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Single-energy partial wave analysis for π0 photoproduction on the proton
with fixed-t analyticity imposed
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High-precision data of the γ p → π 0 p reaction from its threshold up to W = 1.9 GeV have been used in order
to perform a single-energy partial-wave analysis with minimal model dependence. Continuity in energy was
achieved by imposing constraints from fixed-t analyticity in an iterative procedure. Reaction models were only
used as starting point in the very first iteration. We demonstrate that, with this procedure, partial-wave amplitudes
can be obtained which show only a minimal dependence on the initial model assumptions.
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I. INTRODUCTION

The excitation spectra of nucleons have been studied since
the 1950s and provided important pieces of information
during the discovery of quarks and color charge. However,
despite of this long history, the spectrum is still not fully
established and much less understood. At high energies (W >

2 GeV), various quark models and lattice QCD predict an
almost exponential increase in the density of states which
could so far not be confirmed experimentally (“missing res-
onance problem”). In this paper, we discuss the lower-energy
range W < 2 GeV where most analyses agree on the number
of states, however, with sizable uncertainties in the decay
properties and even in the excitation energies. Because of their
extremely short lifetime, excited nucleons appear as resonance
poles in complex partial-wave scattering amplitudes. The re-
liable and unambiguous determination of these amplitudes is
a central task which requires both precision measurements of
several spin-dependent observables and sophisticated analysis
methods. Major progress was made in meson photo- and
electroproductions due to the availability of high intensity
polarized beams and polarized targets in combination with
4π -detector systems. In our analysis, we use both polarized
and unpolarized data obtained at ELSA, GRAAL, JLab, and
MAMI. Data with unprecedented quality and quantity are
available, in particular, for photoproduction of pions.

Theoretical single or multichannel models were developed
and used to determine the resonance parameters. These ap-
proaches are called energy-dependent (ED) analyses because
the energy dependence of amplitudes is parametrized in terms
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of resonant and nonresonant contributions. The model param-
eters are estimated by fits to the data. Ideally, such models
should respect fundamental constraints, such as analyticity,
unitarity, and crossing symmetry. On the other hand, the
computational effort should be sufficiently small to allow
for detailed systematic studies during the complex fitting
procedures. In practice, compromises are necessary, and, in
genera,l the extracted multipole amplitudes and resonance
parameters vary from model to model. A recent comparison of
the prominent ED models (Bonn-Gatchina (BnGa) [1], Jülich-
Bonn (JüBo) [2], George Washington University (SAID) [3],
and Mainz (MAID) [4]) has been performed in Ref. [5].
There, for the case of the γ p → π0 p reaction, it has been
demonstrated that the model dependence can be reduced and
that multipoles obtained in different analyses start to converge
when all modern polarized and unpolarized data are taken into
account.

In so-called energy-independent or single-energy (SE) ap-
proaches a truncated partial-wave expansion is fitted to the
measured angular distributions independently at each individ-
ual energy bin without using a reaction model. At first sight,
this method seems to provide a direct connection between
experimental data and multipole amplitudes. However, it has
been demonstrated that possible ambiguities can only partially
be resolved by high-quality experimental data alone [6–8]. All
observables remain unchanged if, at each energy and angular
bin, the reaction amplitudes are multiplied by an overall phase
φ(W, θ ). This continuum ambiguity prevents a unique projec-
tion to multipoles. In Ref. [9], this has been studied in detail,
and it was shown that a single-energy partial-wave analysis
is discontinuous in energy unless this phase is constrained by
additional theoretical input.

In the simple case of pion production close to threshold
and in the energy region of the �(1232) resonance where
only a few partial waves contribute and unitarity provides
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strong constraints in the form of Migdal-Watson’s theorem
[10,11], model-independent multipole analyses were possible
[12–14]. However, in all analyses at higher energies, the fits
were constrained to a parametrization of the amplitudes given
by a preferred reaction model (e.g., Refs. [15–17]). These
kinds of analyses are useful in order to study the consistency
of the energy-dependent parametrization of a model, however,
they do not provide independent multipole amplitudes.

In Ref. [18], we have developed a method to impose
analyticity of the reactions’ amplitudes in the Mandelstam
variable s at a fixed value of the variable t in an iterative
procedure. A reaction model is only necessary as a starting
point in the very first iteration. We have applied this method to
the γ p → ηp reaction and demonstrated that, indeed, single-
energy solutions can be obtained which do not have discon-
tinuities in their energy dependence. Remaining ambiguities
were traced back to limitations in the database and different
overall phases φ(W, θ ) of the initial reaction models. In this
paper, we apply the method to the γ p → π0 p reaction, and
the extension to all charge channels with the aim to carry
out the full isospin reconstruction is in progress. On the one
side, pion production is more complicated than η production
because both excitations with isospin I = 1/2 (N ) and I =
3/2 (�), contribute in the same π0 p multipoles. On the other
side, much more experimental data are available, and the
phases in different models are stronger constrained than in
η production.

The paper is organized as follows. In Sec. II, we briefly
describe the formalism. In Sec. III, we comment on the
experimental data that were used in our analysis and present
the single-energy multipoles for different starting solutions.
In Sec. IV, we compare our results with experimental data
and give suggestions for further measurements in order to
obtain a unique partial-wave amplitude (PWA). Finally, in
the appendices, we give basic formulas for kinematics and
polarization observables in different representations.

