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General predictions for the neutron star crustal moment of inertia
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The neutron star crustal equation of state and transition point properties are computed within a unified
metamodeling approach. A Bayesian approach is employed including two types of filters: Bulk nuclear properties
are controlled from low-density effective field-theory predictions as well as the present knowledge from
nuclear experiments, whereas the surface energy is adjusted on experimental nuclear masses. Considering these
constraints, a quantitative prediction of crustal properties can be reached with controlled confidence intervals
and increased precision with respect to previous calculations: ≈11% dispersion on the crustal width and ≈27%
dispersion on the fractional moment of inertia. The crust moment of inertia is also evaluated as a function of the
neutron star mass, and predictions for mass and radii are given for different pulsars. The origin of Vela pulsar
glitches is discussed, and a full crustal origin is excluded if we consider the present largest estimation of crustal
entrainment. Further refinement of the present predictions requires a better estimation of the high-order isovector
empirical parameters, e.g., Ksym and Qsym, and a better control of the surface properties of extremely neutron rich
nuclei.
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I. INTRODUCTION

The standard theory of pulsar glitches, this sudden spin-up
of the rotational frequency of a compact star observed in
almost 200 different pulsars since their discovery [1], assumes
that the observed phenomenon originates from an abrupt
transfer of angular momentum from the neutron superfluid to
the solid crust of the star due to the unpinning of the superfluid
vortices from the crystal lattice [2]. For this mechanism to
justify the large glitches observed in some pulsars, such as
Vela, the neutron star crust must be sufficiently thick to store a
significant amount of angular momentum. The corresponding
fraction of the crust moment of inertia Icrust/I can be estimated
[3–5] in a range going from 1.6% up to 15%, depending on
the importance of the effect of crustal entrainment, which is
currently under debate [6,7].

A reliable estimation of the crust thickness and of the
associated moment of inertia is, therefore, crucially needed
to validate the crustal origin of pulsar glitches. This quantity
is also a key parameter for the simulations of neutron star
cooling [8]. For this estimation, constraints from low-energy
nuclear physics appear more promising than direct constraints
from astrophysics [9,10]. Indeed, the only poorly known
parameter for the determination of the crustal thickness of a
neutron star is the nuclear equation of state (EoS) and, most
important, the density and pressure at the transition point from
the solid crust to the liquid core [11].

In this paper, we present a unified EoS treatment [12–14]
where the core and crust EoS are built within the same
functional. To evaluate the uncertainties induced by the in-
complete knowledge of the EoS, a metamodeling technique
is used. It consists of generating a large set (108) of models

with fully independent model parameters using the strategy
proposed in Refs. [15,16]. A similar metamodeling technique
was already employed in Ref. [17]. In our paper, the pri-
ors are determined from nuclear phenomenology, and the
probability distribution of the parameters is evaluated in a
Bayesian approach by constraining energy and pressure in
low-density (LD) homogeneous matter from a many-body
perturbation theory (MBPT) based on two- and three-nucleon
chiral effective field-theory (EFT) interactions at next-to-next-
to-next-to-leading order and generating band predictions in
isospin-symmetric and neutron matter [18].

Within the hypothesis of an analytic behavior of the pres-
sure as a function of the density, the metamodel explores all
types of density dependence for the EoS compatible with the
imposed filters, in almost full independence with respect to
any modeler constraints. The nuclear experimental and low-
density theoretical uncertainties can, thus, be translated into
quantitative predictions with controlled uncertainties for the
crustal properties. If the effect of entrainment is additionally
quantified, this can be further transformed into a prediction
for the maximal glitch amplitude as a function of the neutron
star mass.

The analytic behavior hypothesis of the present metamod-
eling technique implies that possible strong first-order phase
transitions in the neutron star core are not accounted for. For
this reason, we will mainly consider very light (M = M�) and
relatively light (M = 1.4M�) neutron stars where such transi-
tions are the least likely. We will show that the chiral EFT
calculations impose very stringent constraints on the crust
thickness and fractional moment of inertia. This is true, even
if these calculations are limited to the low-density domain
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n � 0.2 fm−3, and even for the canonical M = 1.4M� which
is predicted to have a central density two to four times larger
[16,19] than the nuclear saturation density nsat ≈ 0.16 fm−3.

