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Tritium β decay in pionless effective field theory
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We calculate the β decay of tritium at next-to-leading order in pionless effective field theory. At this order,
a low-energy parameter l1,A enters the calculation that is also relevant for a high-accuracy prediction of the
solar proton-proton fusion rate. We use the tritium half-life to determine this parameter and provide uncertainty
estimates. We show proper renormalization of our calculation analyzing the residual cutoff dependence of
observables. We find that next-to-leading-order corrections contribute about 4% to the triton decay Gamow-Teller
strength. We show that these conclusions are insensitive to different arrangements of the effective range
expansion.
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I. INTRODUCTION

Weak decays of nuclei are an everyday window to
quantum-chromodynamics (QCD). This is the main reason for
their extensive use in experiments that try to study the limits of
the standard model, from measuring the masses of neutrinos
using triton β decay, to pin-pointing the basic symmetries of
the theory through the dynamics of 6He decay. The triton β

decay, as the only A = 3 β decay, can, therefore, probe unique
properties of the nuclear force for both 3H and 3He. Alas,
since this reaction is characterized by its low-energy, i.e.,
Q < 10 MeV, one cannot use QCD due to its nonperturbative
character at low energies.

In the past two decades, a novel theoretical method named
effective field theory (EFT) revolutionized nuclear physics.
EFT is a simple, order by order, renormalizable and model-
independent theoretical method that is used to describe low-
energy processes. The prerequisite for describing a physical
process using EFT is that its transfer momentum, Q, is small
compared to a large scale, �cut (i.e., Q/�cut � 1) [1–5] inher-
ent to the system under consideration. This method becomes
particularly useful when there is a significant scale separation
between Q and �cut, so that only a small number of the
effective operators corresponding to the leading powers in Q

�cut
need to be retained to reproduce long wavelength observables
with the desired accuracy.

The relevant momentum scale Q is small, i.e., Q � �cut =
mπ tritium β decay and for many other few-body electroweak
processes of interest. In these cases, pionless EFT (/πEFT ) is
an appropriate framework [6,7].

The Coulomb interaction in light nuclei is also an issue
that needs to be addressed. Naïvely, the Coulomb interaction
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is nonperturbative at low momenta (� 10 MeV) but should be
perturbative in nuclei where the typical momenta are much
higher. However, recent calculations done by König et al.
[8–10] have shown that for A = 3, the Coulomb interaction
can be treated perturbatively, as reflected in the 3H-3He bind-
ing energy difference. Moreover, in Ref. [11], we have shown
that, even though the Coulomb interaction does not conserve
the three-nucleon isospin, the Coulomb energy difference can
be presented in terms of a general matrix element between two
A = 3 bound states. At LO, 3He (the lightest and, therefore,
the simplest nucleus that includes a Coulomb interaction) is
described correctly within /πEFT , even when the Coulomb in-
teraction is nonperturbative [12,13]. At next-to-leading order
(NLO), the results are not so clear, and some approaches point
toward the need for additional, isospin-dependent three-body
forces. Therefore, other three-nucleon observables are needed
to obtain predictive power within /πEFT at NLO, such as the
3He binding energy [8,9,14].

One way to test the predictive power of /πEFT for the
three-nucleon system at NLO, and in particular, the effect of
the Coulomb interaction of such a system is through the afore-
mentioned electroweak properties of light nuclear systems.
This is the goal of this paper, in which we aim at describing
tritium β decay. This observable is particularly interesting
since it is well-known experimentally, and can be used to
determine the short-range strength of the axial coupling to
nuclei. Specifically, the /πEFT axial-vector current contains
an additional two-body operator at NLO whose low-energy
constant (LEC), known as l1,A needs to be determined. This
is in particular important for a high-accuracy description of
the astrophysically relevant proton-proton fusion rate [15–18].
However, its exact value is a matter of discussion in the
literature [19–24] and the lack of a /πEFT calculation that is
able to consistently determine this counterterm is the reason
for this discussion.

Besides determining l1,A, we will also use our work to
study the convergence pattern of /πEFT for this process and
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analyze the residual cutoff dependence for this observable.
Will also discuss the impact of the Coulomb interaction on
the relevant matrix element.

This paper is organized as follows: The general formalism
of /πEFT is presented in Sec. II. The /πEFT formalism for the
weak interaction is given in Sec. III. The general calculation
of weak matrix elements is presented in Sec. IV while the
numerical results are given in Sec. V. In Sec. VI, we use
the experimental value of the triton β-decay rate to fix l1,A

at NLO. In Sec. VII, we compare this approach of matching
this counterterm to previous studies. We then summarize and
provide an outlook in Sec. VIII.

