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Intrinsic three-body nuclear interaction from a constituent quark model
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We study the short-distance part of the intrinsic three-nucleon interaction in a constituent quark model with
color-spin interaction. For that purpose, we first calculate the transformation coefficient between the tribaryon
configuration and their corresponding three-baryon basis. Using a formula for the intrinsic three-body interaction
in terms of a tribaryon configuration, we find that after subtracting the corresponding two-baryon contributions,
the intrinsic three-body interaction vanishes in flavor SU(3) symmetric limit for all quantum numbers for the
three nucleon states. We further find that the intrinsic three-body interaction also vanishes for flavor-spin type of
quark interaction.
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I. INTRODUCTION

The short-distance part of the baryon-baryon interaction is
intricately related to the properties of dense nuclear matter.
Historically, the approaches describing the baryon-baryon in-
teraction evolved with our understanding of strong interaction.
They range from the early nuclear potential models, such as
the Paris potential [1] or the Bonn potential [2], quark cluster
model [3,4], and modern field theoretical approach based on
chiral Lagrangians [5–8], to the recent direct calculation of
nuclear force from lattice QCD (LQCD) [9,10]. In particular,
it is worth noting that the recent lattice calculations are based
on flavor SU(3) nonsymmetric case with almost physical pion
mass [11]. The study of three-body nuclear force also has a
long history starting from the pion-mediated interaction [12]
to modern-day chiral effective field theory [13]. However,
there are only a few studies using quark-based approaches
[14–17], which would become more relevant at short distance
and hence in very dense nuclear matter.

Recently, there is renewed interest in the nuclear three-
body forces as they are related to solving the so-called
hyperon puzzle in neutron stars. One way to explain the
mass of the recently observed neutron stars [18,19] that are
larger than previous expectations is to introduce repulsive
three-body interactions including hyperons in dense nuclear
matter. Such forces will delay the appearance of hyperons
to higher densities, preventing the equation of state from
becoming too soft. However, it should be noted that the
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needed three-body repulsion is an intrinsic force and not
the higher density effects coming from the accumulation of
two-body interactions. Therefore, the same caution should
be taken when we calculate the pure three-body interaction
from a first-principles calculation; namely, the two-body force
effects have to be eliminated. The intrinsic three-nucleon
interactions have been calculated in LQCD [15,16], which
find that the three-nucleon potentials are repulsive at short
distance in the isospin 1 and 0 channels. Since the LQCD
has reached the level of precision calculation for the two-body
nuclear force with realistic quark masses, it is still a challenge
to analyze the three-body interactions for all possible quantum
numbers with reliable precision. In this work, we will present
a constituent quark model calculation for the intrinsic three-
nuclear interaction.

As for the two nucleon potential, it was first noted within
the quark-cluster model that the short-range interaction is
predominantly determined by Pauli principle and color-spin
interaction [3,4]. Recently, we have made the quark model
conjecture more concrete by comparing and showing that the
quantum-number-dependent short-distance part of the baryon-
baryon potential extracted from lattice QCD can be well
understood in terms of the interquark interaction within a
constituent quark model [20]. The color-spin-flavor structure
with the color-spin interaction between quark pairs within the
six-quark state provides the mechanism for the repulsion or
attraction with different flavor and spin quantum numbers.
By analyzing the color-spin-flavor wave function and all
possible diquark configurations contributing to the given six
quark states, we have shown that the interaction energy ratios
between different flavor states calculated from a constituent
quark model show good agreement with those in LQCD [21]
in both flavor SU(3) symmetric and nonsymmetric cases.
These results suggest that the Pauli principle and color-spin
interaction are key inputs responsible for the baryon-baryon
interaction at short distance.

