermi-surface deformation tend to make the
NS shape more oblate.

IV. CONCLUSIONS

We study how the distortion of the Fermi surface af-
fected the SNM, PNM, and NS matter. We applied var-
ious constraints, such as the binding energy at saturation
density extracted from the Bethe-Weizäcker mass formula,
the binding energy at about twice the saturation density
extracted from FOPI experimental data, and the EOSs at
moderate densities, which are extracted from heavy-ion ex-

perimental data to verify the sensitivity of the deformation
parameter δ to the corresponding EOS and binding energy and
to estimate the allowed range of δ. The results indicate that
the SNM binding energy can impose δ � 0.05. The impact
of δ on the stiffness of the SNM and PNM EOS starts to
appear when δ � 0.01. However, for δ � 0.05, the EOSs in
our PNM, SNM, and NS matter calculations stop at relatively
moderate densities depending on the EOS stiffness. This result
is attributed to the lack of convergence in our calculation at
high densities. Therefore, for δ � 0.05, the calculated result
is close but never reaches the NS maximum mass. We use
δ = 0.005 and δ = 0.05 to study the NS properties. If the
Fermi surface is distorted, then the NS can be deformed
into an oblate form. The corresponding NS deformation is
manifested in the difference between Re and Rp, which is
more significant for a relatively large εc or for M near the
maximum mass. The corresponding deformation depends on
two factors: the stiffness of the EOS (dominant factor) and the
value of δ (secondary factor). The source of this deformation
is the anisotropic pressure in the NS center because of the
distorted Fermi surface and that significantly increases near
the maximum NS mass.
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