A similar Bayesian study was very recently and inde-
pendently performed in Refs. [20–22]. The same functional
expression for the surface tension is used in the two ap-
proaches, but, at variance with Refs. [20–22], the surface
tension parameters are, here, optimized for each EoS model on
experimentally measured nuclear masses, and the uncertainty
on the surface tension at extreme isospin values is, here,
taken into account. Concerning the homogeneous part of the
functional, our posterior distributions for the EoS is in very
good agreement with the results of Ref. [22], showing the
reliability and generality of the metamodeling technique.

II. FORMALISM

As discussed in the Introduction, the evaluation of the
crust properties of a neutron star requires the knowledge
of the crust-core transition density and pressure. They have
been calculated by many authors using different versions of
the density functional theory [11,23]. Most calculations are
based on the thermodynamical spinodal, whereas this method
provides only a qualitative estimation of the crust-core tran-
sition [24–26]. The limitation of the thermodynamical spin-
odal technique is easy to understand. Indeed, the transition
occurs when the inhomogeneous phase becomes energetically
favored over the homogeneous one [27]. This energy balance
is governed by the interplay between the surface tension
and the Coulomb energy. As a matter of fact, none of these
terms contribute to the thermodynamical spinodal. A better
estimation is obtained from the so-called dynamical spinodal
[28], which corresponds to the instability border with respect
to finite-size density fluctuations. Such calculations have,
however, been performed for a small set of models [23–26].
Moreover, the crust-core transition in a steady nonaccreting
neutron star is an equilibrium phenomenon, and it is not clear
how precisely it can be addressed by an out-of-equilibrium
spinodal calculation. For these reasons, in this paper, we will
compute the transition point by directly comparing the free-
energy density of uniform and clusterized matter.

Following Ref. [15], the generated metamodels are
characterized by a set of empirical parameters { �Pα} =
{nsat, Ksat, Qsat, Zsat, Esym, Lsym, Qsym, Zsym, m∗,�m∗, b}, cor-
responding to the successive density derivatives at saturation
of the uniform matter binding energy in the isoscalar and
isovector channels. They characterize the density dependence
of the energy in symmetric matter and of the symmetry
energy. An expansion up to the fourth order is necessary and
sufficient to guarantee an excellent reproduction of existing
functionals up to 4nsat, where nsat is the saturation density
of nuclear matter [15]. Two additional parameters rule the
density dependence of the effective mass m∗ and the effective-
mass splitting �m∗, and an extra b parameter enforces the cor-
rect behavior at zero density. This last parameter measures the
low-density deviation from a Taylor expansion at saturation
and turns out to be completely uninfluential in this paper (see
Fig. 4 below).

In the neutron star crust, the metamodeling is extended
with a surface term, validated through comparisons with
Thomas-Fermi calculations [29],

σs(x) = σ0
2p+1 + bs

x−p + bs + (1 − x)−p
, (1)

where x is the cluster proton fraction, see also Refs. [30,31].
The crust composition is then variationally determined within
the compressible liquid drop model (CLDM) approximation
[13,14,27,32].

The expression (1) for the surface tension requires three
additional parameters. σ0 and bs are adjusted to reproduce
experimental masses of spherical magic and semimagic nu-
clei: 40,48Ca, 48,58Ni, 88Sr, 90Zr, 114,132Sn, and 208Pb.1 The
isovector surface parameter p determines the behavior of the
surface energy for extreme isospin values, and it cannot be
determined from experiments. In the following, we consider
two different choices: either a fixed value p = 3 as suggested
in Ref. [30] or including p in the parameter set { �Pα}.