For the three-baryon interaction, in a previous work using
the constituent quark model approach [17], we showed that
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the static three-baryon configuration are repulsive at short
distances. However, the result includes all possible two-
body interaction effects. Therefore, in this work, by fully
subtracting out the two-baryon contributions, we isolate the
pure three-body interaction strength at short distance for all
possible quantum numbers. For that purpose, we extend the
calculation for the transformation coefficient between the
dibaryon configuration and the baryon-baryon basis obtained
by Harvey [22,23] to all possible tribaryon configurations and
calculate the coefficients between the tribaryon configuration
and their corresponding three baryon basis. After subtracting
the corresponding two-baryon contributions, we find that the
intrinsic three-body interaction vanishes in the flavor SU(3)
symmetric limit. Additionally, we find that the intrinsic three-
body interaction vanishes not only for color-spin interaction
but also for flavor-spin interaction.

This paper is organized as follows. In Sec. II, we classify
all possible flavor states of three baryons in flavor SU(3)
symmetry. In Sec. III, we introduce the Jacobi coordinate
for tribaryon configuration and represent the explicit form
of relative kinetic energy by taking the Gaussian form for
the spatial part of the total wave function of a tribaryon. In
Sec. IV, we represent the formula for the intrinsic three-body
force in terms of a tribaryon configuration. In Sec. V, we show
the results for the transformation coefficients between the trib-
aryon configurations and their thee-baryon basis. Using these
coefficients, we calculate the intrinsic three-body interaction
energy. Finally, Sec. VI is devoted to summary and concluding
remarks.

II. FLAVOR STATES OF THREE BARYONS

In flavor SU(3) symmetric limit, the possible flavor states
of the dibaryon which can be constructed from two octet or
decuplet baryons are as follows:

8 ⊗ 8 = 1 ⊕ 8(m=2) ⊕ 10 ⊕ 10 ⊕ 27,

8 ⊗ 10 = 8 ⊕ 10 ⊕ 27 ⊕ 35, (1)

10 ⊗ 10 = 10 ⊕ 27 ⊕ 28 ⊕ 35,

where m is the multiplicity. Similarly, we can consider the
three-baryon interaction in terms of a compact tribaryon con-
figuration and represent the possible flavor states as follows:

8 ⊗ 8 ⊗ 8 = 1(m=2) ⊕ 8(m=8) ⊕ 10(m=4) ⊕ 10(m=4)

⊕ 27(m=6) ⊕ 35(m=2) ⊕ 35(m=2) ⊕ 64,

8 ⊗ 8 ⊗ 10 = 1 ⊕ 8(m=4) + 10(m=4) ⊕ 10(m=2) ⊕ 27(m=5)

⊕ 28 + 35(m=4) ⊕ 35 ⊕ 64(m=2) ⊕ 81,

8 ⊗ 10 ⊗ 10 = 8(m=2) ⊕ 10(m=2) ⊕ 10(m=2) ⊕ 27(m=4)

⊕ 28(m=2) ⊕ 35(m=4) ⊕ 35(m=2) ⊕ 64(m=2)

⊕ 80 ⊕ 81(m=2),

10 ⊗ 10 ⊗ 10 = 1 ⊕ 8(m=2) ⊕ 10 ⊕ 10 ⊕ 27(m=3) ⊕ 28

⊕ 35(m=2) ⊕ 35(m=2) ⊕ 55 ⊕ 64(m=4)

⊕ 80(m=2) ⊕ 81(m=3). (2)

In our previous work [17], we classified the possible flavor
and spin quantum numbers of the tribaryon states assuming
the quark orbitals to be totally symmetric and calculated their
static interaction energy using color-spin interaction in both
flavor SU(3) symmetric and symmetry-breaking cases. When
the spatial part of the wave function is symmetric, there are
in total 15 possible flavor and spin states, all of which can be
shown to be highly repulsive except for the (F, S) = (1, 9/2)
state. However, the repulsion in a compact tribaryon configu-
ration can also come from the sum of two-baryon interactions
within the compact configurations. Therefore, to isolate the
intrinsic three-baryon interaction, one needs to subtract the
contributions from two-nucleon interactions in the tribaryon
configuration. In the following sections, we will first introduce
the Jacobi coordinates and then present our method to define
and isolate the intrinsic three-baryon interaction.