II. /πEFT UP TO NEXT-TO-LEADING ORDER

Originally, /πEFT was developed in terms of nucleon fields
alone. However, dynamical dibaryon fields provide a con-
venient way to reformulate /πEFT in a way that simplifies
three-body calculations. The fields t and s have quantum
numbers of two nucleons coupled to an S-wave spin-triplet
and -singlet state, respectively. The effective masses and
interaction strengths of these dibaryons are related to the
two-nucleon scattering lengths and effective ranges in these
two channels. This formulation is formally equivalent to the
usual single-nucleon theory but in a three-nucleon calculation
it reduces the problem to an effective two-body calculation.

For the construction of the /πEFT Lagrangian, we note that
the external momenta q and the deuteron binding momentum
γt are formally O(Q) (Q is the typical momentum scale in the
reaction), the two-nucleon scattering lengths are O(1/Q), and
the two-nucleon effective range is O(1/�cut ). Up to NLO, i.e.,
O(Q/�cut ), the two-body Lagrangian has the form [25]:

L = N†

(
iD0 + D2

2M

)
N − t i†

[(
iD0 + D2

4M

)
− σt

]
t i

− sA†

[(
iD0 + D2

4M

)
− σs

]
sA

− yt
[
t i†

(
NT Pi

t N
) + H.c.

] − ys
[
sA†

(
NT PA

s N
) + H.c.

]
,

(1)

where A denotes the isospin triplet index, i the spin-triplet
index, and N is the single nucleon field of mass M, and Pi

t , PA
s

are the projection operators to the triplet and singlet states,
respectively. We note that the minus sign in front of the kinetic
terms of s and t implies that these fields are ghost fields. The
covariant derivative is

Dμ = ∂μ + ieAμQ̂, (2)

where e is the electric charge and Q̂ is the charge operator,
coupled to the electromagnetic field, Aμ.

After renormalization, one finds σs = 2
Mρs

( 1
as

− μ), σt =
2

Mρt
(γt − μ), and yt,s are the coupling constants between two

nucleons and dibaryon, yt,s =
√

8π
M

√
ρt,s

. The expressions above
contain the singlet scattering length as, the deuteron binding
momentum γt , and the triplet and singlet effective ranges
ρt and ρs, respectively. The deuteron binding momentum is
related to the deuteron binding energy B2 through B2 = γ 2/m.

TABLE I. Parameters used in the numerical calculation.

Parameter Value Reference

γt 45.701 MeV [27]
ρt 1.765 fm [28]
as −23.714 fm [29]
ρs 2.73 fm [28]
ap −7.8063 ± 0.0026 fm [30]
ρC 2.794 ± 0.014 fm [30]

The renormalization scale μ enters these equations through
the use of the power divergence subtraction scheme [4]. To
include the Coulomb interaction, we will also require the
proton-proton (pp) scattering length aC and effective range
ρC . The experimental values for the two-nucleon observables
needed here are given in Table I.

In this work, contrary to previous works on the electroweak
properties of light nuclei, that set the renormalization group
(RG) scale μ to μ = mπ , we test correct renormalization by
taking the UV cutoff � to infinity at the end of the calculation.

Naïvely, the effective ranges are fixed from scattering
experiments. However, since the triplet channel is bound, the
deuteron (spin-triplet, t) effective range can be alternatively
fixed by the long-range properties of the deuteron wave
function.

The long-range properties of the deuteron wave function
are set by a quantity that we will call Zd , where Zd is defined
through the deuteron asymptotic S-state normalization, AS ,
such that AS ≡ √

2γt Zd and Zd = 1
1−γt ρt

≈ 1.690(3) [26] (γt

is the deuteron binding momentum, γt = √
MEb(d )). In the

effective range expansion (ERE), the order-by-order expan-
sion of Zd is

ZLO
d = 1, ZNLO

d = 1 + γtρt ≈ 1.408. (3)

This result for the perturbative expansion of the Z factor
is based on a matching of the parameters in the EFT to the
effective range expansion (ERE). At NLO, the parameters
can also be chosen to fix the pole position and wave-function
renormalization constant of the triplet two-body propagator to
the deuteron values. This parameterization is known as the Z
parameterization and is advantageous because it reproduces
the correct residue about the deuteron pole at NLO, instead
of being approached perturbatively order-by-order as in ERE
parameterization [20,26,31–33]:

ZLO
d = 1, ZNLO

d = 1 + (
Z full

d − 1
) = 1.690(3). (4)

The price is that the value of the triplet effective range at
NLO in this parametrization is ρ ′

t = Zd −1
γt

≈ 0.690
γt

= 2.979 fm.
In the following, we use both parametrizations at NLO.

A. A = 3 nuclear amplitudes, matrix elements, and
regularization

While an analytical result for the deuteron wave func-
tion can be derived in pionless EFT [19], the three-nucleon
scattering amplitude has to be calculated numerically. The
different channels for 3H are the spin-triplet, t (representing an
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“off-shell” deuteron, d , dibaryon), and the spin-singlet, s
(nn, np). For 3He, the contributing channels are the spin-
triplet, t , spin-singlet, s (np), and pp [34]. The latter is
required because of the Coulomb force between the protons,
which modifies the long-range scattering properties of these
nucleons.