For each set of uniform matter parameters { �Pα}, our fit
provides optimal values for σ0 and bs, and the resulting χ2

enters the Bayesian likelihood probability defined as

plik ({ �Pα}) = Ne−(1/2)χ2({ �Pα})
∏

α

g({ �Pα}), (2)

where the functions g are flat priors corresponding to a
fully uncorrelated parameter set, which range is taken from
Ref. [16], and N is the normalization.

The posterior distribution is obtained by filtering the re-
sults of Eq. (2) imposing either physical constraints at high
(suprasaturation) density (HD) or ab initio EFT constraints at
LD (subsaturation) or both (LD + HD),

ppost ({ �Pα}) = plik ({ �Pα})δ[F({ �Pα}) − F0], (3)

where F0 is the chosen filter. The HD filter corresponds to
the set of constraints: (i) positive symmetry energy up to
Mmax, (ii) stability of the EoS, (iii) causality up to the max-
imum mass, (iv) compatibility with the maximum observed
masses Mmax � 2M� [33,34], see Ref. [16] for more details.
We note that the possibility of a negative symmetry energy
at high density was sometimes evocated in the literature
[35,36]. We have checked that relaxing this condition does
not modify any of the results presented in this paper. This
can be explained by the fact that such ultrasoft functionals
are generally incompatible with the Mmax � 2M� constraint.
The LD filter retains only the EoS passing through the un-
certainty band of the MBPT calculations of symmetric and
neutron matter by Drischler et al. [18]. These calculations are
considered in the density range of 0.05 fm−3 < n < 0.2 fm−3

where the perturbative chiral expansion is known to be fully
reliable. Other ab initio calculations of pure neutron matter
can be found in Refs. [37–39], which provide comparable
theoretical band predictions. The use of a symmetric matter
constraint is, however, important for the determination of the
crust thickness because the transition is governed by isoscalar
instabilities.

1Enlarging the set of mass data does not modify the results.
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FIG. 1. Behavior of the equation of state retained by this pa-
per compared to some popular models. The recent constraint from
GW170817 [10] is also given.

Note that the HD filter implicitly implies that first-order
phase transition does not occur in the star core up to 2M� as
the only hypothesis of the metamodeling is the analyticity of
the EoS [15]. Therefore, imposing the LD filter alone might
also be physically acceptable, and we will consider the two
filters separately in the following.

III. RESULTS

The equation of state obtained in our paper is displayed
in Fig. 1 and compared to some chosen models. In Fig. 1,
the band noted “1σ LD + HD” represents the global filter,
including both low-density and high-density constraints. For
the LD constraint, we have imposed to the different function-
als to respect the uncertainty bands of both the energy per
particle and the pressure obtained in the chiral EFT calculation
of symmetric matter and pure neutron matter. We can see
that some popular models, notably the DD-ME1 and NL3
functionals issued from the relativistic mean-field theory, do
not meet the final LD + HD prediction. If we relax the
condition on the pressure of neutron matter, we obtain the
band labeled “without pressure filter.” Even in this case, only
a marginal agreement is obtained with the DD-ME1 and NL3
models at 2σ , showing that some tension exists between them
and the ab initio calculation. Finally, the point in Fig. 1 gives
the recent constraint from GW170817 [10]. We can see that
this result is in very good agreement with our analysis.

The isovector surface parameter p plays an important role
in the energetics of the inner crust [31] and may depart from
its assumed value suggested in Ref. [30]. To determine a
reasonable prior for p, we analyze its effect on the transition
point. Figure 2 displays the transition density and pressure
obtained for a set of relativistic and nonrelativistic functionals,
in comparison with the dynamical spinodal calculation of
Ref. [23]. We can see that values of the order p ≈ 3 lead to
a general good agreement with the instability analysis, and a
variation ±0.5 around p = 3 provides a good boundary for
improved adjustment. In the case of the SLy4 functional, the
value of p = 2.61 is needed to reproduce the unified EoS
approach by Douchin and Haensel [32]; the lower value of

FIG. 2. Transition density nt (top) and transition pressure Pt (bot-
tom) as a function of Lsym for several interactions. The empty dots
are the transition points calculated in Ref. [23] using the dynamical
spinodal. The filled circles, squares, and triangles correspond to our
estimation of the transition points with p = 2.5, p = 3, and p = 3.5,
respectively.

p needed for DD-ME2 is in qualitative agreement with the TF
calculations of Ref. [40].