II. FORMALISM

In this paper, we apply the fixed-t analyticity constraining
method for single-energy partial-wave analysis in p(γ , π0)p
that we developed previously and applied to η photopro-
duction on the proton [18]. All details are described in our
previous paper, and only some important issues as the iterated
fitting procedure are repeated here. The kinematics for pion
photoproduction is presented in Appendix A, cross sections
and polarization observables used in our analysis are defined
in Appendix B, and expressions in terms of Chew-Goldberger-
Low-Nambu (CGLN) amplitudes and helicity amplitudes are
listed in Appendix C.

Pseudoscalar meson photoproduction on the nucleon as
p(γ , η)p and p(γ , π0)p are fully described with four invari-
ant amplitudes, e.g., Ai(ν, t ), i = 1, . . . , 4, where ν = s−u

4mN

and t are Mandelstam variables, see Appendix A. For a
close connection among amplitudes and observables, spin
(CGLN) amplitudes Fi(W, θ ), i = 1, . . . , 4 and helicity am-
plitudes Hi(W, θ ), i = 1, . . . , 4 are defined in the meson-
nucleon c.m. frame, where W is the total c.m. energy and
θ is the c.m. angle of the outgoing meson. Although, for

N (γ , η)N , the isospin in the final ηN system is 1
2 , and only

two channels, proton and neutron, exist, in pion photopro-
duction, the total isospin is either 1

2 or 3
2 , and four channels

p(γ , π0)p, n(γ , π0)n, p(γ , π+)n, and n(γ , π−)p are possi-
ble. In a future (ongoing) work, a full isospin analysis will
be performed using our fixed-t method. Here, we concentrate
only on p(γ , π0)p and, therefore, we can ignore the isospin
aspect here, and treat everything just like η photoproduction
with π0 as a “light η meson.”

In this paper, we introduce fixed-t analyticity in the SE
PWA to ensure the continuity of PWA solutions following
the method developed for η photoproduction in Ref. [18].
Namely, if one performs a SE PWA freely, one actually uses
all available data on observables O(Wfixed, θ ) at one isolated
energy at different angles without paying any attention to
what is happening at neighboring energies. However, as has
been shown in Ref. [9], continuum ambiguity (invariance
of reaction amplitudes to the rotation with arbitrary real
energy and an angle-dependent phase) enables multiplicity of
equivalent but different PWA solutions at one energy with
a different reaction amplitude phase, so if no continuity of
the phase is imposed when we move from one energy to
another one, the solution is automatically discontinuous as
each different phase gives different sets of partial waves. One
elegant solution to this problem is imposing the analyticity at
fixed t and that automatically means continuity in energy as
well. To do so, first we have to obtain reaction amplitudes in
the t variable which describe the used database but which are
at the same time continuous at fixed t . To achieve that, we
have to perform an amplitude reconstruction of observables
not in the O(Wfixed, θ ) form but in the O(tfixed,W ) form. The
first step is to interpolate the existing data to predetermined
fixed-t values. This procedure, called a fixed-t data binning,
is, in detail, described in Ref. [18]. As a second step, we have
to fit these data with a continuous function. As we demand
a minimal model dependence, instead of using theoretical
models, we use the Pietarinen expansion method first applied
in the PWA of πN elastic-scattering data [19,20] to describe
the reaction amplitudes in fixed t . We start with an arbitrary
solution and find a fixed-t solution in such a way that our
results do not deviate much from the starting solution using
penalty function techniques. We then take the obtained con-
tinuous amplitudes as a constraint in the SE PWA again using
penalty function techniques to impose continuity in energy.
In this way, we obtain a SE solution, which at the same time,
describes the measured data and is continuous. This solution is
different from the starting solution. With the obtained results,
we go back to the fixed-t amplitude analysis and use it as a
constraint. We continue this iterative procedure as long as the
result does not change much, and this typically happens after
three to four iterations. The final result is continuous in energy.
Details of the procedure are given in Refs. [18,19,21].

The method consists of two separate analyses, the fixed-t
amplitude analysis (FT AA) and the single-energy partial-
wave analysis (SE PWA). The two analyses are coupled
in such a way that the results from FT AA are used as
a constraint in the SE PWA and vice versa in an iterative
procedure. It has not been proven, but it is extensively tested
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in πN elastic fixed-t constrained SE PWA [19] and since then
recommended for other processes.

Step 1. Constrained FT AA is performed by minimizing the
form

X 2 = χ2
FT data + χ2

cons + 
conv, (1)

where χ2
cons is a constraining term given by

χ2
cons = qcons

4∑
k=1

NE∑
i=1

(
Re Hk (Ei )fit − Re Hk (Ei )cons

εRe
k,i

)2

+ qcons

4∑
k=1

NE∑
i=1

(
Im Hk (Ei )fit − Im Hk (Ei )cons

εIm
k,i

)2

.

(2)

H cons
k ’s are helicity amplitudes from the SE PWA in the previ-

ous iteration. In a first iteration, H cons
k ’s are calculated from

the initial PWA solution (MAID, SAID, BnGa, and JüBo).
Hfit

k ’s are values of helicity amplitudes Hk calculated from
coefficients in Pietarinen’s expansions, which are parameters
of the fit. NE is the number of energies for a given value of
t , and qcons is an adjustable weight factor. εRe

k,i and εIm
k,i are

errors of real and imaginary parts of the corresponding helicity
amplitudes. In our analysis, we take εRe

k,i = εIm
k,i = 1.