The Faddeev integral equation, used in this EFT, has to
be regularized. A simple way to do this is to evaluate the
momentum space integrals in the integral equation up to
a cutoff �. Since /πEFT is supposed to be order-by-order
renormalizable; the theory should not depend on this ultra-
violet (UV) cutoff. However, for three-nucleon systems, the
numerical and theoretical solution of the integral equations
displays a strong dependence on the cutoff. To overcome
this problem, one adds a three-body counterterm [35,36]. In
the case of 3He, the addition of Coulomb interaction to the
three-nucleon amplitude leads to divergence in the Coulomb
Feynman diagrams, which is solved by the redefinition of the
proton-proton scattering length [37,38]. With this redefinition,
the 3He binding energy is renormalization-group invariant at
LO [9,10].

The calculation of bound-state amplitudes requires the
solution of a homogeneous Faddeev equation defined up
to a normalization. The calculation of next-to-leading order
corrections follows the same formalism, however with a single
NLO insertion, e.g., of an effective range. The three-body
wave-function normalizations, Z3H, Z3He, are calculated dia-
grammatically, by summing over all possible connections be-
tween two identical vertex functions as presented in Ref. [11].

The Coulomb force is included by considering the full pp
Coulomb propagator and allowing a single photon insertion
in the three-body diagrams. At LO, it was shown that 3He is
described correctly within /πEFT [12,13,39], while at NLO,
within the power counting considered here, there is a need for
an additional, isospin-dependent, three-body force to renor-
malize the 3He binding energy [8,9,11,14].

The nuclear amplitudes we use here are taken explicitly
from Ref. [11], where they were benchmarked numerically,
and validated using the binding energy difference between
3H-3He.

III. THE WEAK INTERACTION IN /πEFT

For low-energy charge-lowering processes, the weak-
interaction Hamiltonian is

HWeak = GFVud√
2

lμ
+J−

μ , (5)

where GF is the Fermi constant, and Vud is the CKM matrix
element. lμ is the lepton current, and Jμ is the hadronic
current. We use the two-body hadronic current Jμ from the
/πEFT effective Lagrangian with dibaryon fields up to NLO.

The hadronic current contains two parts, a polar-vector
and axial-vector, Jμ = Vμ − Aμ. The part of the polar vector
current relevant to β decay with a vanishing energy transfer is

V ±
0 = N† τ±

2
N, (6)

where τ± = τ1 ± iτ2.

Here, we utilized the fact that the conserved vector current
(CVC) hypothesis is accurate at this order of EFT.

The axial-vector part is (see Refs. [24,25]):

A±
i = gA

2
N†σiτ

±N︸ ︷︷ ︸
LO

+ gAL1,A(t†
i s± + H.c.)︸ ︷︷ ︸
NLO

, (7)

where τ± = τ1 ± iτ2 and s± = s1 ± is2 and gA is the axial
coupling constant for a single nucleon, known from neutron
β decay. We denote the coefficient of the two-body operator
with L1,A (see Ref. [11] for more details). A number of pre-
vious pionless EFT electroweak calculations were calculated
using a Lagrangian with single nucleon fields only. The axial-
vector two-body counterterm takes then the form

L′
1,A(NT PiN )†(NT P−N ). (8)

The coefficients of these two-body operators are related
through the relation

L1,A(μ) = − ρt + ρs

2
√

ρsρt
+ L′

1,A

2πgA

1√
ρsρt

(μ − γt )

(
μ − 1

as

)
.

(9)
It was already pointed out by Kong and Ravndal [20] that
renormalization scale dependence of L′

1,A can be made explicit
by writing

l1,A = L′
1,A

2πgA

1√
ρsρt

(μ − γt )

(
μ − 1

as

)
, (10)

where l1,A is now a cutoff (renormalization scale) independent
number that characterizes the physics underlying the coupling
of the external axial current to two-nucleon system.

In two-nucleon calculations the renormalization scale μ

was frequently set to the breakdown scale of theory, usually
at mπ . In this work, μ, the renormalization scale, is set to
the momentum space cutoff employed in the three-nucleon
integral equations, μ = �.

We will show below that by taking � → ∞ numerically
that when we use these relations we can obtain results for the
constant l1,A that are converged with respect to the cutoff �.

IV. 3H β-DECAY MATRIX ELEMENTS

In this section, we outline the calculation of the matrix
element of the weak reaction:

3H → 3He + e− + νe. (11)

This β-decay matrix element can be calculated using the LO
and NLO A = 3 bound-state wave functions, as introduced in
Ref. [11].