Table I gives the average values and the standard devia-
tions, defined as

〈X 〉 =
∑

{ �Pα}
X ({ �Pα})p({ �Pα}) (4)

for a set of observables X for a canonical 1.4M� neutron star.
Fixing p = 3, we consider different probability distributions:
the uncorrelated prior distribution p({ �Pα}) = ∏

α g( �Pα ) (first
line) or the posterior distribution Eq. (3) filtered according to
the different constraints, p({ �Pα}) = ppost ({ �Pα}), see rows 2 to
4. Knowing the transition point, a numerical solution of the
Tolman-Oppenheimer-Volkoff equation allows computing the
star radius, the thickness of the crust, and the crustal moment
of inertia [11,41]. The first two moments of the distributions
of these quantities are also reported in Table I. These results
show that the high-density constraints are essential to estab-
lish the average crustal properties, but the knowledge of the
low-density EoS is very constraining on the second moment
of the distributions. Still, the transition pressure Pt and the
fraction of crust moment of inertia have large uncertainties
[42] on the order of 34% (respectively, 37%) considering the
LD probability, decreasing to about 28% (respectively, 25%)
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TABLE I. Average value and standard deviation of the transition density nt , transition pressure Pt , central mass density ρc, radius R, crust
thickness lcrust , and crustal fraction of moment of inertia for a 1.4M� neutron star for different filters. We impose p = 3.

nt Pt ρc,1.4(×1014) R1.4 lcrust,1.4 Icrust,1.4/I1.4

(fm−3) (MeV/fm3) (g/cm3) (km) (km) (%)

Average σ Average σ Average σ Average σ Average σ Average σ

Prior 0.089 0.037 0.310 0.340 6.661 1.102 12.77 0.61 1.13 0.29 3.40 3.34
HD 0.075 0.032 0.392 0.328 6.455 1.013 12.80 0.65 1.17 0.29 4.39 3.26
LD 0.074 0.011 0.364 0.122 7.820 1.075 11.94 0.42 0.95 0.11 3.54 1.33
LD + HD 0.077 0.010 0.389 0.111 6.756 0.606 12.47 0.25 1.03 0.10 4.50 1.25

if we additionally assume an analytical behavior of the EoS
in the full density range covered by the observed neutron star
(LD + HD, see fourth row in Table I).

As already stressed, the only hypothesis underlying the
metamodeling is the analyticity of the EoS. This hypothesis
might not be correct in the central part of the star if a strong
first-order phase transition occurs. For this reason, we present
in Table II the same quantities displayed in Table I, but this
time for a very light 1.0M� neutron star. We can see that the
results on the transition point are fully compatible, whereas
the crustal width and fractional moment of inertia decrease
with decreasing mass as expected. Still, we cannot exclude
that an extra source of uncertainty would arise for the higher
masses if the possibility of nonanalyticities was accounted for.
This work is currently under progress.

The correlation between the crustal width and its moment
of inertia, which is the quantity connected to the maximal
glitch amplitude, can be appreciated from the 1 − σ confi-
dence ellipse [43] of Fig. 3 where the effect of the different
constraints is also shown. Let us recall that the predictions
labeled “Prior” here correspond to the consideration of nu-
clear experimental constraints, included as fully uncorrelated
parameter sets. This figure shows that the LD prediction
coming from ab initio nuclear theory is considerably less
dispersed than the Prior or HD ones. The 2 − σ surface of
the complete (LD + HD) prediction including all constraints
correspond to a 84% confidence level.2 Again, many popular

2This value deviates from the standard 90% because of non-
Gaussianity of the probability distribution.

models give predictions which are not compatible with the
present analysis when the LD constraints are accounted for.