Step 2. The constrained SE PWA is performed by minimiz-
ing the form

X 2 = χ2
SE data + χ2

FT + 
trunc, (3)

where the additional term χ2
FT contains the helicity amplitudes

from the FT AA in Step 1,

χ2
FT = qcons

4∑
k=1

NC∑
i=1

(
Re Hk (θi )fit − Re Hk (θi )FT

εRe
k,i

)2

+ qcons

4∑
k=1

NC∑
i=1

(
Im Hk (θi )fit − Im Hk (θi )FT

εIm
k,i

)2

.

NC is the number of angles for a given energy E and the values
θi are obtained for a corresponding value of t using Eq. (A15).

Step 3. Use resulting multipoles obtained in Step 2, and
calculate helicity amplitudes which serve as a constraint in
Step 1.

χ2
FT data and χ2

SE data are standard χ2 functions calculating
the weighted deviations between theory and experiment, and

conv and 
trunc are penalty functions that are described in
Ref. [18]. In Step 1 for the FT AA, the energy-dependent
helicity amplitudes Hk (Ei )fit are parametrized with Pietarinen
functions where the expansion coefficients are the fit parame-
ters. In Step 2 for the SE PWA, the angle-dependent helicity
amplitudes Hk (θi )fit are parametrized with Legendre functions
and multipoles where the multipoles are the fit parameters.
An iterative minimization scheme which accomplishes point-
to-point continuity in energy is given in Fig. 1.

IA from start solution

Results from SE PWA
used as new constraint
in FTAA

At each t value
perform FTAA

At each energy
perform SE PWA

FIG. 1. Iterative minimization scheme which achieves point-to-
point continuity in energy using fixed-t analyticity as a constraint.

III. RESULTS

A. π0 photoproduction database

The majority of experimental data on the γ p → π0 p re-
action were obtained with energy-tagged photon beams and
large solid angle electromagnetic calorimeters with a high
efficiency for a detection of the two photons from the π0 →
γ γ decay. We used data from the A2 Collaboration at the
Mainz Microtron MAMI [13,22–27], the CBELSA/TAPS
Collaboration at ELectron Stretcher and Accelerator ELSA
[28–30], and the GRAAL Detector at the European Syn-
chrotron Radiation Facility [31].

We used, in the fit, the latest experimental data for eight
observables from the SAID database [32] that have maxi-
mal angular covering and minimal energy binning at energy
W < 1.9 GeV. The most accurate data in this energy region
are available for differential cross sections (MAMI [13] and
MAMI [22]): 20 or 30 bins covering the full angle range at

TABLE I. Experimental data from A2@MAMI, DAPHNE/

MAMI, CBELSA/TAPS, and GRAAL Collaborations used in our
SE PWA.

Observables N W (MeV) NE Reference

σ0 5240 1075–1541 262 A2@MAMI(2013) [13]
3930 1132–1895 246 A2@MAMI(2015) [22]


 528 1074–1215 54 A2@MAMI(2013) [13]
357 1150–1310 21 A2@MAMI(2001) [23]
471 1383–1922 31 GRAAL(2005) [31]

T 469 1295–1895 34 A2@MAMI(2016) [24]
157 1462–1620 8 CBELSA/TAPS(2014) [28]

T σ0 4500 1074–1291 250 A2@MAMI(2015) [25]
P 157 1462–1620 8 CBELSA/TAPS(2014) [28]
Eσ0 139 1201–1537 24 DAPHNE/MAMI(2001) [23]
E 88 1481–1951 5 CBELSA/TAPS(2014) [29]

480 1129–1878 40 A2@MAMI(2015) [26]
F 469 1295–1895 34 A2@MAMI(2016) [24]
Fσ0 4500 1074–1291 250 A2@MAMI(2015) [25]
G 3 1232 1 DAPHNE/MAMI(2005) [27]

318 1430–1727 19 CBELSA/TAPS(2012) [30]
H 157 1462–1620 8 CBELSA/TAPS(2014) [28]
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FIG. 2. Example of our interpolated fixed-t database. In (a), we give interpolated data for t = −0.2 GeV2, and in (b), we give interpolated
data for t = −0.5 GeV2.

very small energy bins from 1 to 5 MeV depending on the
beam energy. The polarization observables 
, T, F , and E
are also available at the full energy region (W < 1.9 GeV)
and cover the most angular range, whereas the polarization
observables G, P, and H were measured only in a limited
energy range. A summary is given in Table I.

In general, there is a hierarchy of precision depending
on the polarization degrees of freedom used in the experi-
ment. The highest precision was achieved in measurements
of the unpolarized differential cross section at MAMI [22].
The statistical uncertainties are so small that systematic un-
certainties due to angular-dependent detection efficiencies
had to be taken into account. For all other observables, the
uncertainties in the angular distributions are dominated by
statistics. Normalization errors (luminosity and polarization
degree) are below 5% and are not taken into account in
this analysis.