A. 3H β-decay observables

The half-life of 3H β decay can be expressed as [16]

f T1/2 = K/G2
V

〈‖F‖〉2 + g2
A

fA

fV
〈‖GT‖〉2

, (12)

where f T1/2 = 1129.6 ± 3 [40] is the triton comparative half-
life, K = 2π3 log 2/m5

e (with me denoting the electron mass),
GV is the weak interaction vector coupling constant (such that
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K/G2
V = 6146.66 ± 0.6 [41]), fV = 2.8355 × 10−6 and fA =

2.8506 × 10−6 are the Fermi functions calculated by Towner,
as reported by Simpson in Ref. [42]. 〈‖F‖〉 and 〈‖GT‖〉 are the
reduced matrix elements of the vector and axial current A = 3
wave function, respectively.

B. General A = 3 matrix element in /πEFT

The weak transitions 〈‖GT‖〉, 〈‖F‖〉 are defined as matrix
elements between the initial state wave function ψ

3H, and the
final state, ψ

3He, using the general mechanism introduced in
Ref [11].

1. A = 3 one-body matrix element

In Ref. [11], we showed that at LO, the three-nucleon
normalization can be written as

1 =
∑
μ,ν

〈
ψ i

μ

∣∣Onorm
μν (Ei )

∣∣ψ i
ν

〉
, (13)

where Onorm
μν (Ei ) is the normalization operator such that

Onorm
μν (Ei )

= ∂

∂E

[
Îμν (E , p, p′) − Myμyνai

μνKi
μν (p′, p, E )

]∣∣∣∣
E=Ei

, (14)

where

Ki
μν =

{
K0(p′, p, E ) i = 3H

K0(p′, p, E ) + KC
μν (p′, p, E ) i = 3He

, (15)

and

Îμν (p, p′, E ) = 2π2

p2
δ(p − p′)Dμ(E , p)−1δμ,ν, (16)

K0(p, p′, E ) = 1

2pp′ Q0

(
p2 + p′2 − ME

pp′

)
, (17)

where δμ,ν is the Kronecker δ and

Q0(a) = 1

2

∫ 1

−1

1

x + a
dx. (18)

Since we will consider a matrix element of triton and
Helium-3, it is convenient to express the wave of the triton in
terms of three components t, np, and nn. Note that we assume
here that ann = anp = as. The coefficients aμν are then

a
3H
μν = aμν =

�
��ν

μ
t np nn

t −1 3 3
np 1 1 −1
nn 2 −2 0

(19)

and

a
3He
μν = a′

μν =
�
��ν

μ
t np pp

t −1 3 3
np 1 1 −1
pp 2 −2 0

, (20)

KC
μν (p′′, p′, E ) is the μ, ν index of the one-photon exchange

matrix, KC (p′′, p′, E ) (see Ref. [11]), μ = t, np, nn are the

different triton channels, μ = t, s, pp are the different 3He
channels, yμ,ν are the nucleon-dibaryon coupling constants
for the different channels, aμν (a′

μν) are a result of the n − d
(p − d) doublet-channel projection [43], and Dμ(E , p) is the
dibaryon propagator [11,35,36].

A general one-body operator, can be written as a general-
ization of a three-nucleon normalization operator for the case
of both energy and momentum transfer, between initial (i) and
final (j) A = 3 bound-state wave functions (ψi, j ). The general
operator O j,i factorizes into the following parts:

O j,i = OJOTO j,i(q0, q), (21)

where OJ , the spin part of the operator whose total spin is J ,
and OT , the isospin part of the operator, depend on the initial
and final quantum numbers. The spatial part of the operator,
O j,i(q0, q), is a function of the three-nucleon wave function’s
binding energies, (Ei, Ej), and the energy and momentum
transfer (q0, q, respectively).

In the case of triton β decay, the spin and isospin one-body
operators are combinations of Pauli matrices, so their reduced
matrix elements 〈‖F‖〉 and 〈‖GT‖〉 can be easily calculated as
a function of the three-nucleon quantum total spin and isospin
numbers. In Ref. [11] we showed that the reduced matrix
element of such an operator can be written as

〈‖O1B
j,i (q0, q)‖〉 =

〈
1

2

∥∥OJ
∥∥1

2

〉∑
μ,ν

〈
ψ j

μ

∣∣yμyν

{
d ′i j

μν Î (q0, q)

+ a′i j
μν

[K̂(p, p′, E , q0) + K̂C
μν (q0, q)

]}∣∣ψ i
ν

〉
, (22)

such that for i = j,

d ′ii
μν = δμ,ν (23)

a′ii
μν =

{
aμν i = j = 3H
a′

μν i = j = 3He . (24)

The spatial parts of the operator are denoted by Î (E , q0, q),
K̂(q0, q), and K̂C

μν (E , q0, q). The full analytical expressions

for Î (E , q0, q) and K̂(E , q0, q) are given in Ref. [11], while
K̂C

μν (E , q0, q) are the diagrams that contain a one-photon
interaction in addition to the energy and momentum transfer.
A derivation of an analytical expression for these diagrams is
too complex, so they were calculated numerically only. a′i j

μν

and d ′i j
μν are a result of the N − d doublet-channel projection

coupled to OJOT (for more details, see Ref [11]).