This does not mean that the HD constraints are irrelevant
in the determination of the neutron star properties: When
the HD constraint is put on top of the LD one, see Table I,
then it becomes clearer that the HD constraint has a non-
negligible impact on other observables, such as the central
density and 1.4-solar mass neutron star radius: It shifts the
centroids produced by the LD constraint by a value which is
about the second moment of the distribution, and it brings
narrower widths. Surprisingly enough, this modification is
also observed Table II, even if the HD constraint applies
on the EoS behavior at densities higher than the central
density of a 1-solar mass neutron star. Also, we can observe
that the impact of varying the isovector surface parameter
p = {2.5, 3, 3.5} is quite large both in the 1 − σ confidence
ellipse of Fig. 3 and in the star properties reported in Tables I
and II.

Which empirical parameters contribute the most to the
uncertainty in the observables shown in Fig. 3? To an-
swer this question, the linear correlation coefficients rXY =
σXY /(σX σY ) among the crustal thickness lcrust, the fractional
moment of inertia Icrust/I , and the empirical parameters { �Pα}
are shown in Fig. 4. Results for the different probability
distributions previously considered are also shown. We can
see that very similar values for rXY are found for the two
observables lcrust and Icrust/I . In general, we can observe that
isovector empirical parameters are far more influential than
the isoscalar ones as expected Esym, Ksym, and Qsym being
the more influential parameters. The isoscalar parameters
have also an effect on the curvature properties, e.g., Ksat, but
their correlation coefficients are found to be weaker. It can

TABLE II. The same as in Table I for a 1M� neutron star.

nt Pt ρc,1.0(×1014) R1.0 lcrust,1.0 Icrust,1.0/I1.0

(fm−3) (MeV/fm3) (g/cm3) (km) (km) (%)

Average σ Average σ Average σ Average σ Average σ Average σ

Prior 0.090 0.036 0.312 0.354 5.799 1.133 12.47 0.72 1.62 0.41 5.30 5.10
HD 0.075 0.032 0.393 0.329 5.625 0.962 12.52 0.72 1.69 0.42 6.96 4.91
LD 0.074 0.011 0.360 0.122 7.011 1.037 11.66 0.44 1.39 0.17 5.91 2.18
LD + HD 0.077 0.010 0.389 0.111 5.845 0.412 12.20 0.19 1.49 0.13 7.52 1.88
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FIG. 3. A 1σ confidence ellipse for the crust thickness lcrust and
the fraction of crust moment of inertia Icrust/I for a 1.4M� neutron
star with different filters (see the text). Minimal values needed
to justify Vela glitches without (Link et al. 1999 [3]) and with
(Andersson et al. 2012 [5]) entrainment are represented as well as
the results from several popular models.

be explained by the fact that around saturation, the density
derivative of the isoscalar binding energy—being related to
the nuclear pressure—is small compared to the derivative
of the symmetry energy. In more detail, the HD constraints
do not impact the correlation coefficients, even if they are
very selective: Only ≈1% of the original parameter sets are
retained. The absence of correlation with the Lsym parameter
deserves some comments. It is well known that the NS radius
R is well correlated to Lsym [12,41,42]. The same is true for
the core radius Rcore, explaining why the correlations cancel
in the crustal thickness lcrust = R − Rcore and, consequently,
on Icrust,1.4. It then clearly appears that the higher-order pa-
rameters beyond Lsym must be better constrained to improve
the prediction of the crustal properties.

Fixing p tends to increase those correlations as expected.
However, if p is included in the parameter set, we can see
that the uncertainty in the surface energy has an impact on
the observables shown in Fig. 4 comparable to the one of the
empirical parameters, see the LD row. This is a new feature
which has not been reported by previous analyses.