For our single-energy fits, we need all observables at the
same values of W = √

s and for the fixed-t fits at the same
values of t . Typically, this is not provided by the experiments
directly. The data are given in bins of W and c.m. angle θcm

with bin sizes and central values varying between different
data sets. Therefore, some interpolation between measure-
ments at different energies and angles is necessary. We created
energy bins of about 5–10 MeV width using a spline smooth-
ing method [33] which was similarly applied in the Karlsruhe-
Helsinki analysis KH80 [19] and in our previous analysis
of η production [18]. The uncertainties of interpolated data
points are taken to be equal to the errors of nearest measured
data points. Our fixed-t amplitude analysis is performed at t
values in the range of −1.00 GeV2 < t < −0.005 GeV2 with
20 equidistant t values. Examples of interpolated data points
at t = −0.2 and −0.5 GeV2 are shown in Fig. 2. We note that
the individual errors are not independent.
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FIG. 3. SE1, …, SE4 solutions obtained using different models
as initial solutions [BnGa (black circles), JüBo (blue asterisks), SAID
(red diamonds), and MAID (green squares)], see the text for further
details. Multipoles are in units of am (am ≡ mFm).

B. π0 photoproduction multipoles

Fitting was performed in a standard way using the MINUIT

program package, and the final result is presented in Figs. 3
and 4 where four different single-energy solutions are com-
pared. For SE1, we use as a starting solution BG2014-02
from Bonn-Gatchina [1], for SE2, we use the JüBo2015-
B solution from Jülich-Bonn [2], for SE3, we use the
CM12 solution from SAID [3], and, for SE4, we use the
MAID2007 solution from Mainz [4]. As can be seen from
Table I, at energies of W < 1.7 GeV we use as much as
eight observables σ0, 
, T, P, E , F, G, and H . However,
as not all observables are taken at comparable energies,
the maximum of five observables was fitted simultaneously
(differential cross section + four spin observables). But the
combination is not identical in each energy bin. At higher
energies, the number of measured observables is reduced, so,
at some energies, we use only two spin observables in addition
to the cross section.

IV. DISCUSSION

In this paper, we use four different models BnGa [1], JüBo
[2], SAID [3], and MAID [4] as initial solutions. We randomly
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FIG. 4. SE1, …, SE4 solutions obtained using different models
as initial solutions [BnGa (black circles), JüBo (blue asterisks), SAID
(red diamonds), and MAID (green squares)], see the text for further
details. Multipoles are in units of am (am ≡ mFm).

scatter them with 30% uncertainty, and from these values,
we generate four different SE solutions, SE1, …, SE4, which
form a very well-defined band of solutions extending up to
W = 1.7 GeV. In the remaining energy range of 1.7 < W <

1.9 GeV, the four solutions do show some differences as we
are going to discuss later on. Comparing Figs. 3 and 4, it may
be seen that, in this energy range, our solutions demonstrate
almost complete independence of initial solutions, despite the
fact that some of them (Bonn-Gatchina, for instance) have
very different E0+ and M1− multipoles in the energy
range of 1.2 GeV � W � 1.4 GeV (see Fig. 6).

Due to the fact that moderate changes in initial solutions
do not cause large differences in final solutions, our method
shows stability and robustness. In addition, our SE solutions
are constrained by fixed-t analyticity. As we described in
our previous work [18], our fixed-t constraint has a much
deeper meaning than to ensure smoothness of our solution.
The amplitudes in our method have a well-defined crossing
symmetry and possess an analytic structure postulated by
the Mandelstam hypothesis. Furthermore, it is expected that
the multipoles obtained from those amplitudes also have an
analytic structure as required by the Mandelstam hypothesis.
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H. OSMANOVIĆ et al. PHYSICAL REVIEW C 100, 055203 (2019)

-8

-4

0

4

1 1.2 1.4 1.6 1.8 2

R
e 

(E
0+

)

W [GeV]

-5

0

5

10

1 1.2 1.4 1.6 1.8 2

Im
 (

E
0+

)

W [GeV]

-8

-4

0

4

1 1.2 1.4 1.6 1.8 2

R
e 

(E
0+

)

W [GeV]

-5

0

5

10

1 1.2 1.4 1.6 1.8 2

Im
 (

E
0+

)

W [GeV]

-8

-4

0

4

1 1.2 1.4 1.6 1.8 2

R
e 

(E
0+

)

W [GeV]

-5

0

5

10

1 1.2 1.4 1.6 1.8 2

Im
 (

E
0+

)

W [GeV]

(a)

(b)

(c)

FIG. 5. E0+ SE solutions obtained using different models as
initial solutions [BnGa (black circles), JüBo (blue asterisks), SAID
(red diamonds), and MAID (green squares)] with a different number
of observables at an energy of W > 1.7 GeV. In (a), we give the
standard solution, in (b), we omit the energy points where only two
observables are measured (three and more), and in (c), we omit the
energy points where only three observables are measured (four and
more). Multipoles are in units of am (am ≡ mFm).

Our SE solutions start to become poorly determined at
energies of W > 1.7 GeV. Solutions obtained from different
initial solutions differ significantly and show large errors.
This is due to the lack of experimental data, especially the
lack of certain polarization observables as we will further
outline in the following. The number of measured observables
is much smaller. In addition, the constraining power of the
fixed-t analyticity decreases, especially for large −t values in
the backward angular range. As can be seen in Fig. 12, the
unphysical ν region for large −t values increases strongly.
As a consequence, the Pietarinen functions in the FT AA are
less constrained by experimental data, and therefore, the SE
solutions are less constrained by fixed-t analyticity [34].