2. Two-body matrix element

In contrast to the normalization operator given in
Eq. (14), which contains only one-body interactions, a typi-
cal /πEFT electroweak interaction contains also the following
two-body interactions up to NLO:

t†t, s†s, (s†t + H.c.), (25)

under the assumption of energy and momentum conservation.
The diagrammatic form of the different two-body interactions
is given in Ref. [11].

055502-4



TRITIUM β DECAY IN PIONLESS EFFECTIVE … PHYSICAL REVIEW C 100, 055502 (2019)

C. Fermi and Gamow-Teller matrix elements

The Gamow-Teller operator of the triton β-decay (〈‖GT‖〉)
matrix element is given by

〈‖GT‖〉 = 〈ψ 3He‖A+‖ψ 3H〉
gA

√
2

=
〈1

2

∥∥∥τ+
∥∥∥1

2

〉 〈 1
2‖σ‖ 1

2 〉√
2

×
∑
μ,ν

ψ
3He
μ (p′)⊗yμyν

{
d ′i j

μν Î (q0, q)

+ a′i j
μν

[K̂(q0, q) + K̂C
μν (q0, q)

]} ⊗ ψ
3H
ν (p)

− L1,A

(
2

3

〈
ψ

3H
nn

∣∣ψ 3He
t

〉 + 〈
ψ

3H
t

∣∣ψ 3He
pp

〉)
, (26)

where

A(..., p) ⊗ B(p, ...) =
∫

A(.., p)B(p, ...)
p2

2π2
d p. (27)

d ′i j
μν is given by

d ′
μν =

�
��ν

μ
t np pp

t 1/3 0 −1
np 0 1/3 0
nn −2/3 0 0

(28)

and

a′i j
μν =

�
��ν

μ
t np pp

t −7/3 1 3
np 1 1 −1
nn 2/3 −2 −2

. (29)

The reduced Fermi matrix element 〈‖F‖〉 is given by

〈‖F‖〉 = 〈ψ 3He‖V +‖ψ 3H〉√
2

=
〈

1

2

∥∥∥∥τ+
∥∥∥∥1

2

〉∑
μ,ν

ψ
3He
μ (p′)⊗yμyν

{
d ′i j

μν Î (q0, q)

+ a′i j
μν

[K̂(q0, q) + K̂C
μν (q0, q)

]} ⊗ ψ
3H
ν (p), (30)

where

d ′i j
μν =

�
��ν

μ
t np pp

t 1 0 0
np 0 1 −1
nn 0 2 0

(31)

and

a′i j
μν =

�
��ν

μ
t np pp

t −1 3 3
np 1 1 1
nn 2 −2 −2

, (32)

μ, ν denote the different channels of the three-nucleon wave
function (t, np, pp for 3He and t, np, nn for 3H), where
ψμ,ψν are the three-nucleon wave functions for the different
channels, defined using the homogeneous solution of the

FIG. 1. Different topologies of the diagrams contributing to the
triton β-decay amplitude. The LHS of each diagram is 3H, while the
RHS is 3He. The double lines are the propagators of the two dibaryon
fields Dt (solid), Ds (dashed for nn and np, dotted for pp), where
the red (blue) lines denote a neutron (proton) propagator. Most of
the diagrams couple both the triplet and the singlet channels. The
diagrams with one-body interactions contribute to both 〈‖F‖〉 and
〈‖GT‖〉 transitions, while the two-body interactions are coupled to
the effective ranges ρt and ρs and to l1,A [and contribute only for the
GT transition, where L1,A is defined in Eq. (9)].

three-nucleon scattering amplitude [11] and q0 = E3He − E3H
is the energy transfer.

The general diagrammatic form of 3H β decay, shown in
Fig. 1, is similar to the general matrix element introduced in
Ref. [11]. For both Fermi and GT transitions, the left-hand
side (LHS) bubbles of the diagrams are 3H, while the right-
hand side (RHS) bubbles are 3He. The one-body diagrams
that contain a one-body weak interaction contribute to both
〈‖F‖〉 and 〈‖GT‖〉 transitions. These one-body diagrams are
taken up to NLO, and, therefore, contain the NLO insertion
for the one-body diagrams, as discussed in Ref. [11]. The
two-body diagrams include a two-body term originating from
the ERE term in the Lagrangian, 1

2
ρt +ρs√

ρt ρs
gA, and the two-

body operator whose coefficient is proportional to l1,A. These
diagrams contribute to the GT transition only.