Figure 4 also shows the correlation coefficients between
observables. Large correlations are observed for the transition

FIG. 4. Correlation between the crust thickness lcrust (top) and the fraction of crust moment of inertia Icrust/I (bottom) for a 1.4M� neutron
star with several parameters for different filters. The red (blue) color scale gives the intensity of the positive (negative) correlation, and the
correlation coefficient is explicitly given for each parameter.
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FIG. 5. A 1σ confidence ellipse with the LD + HD p = 3 filter
for the mass and radius of different pulsars estimated from the ob-
served glitch amplitude from Ref. [44] without crustal entrainment.
The value of the crust fractional moment of inertia obtained from the
whole statistical analysis (LD + HD constraints) is also given.

density and pressure as expected from previous studies, e.g.,
Ref. [11], and the correlation between lcrust,1.4 and Icrust,1.4 is
also found to be very large, see Fig. 3.

Finally, Figs. 5 and 6 show the full impact of our present
knowledge on the relation among the glitch amplitude, the
fraction of crust moment of inertia Icrust/I , and the neutron
star mass and radius.

Figure 5 displays one-σ confidence ellipses for three differ-
ent pulsars estimated from the observed glitch amplitude from
Ref. [44]. For this calculation, we have neglected possible
entrainment effects and assumed that the observed glitches
correspond to the maximum amplitude that can be sustained
by the crust reservoir. This imposes the equality G = Icrust/I ,
where G is the measured glitch parameter [44]. The mass and

FIG. 6. Average fraction of crust moment of inertia Icrust/I as
a function of the mass. The 1σ and 2σ confidence regions are
represented as well as the minimum values needed to justify Vela
glitches with (Delsate et al. [4] and Andersson et al. [5]) and without
(Link et al. [3]) crustal entrainment.

radius distributions can then be computed as

p(M, R) =
∑

{ �Pα}
ppost ({ �Pα})δ(Mα − M )δ(Rα − R), (5)

where Mα (Rα ) represent the mass (radius) of a neutron star
obtained with the parameter set { �Pα} when the central density
is such that the corresponding fractional moment of inertia
verifies G = Icrust/I . Here, G is sampled over a Gaussian dis-
tribution with average and variance taken from the measured
values in Ref. [44].

The resulting confidence ellipses are larger than the ones
obtained in Ref. [44]. This was expected since in that work
a specific model for the EoS was supposed and the only
uncertainty was the experimental one. However, the final
results are roughly compatible with Ref. [44], showing that
the experimental uncertainty on the glitch amplitude and the
effect of the entrainment are dominant over the EoS uncer-
tainty.

Note that an innovative method was proposed to determine
the mass and radius using observations of the maximum
observed glitches [45]. It would be interesting to compare this
approach with ours.

Finally Fig. 6 gives a complete study of the effect of
entrainment in the case of Vela: The average value of the
fraction of crust moment of inertia Icrust/I is shown as well as
the boundaries of the 1σ and 2σ probabilities. The different
black lines represent the values proposed with [4,5] and
without [3] the entrainment effect on the crust moment of
inertia to explain Vela glitches. From Fig. 6, we can conclude
that the value determined for the maximal entrainment effect
is incompatible with the present nuclear physics knowledge if
we keep the standard picture where superfluidity is limited to
the crust.

IV. CONCLUSIONS

In conclusion, considering the experimental and EFT theo-
retical predictions at low density, the uncertainty on the crust
thickness (relative moment of inertia) is on the order of 9%
(25%) for M = 1.4M�. These uncertainties originate from the
dispersion in the predictions of the crust-core transition point,
which, in turn, depends on the high-order isovector empirical
parameters Ksym and Qsym, as well as on the isovector surface
energy parameter p. Higher precision in the experimental
determination of Ksym and Qsym in the low-density EFT
theoretical predictions and in the microscopic modeling of
the surface energy at extreme isospin ratios are needed to
reduce the uncertainties of crustal observables. Concerning
this last point, extended Thomas-Fermi calculations with the
metamodeling technique are in progress in order to fix the
functional dependence of the p parameter.
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