Concerning the data, as can be seen from Table I, at ener-
gies of W < 1.7 GeV we use as much as eight observables
σ0, 
, T, P, E , F, G, and H , fitting maximally five of
them at the same time. However, at energies of W > 1.7 GeV,
the number of measured observables becomes much smaller
(not bigger than four, and often much less), and the partial-
wave reconstruction must become less reliable. In Fig. 5,
we give an indication of what happens with partial-wave
reconstruction for the E0+ multipole when different numbers
of measured observables are used in the fit. In Fig. 5(a), we
give the solution for all energies and all measured observables,
in Fig. 5(b) we omit the energy points where only two observ-
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FIG. 6. Electric and magnetic multipoles from S11, P11, P13, and
D13 partial waves. Real and imaginary parts of the avarage SEav
solution defined in the text (blue circles and red squares, respectively)
and multipoles from models [BnGa (black full lines), JüBo (blue
long-dashed lines), SAID (red short-dashed lines), and MAID2007
(green dashed-dotted lines)]. Multipoles are in units of am (am ≡
mFm).

ables are measured (three and more), and in Fig. 5(c), we omit
the energy points where only three observables are measured
(four and more). It is obvious that error bars significantly drop
as the number of observables grows. However, the error bars
are still somewhat bigger than at lower energies, but this is
entirely due to the quality of the measured data. So, improving
the database at higher energies in the sense that both the
number of observables and the quality of measurements are
increased will improve the quality of the solution using the
present technique.

We create the “averaged” solution by performing an aver-
age over the four SE solutions SE1, …,SE4 and taking this
solution as input for the first iteration in the final fitting
procedure.

The result for this particular solution is shown in Figs. 6
and 7 where it is also compared with all four ED solutions.
The averaged SE (SEav) solution agrees fairly well with
all ED solutions. As could be expected, the SEav solution
actually follows the average line of ED solutions. However,
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FIG. 7. Electric and magnetic multipoles from D15, F15, and F17

partial waves. Real and imaginary parts of the avarage SEav solution
defined in the text (blue circles and red squares, respectively) and
multipoles from models [BnGa (black full lines), JüBo (blue long-
dashed lines), SAID (red short-dashed lines), and MAID2007 (green
dashed-dotted lines)]. Multipoles are in units of am (am ≡ mFm).

there are some bigger variations in the energy range of
1.2 < W < 1.4 GeV.

Next, we will discuss what could be improved in the
present database in order to obtain SE solutions that all con-
verge to a single one. Despite the abundance of experimental
data in pion photoproduction and especially for p(γ , π0)p,
we know that the complete set of observables needed for a
unique amplitude reconstruction has still not been measured.
As we see in Table I, a total of eight observables at various
energies has already been measured. Four of them (σ0, 
, T ,
and P) belong to the single-spin type (S), and the remain-
ing four (E , F, G, and H) belong to the beam-target type
(BT ). However, for a complete amplitude experiment, also
two recoil observables out of the groups (Ox′, Oz′ ,Cx′ ,Cz′ )
of beam-recoil type and (Tx′ , Tz′ , Lx′ , Lz′ ) of target-recoil type
(T R). For pion and η photoproductions, such experiments are
extremely difficult as a recoil polarimetry has to be applied for
the outgoing nucleon [see Ref. [35]. In a pilot experiment at
MAMI, this has been performed for (BR)-type observables.
However, for a PWA, these first data points are too scarce and

have large uncertainties. In the following, we ignore T R-type
observables, which are even more difficult to measure.

In Figs. 8–11, we show the results of the fit of all four SE
solutions and the averaged SEav solution with the measured
data and predictions for a number of unmeasured observables
at four representative energies W = 1.201, 1.481, 1.660, and
1.872 GeV. Figures 8–11(a) show the comparison of the
averaged SEav solution with the measured database at chosen
energies, and it turns out that the four SE1, …,SE4 solutions
as well as the avaraged SEav solution give practically identical
results. Figures 8–11(b) show the predictions of our five
SE1, …,SEav solutions for unmeasured observables which
together with the measured ones can form several complete
sets of observables. Different conclusions emerge for different
energies.

At the lowest energy of W = 1.201 GeV, we have four
measured observables, and the measured data are of good
quality. The fit is almost perfect. Next, we show the eight
unmeasured observables out of the groups S, BT , and BR
predicted from our four SE1, …,SE4 solutions. We can see
that the agreement of all four predictions for all observables
is fairly good with the exception of P, G, and H observables.
The differences are rather small, so only a small improvement
in a PWA can be expected.

At the energy of W = 1.481 GeV, we have five measured
observables, and the measured data are of good quality. The
fit is almost perfect. Next, we show the seven unmeasured ob-
servables out of the groups S, BT , and BR predicted from
our four SE1, …,SE4 solutions. We see that the agreement of
all four predictions for all observables is fairly good with the
exception of Ox′ , Oz′ , and Cx′ observables. The differences are
rather small, so only a little improvement is expected.

At the energy of W = 1.660 GeV, we have four measured
observables, and the measured data are still of good quality.
The fit is almost perfect. Next, we show the eight unmeasured
observables out of the groups S, BT , and BR predicted
from our four SE1, …,SE4 solutions. We can now see a spread
for all observables at this and higher energies. The agreement
is acceptable for Cx′ , Cz′ , Ox′ , and Oz′ , whereas it is notably
worse for F, H, T , and P. So, we expect some improvement
in the uniqueness of the SE PWA if these observables are
more precisely measured. We recommend to remeasure the
configuration T, P, Cx′ , and Oz′ as the predictions for the
beam-recoil observables are fairly similar, whereas one must
only remeasure simpler single-spin observables T and P.