V. NUMERICAL RESULTS

A. Fermi operator

In the absence of the Coulomb interaction, 3H is identical
to 3He and the Fermi transition is equal to the triton wave-
function normalization as defined in Ref. [11]:

〈‖F‖〉0 = 〈ψ 3H‖τ 0‖ψ 3H〉√
2

=
〈

1

2

∥∥∥∥τ 0

∥∥∥∥1

2

〉
×

∑
μ,ν

yμyνψ
3H
μ (p′)⊗[

d ′ii
μν Î (0, 0)

+ a′ii
μνK̂(0, 0)

] ⊗ ψ
3H
ν (p) = 1, (33)

where in the absence of the Coulomb interaction:

d ′ii
μ,ν = δμ,ν, (34)

a′ii
μν = aμν. (35)

From comparison between Eqs. (19) and (20) with
Eqs. (31) and (32), we expect that 〈‖F‖〉 = 1 − ε [16], where
ε � 1 originates mostly from the isospin breaking due to
the Coulomb interaction. We can, therefore, examine the
effects of isospin breaking on the Fermi transition due to
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FIG. 2. Numerical results of the Fermi transition. The solid line
is the LO result of 〈‖F‖〉 = 1 with α = 0. The dashed-dotted line is
the numerical result for α = 0 with isospin breaking effects in the
scattering length: anp 
= app (LO). The green (red) dashed line shows
the numerical result at LO for the ERE- (Z-) parametrization with
α 
= 0. The dotted line is plotted at the value of 〈‖F‖〉 = 0.9993 from
Ref. [16].

the Coulomb interaction, and the additional one-photon ex-
change diagrams and then compare them to the Gamow-Teller
transition. In this section, we present our calculations of the
Fermi transition. First, we calculate the Fermi transition in the
absence of the Coulomb interaction but under the assumption
that ann,np 
= app. Second, we calculate the Fermi transition
with α 
= 0, and, obviously, ann,np 
= app, as a result, for both
Z- and ERE-parameterization. All these calculations result
from the LHS of the diagrams in Fig. 1.

We use the experimental data shown in Table I as input for
our numerical calculations shown in Fig. 2 and Table II.

Our numerical result compares well to the 〈‖F‖〉 standard
nuclear physics approach (SNPA) calculation by Schiavilla
et al. [16]. The SNPA calculation involves nuclear wave
functions derived from high-precision phenomenological
nuclear potentials, one-nucleon and two-nucleon electroweak
currents.

B. Gamow-Teller operator

In contrast to the Fermi transition, the Gamow-Teller tran-
sition also involves two-body operators at NLO. The diagrams
that contain a one-body weak interaction are coupled to gA

and contain one ERE insertion up to NLO. The two-body
diagrams are coupled to the two-body operators with prefactor

TABLE II. Numerical results of 〈‖F‖〉. Note that the second
row is without an explicit Coulomb force (α = 0) but with isospin
breaking in the scattering lengths, i.e., with the physical values for
the scattering lengths anp 
= app.

〈‖F‖〉
One-body, LO α = 0 1
One-body, LO α = 0, anp 
= app 0.9999
LO, ERE 0.9971
LO, Z 0.9985
SNPA [16] 0.9993

TABLE III. Numerical results for 〈‖GT‖〉. Note that the rows
with the comment “α = 0, anp 
= app” are without an explicit
Coulomb force (α = 0) but with isospin breaking in the scattering
lengths, i.e., with physical values for the scattering lengths anp 
= app.

〈‖GT‖〉, ERE 〈‖GT‖〉, Z

One-body, LO α = 0
√

3
√

3
One-body, LO α = 0, anp 
= app 1.716 1.692
One-body, LO 1.727 1.695
Full NLO, l1,A = 0, α = 0, anp 
= app 1.301 1.575
Full NLO, l1,A = 0 1.383 1.596

L1,A. By summing over all diagrams and comparing the result-
ing sum to the triton half-life [44], l1,A can be extracted, as will
be discussed later in Sec. VI. We used the experimental input
parameters shown in Table I for all numerical calculations.

We emphasize furthermore that in the absence of Coulomb
interaction, the Fermi transition matrix element at LO is 1
(i.e., α = 0). Similarly, the LO matrix element of the Gamow-
Teller transition with α = 0 was easily found to be

〈‖GT‖〉LO
α=0 = 〈 1

2‖σ‖ 1
2 〉√

2

〈1

2

∥∥∥τ 0
∥∥∥1

2

〉∑
μ,ν

yμyνψ
3H
μ (p′)⊗

× [
δμ,ν Î (0, 0) + aμνK̂(0, 0)

] ⊗ ψ
3H
ν (p)

=
√

6√
2

=
√

3, (36)

where aμν is given in Eq. (19). We performed this calculation
in two ways: one with α = 0 for both the scattering amplitude
and the matrix element and the other with α = 0 for the matrix
element, but for different scattering lengths, similarly to the
Fermi case. From Table III, it is clear that the bulk of the
Coulomb effect originates from the strong isospin breaking,
i.e., different scattering lengths, and not from the explicit one-
photon exchange diagrams. These results imply that for both
the Fermi and Gamow-Teller transitions, the explicit Coulomb
interaction, i.e., one-photon exchange diagrams, can be cal-
culated perturbatively since their contribution to the matrix
element is very small compared to the isospin breaking effect.