At the highest energy of W = 1.872 GeV, we have five
measured observables where four of them have an acceptable
quality, only the F observable is more uncertain. The fit is
almost perfect. Next, we show the seven unmeasured observ-
ables out of the groups S, BT , and BR predicted from our
four SE1, …,SE4 solutions. We see that the agreement of all
four predictions for all observables is not good for either of
them.

V. SUMMARY AND CONCLUSIONS

Using the formalism introduced and explained for η pho-
toproduction in Ref. [18], we have performed a fixed-t single-
energy partial-wave analysis of π0 photoproduction on the
world collection of data.
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FIG. 8. In (a), the single-energy fit SEav compared to the experimental data with four observables at E = 0.3 (W = 1.201 GeV). In (b),
predictions from five different single-energy solutions, SE1 (black dot-dot-dashed line), SE2 (blue short-dashed line), SE3 (red dotted line),
SE4 (green dashed-dotted line), and SEav (solid red line) for polarization observables that are not fitted {E , P,Cx′ , Ox′ } (top) and {G, H,Cz′ , Oz′ }
(bottom) at an energy of E = 0.3 (W = 1.201 GeV).

In an iterative two-step process, the single-energy mul-
tipoles are constrained by fixed-t Pietarinen expansions fit-
ted to experimental data. This leads to a partial-wave ex-
pansion that obeys fixed-t analyticity with a least model
dependence.

In the energy range of E = 0.14 − 1.46 (W =
1.08–1.9 GeV), we have obtained electric and magnetic
multipoles E�±, M�±, up to F waves, � = 3 in 158 energy
bins of about 5–10-MeV width. First, we used randomized
starting solutions from BnGa, JüBo, SAID, and MAID
energy-dependent solutions and obtained four different SE
solutions, SE1, …,SE4 in an iterative procedure. These
four SE solutions appeared already much closer together
than the four underlying ED solutions where we started
from. Second, we generated an average SE solution, SEav,
again in an iterative process. All five SE solutions compare
very well with the experimental data where the averaged
solution SEav is obtained in the least model-dependent
way.

Finally, we compared our five SE solutions in their pre-
dictions for unmeasured polarization observables. At lower
energies, the spread of these predictions is rather small, but
it becomes quite large at higher energies where it will help to
propose new measurements in order to get a unique PWA.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsge-
meinschaft (Grant No. SFB 1044).

APPENDIX A: KINEMATICS IN π0 PHOTOPRODUCTION

For π photoproduction on the nucleon, we consider the
reaction,

γ (k) + N (pi ) → π (q) + N ′(p f ), (A1)

where the variables in brackets denote the four-momenta of
the participating particles. In the pion-nucleon c.m. system,
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FIG. 9. In (a), the single-energy fit SEav compared to the experimental data with five observables at E = 0.7 (W = 1.481 GeV). In (b),
predictions from five different single-energy solutions, SE1 (black dot-dot-dashed line), SE2 (blue short-dashed line), SE3 (red dotted line),
SE4 (green dashed-dotted line), and SEav (solid red line) for polarization observables that are not fitted {Ox′ , Oz′ ,Cx′ ,Cz′ } (top) and {F, T, H}
(bottom) at an energy of E = 0.7 (W = 1.481 GeV).

we define

kμ = (ωγ , k), qμ = (ωπ, q) (A2)

for a photon and pion meson, and

pμ
i = (Ei, pi ), pμ

f = (E f , p f ) (A3)

for incoming and outgoing nucleons, respectively. The famil-
iar Mandelstam variables are given as

s = W 2 = (pi + k)2, t = (q − k)2, u = (p f − q)2,

(A4)
the sum of the Mandelstam variables is given by the sum of
the external masses,

s + t + u = 2m2
N + m2

π , (A5)

where mN and mπ are masses of the proton and π meson,
respectively. In the pion-nucleon c.m. system, the energies and

momenta can be related to the Mandelstam variable s by

k = |k| = s − m2
N

2
√

s
, ω = s + m2

π − m2
N

2
√

s
, (A6)

q = |q| =
[(

s − m2
π + m2

N

2
√

s

)
− m2

N

]1/2

, (A7)

Ei = s − m2
N

2
√

s
, E f = s + m2

N + m2
π

2
√

s
, (A8)

W = √
s is the c.m. energy. Furthermore, we will also refer to

the laboratory energy of the photon E = (s − m2
N )/(2mN ).

Starting from the s-channel reaction γ + N ⇒ π + N
using a crossing relation, one obtains two other channels,

γ + π ⇒ N + N̄, t channel , (A9)

π + N̄ ⇒ γ + N̄, u channel. (A10)
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FIG. 10. In (a), the single-energy fit SEav compared to the experimental data with four observables at E = 1.0 (W = 1.660 GeV). In (b),
predictions from five different single-energy solutions, SE1 (black dot-dot-dashed line), SE2 (blue short-dashed line), SE3 (red dotted line),
SE4 (green dashed-dotted line), and SEav (solid red line) for polarization observables that are not fitted {F, H,Cx′ , Oz′ } (top) and {T, P,Cz′ , Ox′ }
(bottom) at an energy of E = 1.0 (W = 1.660 GeV).