Our 〈‖GT‖〉 numerical results for both NLO arrangements
are shown in Table III and in Fig. 3. The full NLO result
with l1,A = 0 includes both one-body and two-body terms that
contribute to 〈‖GT‖〉, without the diagrams that are coupled
to l1,A.

VI. EXTRACTION OF THE GAMOW-TELLER STRENGTH
AND FIXING l1,A

The GT matrix element can be extracted from the triton
half-life calculation using Eq. (12). The axial coupling con-
stant, gA, has been remeasured recently, leading to results
whose range is much bigger than the current recommenda-
tion. To be on the safe side, we take gA = 1.273 ± 0.003 ±
0.005 [45,46]. The first uncertainty in gA arises from the
difference between the measurements of Refs. [45,46], and the
second uncertainty is the statistical experimental uncertainty.
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FIG. 3. Numerical results of the Gamow-Teller transition. The
gray area is the full 〈‖GT‖〉 matrix element with gA = 1.273 ±
0.003 ± 0.005 [45,46]. The blue (orange) short dashed line is the
numerical result of 〈‖GT‖〉LO for the ERE- (Z-) parametrization,
where α = 0 but anp 
= app. The green (red) short dashed line is the
numerical result of 〈‖GT‖〉LO for the ERE- (Z-) parametrization, with
α 
= 0. The blue (orange) dashed-dotted line is 〈‖GT‖〉NLO result
with l1,A = 0 for the ERE- (Z-) parametrization, where α = 0 but
anp 
= app. The green (red) dashed-dotted line is 〈‖GT‖〉NLO result
with l1,A = 0 and α 
= 0, for the ERE- (Z-) parametrization.

To extract the Gamow-Teller strength, we use our prediction
for the Fermi transition: 〈F〉 = 0.9993 [16]. At large cutoff
values, we find the empirical GT strength to be 〈‖GT‖〉emp =√

3 1.213±0.002
gA

[16]. The uncertainty here originates mainly
from the uncertainty in the triton half-life.

The difference between the empirical GT strength and the
numerical result for the GT-transition at NLO is used to fix
l1,A such that

l1,A(�) =
〈‖GT‖〉emp − 〈‖GT‖〉NLO

l1,A=0

〈‖GT‖〉NLO
l1,A

, (37)

where 〈‖GT‖〉NLO
l1,A

are the two-body diagrams that con-
tribute to the triton β decay and are coupled to l1,A, while
〈‖GT‖〉NLO

l1,A=0 is the sum over all the diagrams that con-
tribute to the triton β decay without the diagrams coupled
to l1,A. The numerical results for l1,A for both ERE- and
Z-parameterizations are shown in Fig. 4.

FIG. 4. Numerical results of l1,A, with gA = 1.273 ± 0.003 ±
0.005 [45,46]. The dashed (solid) lines are the upper and lower limits
of the calculations in ERE- (Z-) parametrization.

Importantly, we find numerically, that for both
parametrizations, l1,A converges with increasing UV cutoff, a
fact that has been already predicted by theory [21], where

lERE
1,A = 0.312 ± 0.004 ± 0.004 ± 0.001, (38a)

lZ
1,A = 0.051 ± 0.004 ± 0.004 ± 0.001. (38b)

The first and second uncertainties come from the afore-
mentioned difference between recent experimental determi-
nations of gA and gA statistical uncertainties [45,46], while the
third uncertainty comes from the rest of the experimental un-
certainties, such as the statistical uncertainties in the measured
triton half-life.

VII. PREVIOUS EXTRACTIONS OF l1,A

Due to the importance of l1,A, as the first two-body LEC
that appears in the pionless description of pp-fusion, its
determination has attracted much attention in the literature.
In this subsection, we review previous extractions of l1,A in
the /πEFT and the latest predictions of the pp-fusion rate.

Two main approaches were taken in previous studies to de-
termine l1,A. In the first, an experimental value of a two-body
weak interaction process, usually at the cutoff μ = mπ , was
used for matching. Among these reactions are the deuteron
dissociation by anti-neutrinos from reactors [47] and neutrino
reactions with the deuteron, as measured in SNO [48]. Both
references extract L′

1,A as defined in Eq. (8) as 4.0 ± 6.3
(Ref. [47]) and 3.6 ± 4.6 (Ref. [48]). Using Eq. (10) and μ =
mπ we can extract l1,A = 0.09 ± 0.14 and l1,A = 0.08 ± 0.11,
respectively.