All three channels defined above are described by a set of
four invariant amplitudes. The singularities of the invariant
amplitudes are defined by unitarity in s, u, and t channels,

s-channel cut: (mN + mπ )2 � s < ∞, (A11)

u-channel cut: (mN + mπ )2 � u < ∞, (A12)

and nucleon poles at s = m2
N , u = m2

N . The crossing symmet-
rical variable is

ν = s − u

4mN
. (A13)

The s-channel region is shown in Fig. 12. The upper and
lower boundaries of the physical region are given by the
scattering angles θ = 0 and θ = 180◦, respectively. The c.m.
energy W and the c.m. scattering angle θ can be obtained from
the variables ν and t by

W 2 = mN (mN + 2ν) − 1
2

(
t − m2

π

)
, (A14)

and

cos θ = t − m2
π + 2kω

2kq
. (A15)

APPENDIX B: CROSS SECTION AND
POLARIZATION OBSERVABLES

Experiments with three types of polarization can be per-
formed in meson photoproduction: photon beam polarization,
polarization of the target nucleon, and polarization of the re-
coil nucleon. Target polarization will be described in the
frame {x, y, z} in Fig. 13 with the z axis pointing into the
direction of the photon momentum k̂, the y axis perpendicular
to the reaction plane ŷ = k̂ × q̂/ sin θ , and the x axis given
by x̂ = ŷ × ẑ. For recoil polarization, we will use the frame
{x′, y′, z′} with the z′ axis defined by the momentum vector of
the outgoing meson q̂, the y′ axis as for target polarization,
and the x′ axis given by x̂′ = ŷ′ × ẑ′.
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FIG. 11. In (a), the single-energy fit SEav compared to the experimental data with five observables at E = 1.4 (W = 1.852 GeV). In (b),
predictions from five different single-energy solutions, SE1 (black dot-dot-dashed line), SE2 (blue short-dashed line), SE3 (red dotted line),
SE4 (green dashed-dotted line), and SEav (solid red line) for polarization observables that are not fitted {Ox′ , Oz′ ,Cx′ ,Cz′ } (top) and {P, H, G}
(bottom) at an energy of E = 1.4 (W = 1.872 GeV).

The photon polarization can be linear or circular. For a
linear photon polarization (PT = 1) on the reaction plane
x̂, we get ϕ = 0 and perpendicular in direction ŷ, and the
polarization angle is ϕ = π/2. For right-handed circular po-
larization, P	 = +1.

We may classify the differential cross sections by the three
classes of double polarization experiments and one class of
triple polarization experiments, which, however, do not give
additional information:

(1) polarized photons and polarized target,

dσ

d�
= σ0{1 − PT 
 cos 2ϕ + Px(−PT H sin 2ϕ + P	F )

+ Py(T − PT P cos 2ϕ) + Pz(PT G sin 2ϕ − P	E )},
(B1)

(2) polarized photons and recoil polarization,

dσ

d�
= σ0{1 − PT 
 cos 2ϕ + Px′ (−PT Ox′ sin 2ϕ

− P	Cx′ ) + Py′ (P − PT T cos 2ϕ)

+Pz′ (−PT Oz′ sin 2ϕ − P	Cz′ )}, (B2)

(3) polarized target and recoil polarization,

dσ

d�
= σ0{1 + PyT + Py′P + Px′ (PxTx′ − PzLx′ )

+ Py′Py
 + Pz′ (PxTz′ + PzLz′ )}. (B3)

In these equations, σ0 denotes the unpolarized differential
cross section, the transverse degree of photon polarization
is denoted by PT , P	 is the right-handed circular photon
polarization, and ϕ is the azimuthal angle of the photon po-
larization vector with respect to the reaction plane. Instead of
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FIG. 12. The Mandelstam plane for pion photoproduction on the
nucleon. The red solid curves are the boundaries of the physical
region from θ = 0 to θ = 180◦ and the red dashed line shows
θ = 90◦. The green tilted vertical lines are the threshold for pion
production at W = 1.073 and W = 1.7 GeV. The horizontal lines
denote the t-values −0.2, −0.5 GeV2. The magenta parts give the
part inside the physical region, whereas the cyan parts indicate
nonzero amplitudes in the unphysical region. The fixed-t threshold
values for γ , π in W are Wthr = 1.208 (t = −0.2 GeV2) and Wthr =
1.369 (t = −0.5 GeV2).

asymmetries, in the following, we will often discuss the prod-
uct of the unpolarized cross section with the asymmetries and
will use the notation 
̌ = σ0
, Ť = σ0T, . . .. In Appendix
C, we give expressions of the observables in terms of CGLN
and helicity amplitudes.

APPENDIX C: OBSERVABLES EXPRESSED IN CGLN
AND HELICITY AMPLITUDES

Spin observables expressed in CGLN amplitudes are given
by

σ0 = Re{F ∗
1 F1 + F ∗

2 F2 + sin2 θ (F ∗
3 F3/2 + F ∗

4 F4/2 + F ∗
2 F3

+ F ∗
1 F4 + cos θF ∗

3 F4)−2 cos θF ∗
1 F2}ρ, (C1)


̌ = − sin2 θ Re{F ∗
3 F3 + F ∗

4 F4)/2

+ F ∗
2 F3 + F ∗

1 F4 + cos θF ∗
3 F4}ρ, (C2)

Ť = sin θ Im{F ∗
1 F3 − F ∗

2 F4 + cos θ (F ∗
1 F4 − F ∗

2 F3)

− sin2 θF ∗
3 F4}ρ, (C3)

P̌ = − sin θ Im{2F ∗
1 F2 + F ∗

1 F3 − F ∗
2 F4

− cos θ (F ∗
2 F3 − F ∗

1 F4) − sin2 θF ∗
3 F4}ρ, (C4)

Ě = Re{F ∗
1 F1 + F ∗

2 F2 − 2 cos θF ∗
1 F2

+ sin2 θ (F ∗
2 F3 + F ∗

1 F4)}ρ, (C5)

F̌ = sin θ Re{F ∗
1 F3−F ∗

2 F4−cos θ (F ∗
2 F3−F ∗

1 F4)}ρ, (C6)

FIG. 13. Kinematics of photoproduction and frames for polariza-
tion. The frame {x, y, z} is used for target polarization {Px, Py, Pz},
whereas the recoil polarization {Px′ , Py′ , Pz′ } is defined in the frame
{x′, y′, z′}, which is rotated around y′ = y by the polar angle θ . The
azimuthal angle ϕ is defined on the {x, y} plane and is zero in the
projection shown in the figure.

Ǧ = sin2 θ Im{F ∗
2 F3 + F ∗

1 F4}ρ, (C7)

Ȟ = sin θ Im{2F ∗
1 F2 + F ∗

1 F3 − F ∗
2 F4

+ cos θ (F ∗
1 F4 − F ∗

2 F3)}ρ, (C8)

Čx′ = sin θ Re{F ∗
1 F1 − F ∗

2 F2 − F ∗
2 F3 + F ∗

1 F4

− cos θ (F ∗
2 F4 − F ∗

1 F3)}ρ, (C9)

Čz′ = Re{2F ∗
1 F2 − cos θ (F ∗

1 F1 + F ∗
2 F2)

+ sin2 θ (F ∗
1 F3 + F ∗

2 F4)}ρ, (C10)

Ǒx′ = sin θ Im{F ∗
2 F3−F ∗

1 F4+cos θ (F ∗
2 F4 − F ∗

1 F3)}ρ,

(C11)

Ǒz′ = − sin2 θ Im{F ∗
1 F3 + F ∗

2 F4}ρ, (C12)

TABLE II. Spin observables expressed by helicity amplitudes in
the notation of Barker [36] and Walker [37]. A phase-space factor
q/k has been omitted in all expressions. The differential cross section
is given by σ0, and the spin observables Ǒi are obtained from the spin
asymmetries Ai by Ǒi = Aiσ0.

Observable Helicity representation Type

σ0
1
2 (|H1|2 + |H2|2 + |H3|2 + |H4|2)


̌ Re(H1H∗
4 − H2H∗

3 ) S
Ť Im(H1H∗

2 + H3H∗
4 ) (Single spin)

P̌ −Im(H1H∗
3 + H2H∗

4 )

Ǧ −Im(H1H∗
4 + H2H∗

3 )
Ȟ −Im(H1H∗

3 − H2H∗
4 ) BT

Ě 1
2 (−|H1|2 + |H2|2 − |H3|2 + |H4|2) (Beam target)

F̌ Re(H1H∗
2 + H3H∗

4 )

Ǒx′ −Im(H1H∗
2 − H3H∗

4 )
Ǒz′ Im(H1H∗

4 − H2H∗
3 ) BR

Čx′ −Re(H1H∗
3 + H2H∗

4 ) (Beam recoil)
Čz′ 1

2 (−|H1|2 − |H2|2 + |H3|2 + |H4|2)

Ťx′ Re(H1H∗
4 + H2H∗

3 )
Ťz′ Re(H1H∗

2 − H3H∗
4 ) T R

Ľx′ −Re(H1H∗
3 − H2H∗

4 ) (Target recoil)
Ľz′ 1

2 (|H1|2 − |H2|2 − |H3|2 + |H4|2)
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Ľx′ = − sin θ Re{F ∗
1 F1 − F ∗

2 F2 − F ∗
2 F3 + F ∗

1 F4 + sin2 θ

(F ∗
4 F4 − F ∗

3 F3)/2 + cos θ (F ∗
1 F3 − F ∗

2 F4)}ρ, (C13)

Ľz′ = Re{2F ∗
1 F2 − cos θ (F ∗

1 F1 + F ∗
2 F2) + sin2 θ (F ∗

1 F3

+ F ∗
2 F4 + F ∗

3 F4) + cos θ sin2 θ (F ∗
3 F3 + F ∗

4 F4)/2}ρ,

(C14)

Ťx′ = − sin2 θ Re{F ∗
1 F3 + F ∗

2 F4 + F ∗
3 F4

+ cos θ (F ∗
3 F3 + F ∗

4 F4)/2}ρ, (C15)

Ťz′ = sin θ Re{F ∗
1 F4 − F ∗

2 F3 + cos θ (F ∗
1 F3 − F ∗

2 F4)

+ sin2 θ (F ∗
4 F4 − F ∗

3 F3)/2}ρ, (C16)

with 
̌ = 
σ0 etc., and ρ = q/k. (C17)

The 16 polarization observables of pseudoscalar photo-
production fall into four groups, single spin with unpolar-
ized cross section included, beam-target, beam-recoil, and
target-recoil observables. The simplest representation of these
observables is given in terms of helicity amplitudes (see
Table II).
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