In both cases, the large uncertainties originate from
statistical errors in the experiments, due to the small
cross-section for neutrino-deuteron reactions. The authors of
Ref. [23] proposed, therefore, a precision measurement of
muon capture on the deuteron, with the aim of reducing the
uncertainties by a factor of 3, reflecting an estimated 2–3%
experimental uncertainty in the (then proposed) ongoing
MuSun experiment [49]. It is important to note that the μ−d
capture has a large energy transfer, possibly too large for an
application of /πEFT . In all these studies, the uncertainties are
mainly experimental, due to the uncertainty in the observable,
i.e., neglecting the truncation error.

A different approach was taken by Ando and collaborators
in Ref. [24]. They used the hybrid calculation of the pp-fusion
rate from Park et al. [18]. The authors took the ratio of
the two-body strength over the one-body strength was taken
from this calculation and fixed L1,A to reproduce this ratio
in the /πEFT regime. Ando et al. defined the coefficient of

the two-body counterterm as L1,A = −(gA
ρs+ρt

2
√

ρsρt
+ lAndo

1,A

M
√

ρsρt
).

Using the value lAndo
1,A = −0.5 ± 0.03, we find l1,A = 0.038 ±

0.002. The small uncertainty in this result is due to the
accurate triton half-life measurement that is used to fix
the undetermined counterterms in Ref. [18]. However, this
work has been criticized since it is not guaranteed that their
approach is consistent. It employs two very different models
and nonobservable quantities to perform the matching.

In 2017, The Nuclear Physics with Lattice Quantum
Chromo Dynamics (NPLQCD) collaboration calibrated L1,A
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using the triton β decay [50] for the nonphysical pion mass
mπ = 805 MeV and then extrapolated it to the physical pion
mass.

VIII. SUMMARY AND OUTLOOK

In this paper, we have used the approach introduced in
Ref. [11] to study tritium β decay in the framework of pionless
effective field theory at next-to-leading order (NLO). The
EFT approach used here is useful for robust and reliable
theoretical uncertainty estimates, based on neglected orders
in the EFT expansion. The results presented in this paper
show that tritium β decay can be calculated reliably, that
the corresponding matrix elements are properly renormalized
and that the half-life displays, therefore, the necessary RG
invariance at NLO.

We found furthermore that up to NLO, the Coulomb in-
teraction i.e., the one-photon exchange interaction, can be
included perturbatively in the calculation of this observable,
which is consistent with its effect on the 3He binding energy
as already discussed in Refs. [8–11].

Tritium β decay depends on two matrix elements, the
Fermi transition, which includes a one-body polar-vector part,
and the Gamow-Teller transition, which includes one- and
two-body axial-vector parts.

We have tested the correct renormalization of our per-
turbative calculation of the Fermi and Gamow-Teller matrix
elements with an analysis of the residual cutoff dependence at
cutoffs that are significantly larger than the breakdown scale
of the EFT.

We have used the NLO calculation to fix the NLO LEC,
l1,A that is needed for a high-accuracy prediction of the solar
proton-proton fusion rate [19,20,24]. The NLO correction that
originates from the l1,A counterterm (short-range corrections)
is about 3% (15%) of the tritium decay Gamow-Teller strength
in the Z-(ERE-) parametrization. The short-range corrections
associated with the ERE-parameterization are significantly
larger than those associated with the Z-parameterization,
which implies that the ERE-parameterization internal error is
larger than that of the Z-parameterization. Also, the fact that
our calculation is carried out within a consistent perturbative
approach allows reliable uncertainty estimates originating

from the experimental uncertainties in gA and the half-life
measurement.

Knowledge of l1,A is required for higher-order calcula-
tions of a number of weak processes, such as pp-fusion
[19,20,24,51] and muon capture [23,52–55]. In the near fu-
ture, we intend to examine our result for l1,A, and its uncer-
tainty by addressing these low-energy weak processes [56,57]
when theoretical and empirical uncertainties estimations must
accompany this prediction. Besides, the calibration of LEC
from a 3H β decay for the prediction of a two-nucleon process
(such as pp-fusion) is based on the assumption that /πEFT is
the appropriate framework for calculating observables in the
A = 2 and A = 3 systems. However, this consistency cannot
be examined using the weak observables only due to the
small number of appropriate reactions. Hence, another set
of well-measured low-energy A < 4 interactions with similar
characteristics to those of the weak reactions is needed for
validation and verification of /πEFT . The strong analogy
between the electromagnetic to weak observables indicates
that well-measured electromagnetic observables can serve as
the required candidates. We intend to use our perturbative
framework for calculating general matrix element that can
predict the low-energy electromagnetic A < 4 observables.
These observables can serve as a case study for estimating the
theoretical uncertainty of /πEFT and LEC extractions from the
A < 4 observables predictions [58].
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