III. JACOBI COORDINATE FOR A NINE-QUARK SYSTEM
IN THE THREE-BARYON CONFIGURATION

We can represent the Jacobi coordinate for tribaryon in
a three-baryon configuration in the flavor SU(3) symmetric
limit as follows:

x1 = 1√
2

(r1 − r2), x2 = 1√
6

(r1 + r2 − 2r3),

x3 = 1√
2

(r4 − r5), x4 = 1√
6

(r4 + r5 − 2r6),

x5 = 1√
2

(r7 − r8), x6 = 1√
6

(r7 + r8 − 2r9),

x7 = 1√
6

(r1 + r2 + r3 − r4 − r5 − r6),

x8 = 1

3
√

2
(r1 + r2 + r3 + r4 + r5 + r6 − 2r7 − 2r8 − 2r9).

Here x1–x6 describe the three sets of two coordinates for three
baryons, whereas x7 and x8 represent the relative coordinates
among the three baryons.

Additionally, we can choose the following Gaussian func-
tion as a totally symmetric spatial wave function:

|R〉 = 1√N e− ∑8
i=1 ax2

i , (3)

where N is the normalization factor and a the variational
parameter. Then, the relative baryon kinetic terms in the
tribaryon associated to x7 and x8 are as follows:

Krel,x7 = Krel,x8 = 3a

2mq
, (4)

where mq is the constituent quark mass.
The starting nonrelativistic Hamiltonian for quarks from

which we can also obtain the relative kinetic terms are given
as follows:

H =
N∑

i=1

(
mi + p2

i

2mi

)
+

N∑
i< j

(
V CC

i j + V CS
i j

)
, (5)
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FIG. 1. Tribaryon configuration. T, D, B represent tribaryon,
dibaryon, and baryon, respectively.

where N is the total number of quarks. The two-body color-
color and color-spin interaction terms can be expressed as
matrix elements times a potential function that depends on the
relative distance between the two quarks [24]:

V CC
i j = λc

i λ
c
j f (ri j ), (6)

V CS
i j = λc

i λ
c
jσi · σ jg(ri j ). (7)

Here, λi, σi are respectively the color and spin matrix of quark
i, whereas f , g are potential functions.

The masses of the baryon MB, dibaryon MD, and tribaryon
MT can be calculated using this Hamiltonian with the trial
wave function in Eq. (3).

IV. INTRINSIC THREE-BODY FORCE

We can represent the two-body interaction as follows [20]:

V2,i = MDi − MBi,1 − MBi,2 − Krel,Di , (8)

where MDi is the mass of dibaryon i, and MBi,1 and MBi,2

are respectively the masses of baryon 1 and 2 in Di. In the
example we have in Fig. 1, B1,1 and B1,2 correspond to B2

and B3. Krel,Di is relative kinetic energy between two baryons
within the dibaryon i.

We can decompose the mass of a tribaryon into three two-
body interactions, intrinsic three-body interaction, the sum
of three baryon masses and the additional kinetic terms as
follows:

MT =
3∑

i=1

V2,i + V3 +
3∑

i=1

MBi + Krel,x7 + Krel,x8 , (9)

where T and B represent tribaryon and baryon, respectively.
Then, we can represent the intrinsic three-body interaction as
follows:

V3 = MT −
3∑

i=1

V2,i −
3∑

i=1

MBi − Krel,x7 − Krel,x8

= MT −
3∑

i=1

MDi +
3∑

i=1

MBi +
3∑

i=1

Krel,Di − Krel,x7 − Krel,x8 .

(10)

In the following, we will take the flavor SU(3) limit
and further take the interquark distances inside the baryon,
dibaryon, and tribaryon to be the same. In a previous work
[20], we have found that by taking such a limit one is able
to reproduce the lattice result for baryon-baryon potential at
short distance in the SU(3) symmetric limit and as well as
the lattice result at almost physical quark mass, which is
not so different from the SU(3) symmetric limit. In such a
limit, the sum of two-body color-color interaction within a
dibaryon configuration will cancel those from the two thresh-
old baryons, while the effects from the color-spin interactions
remain. Therefore, one can conclude that the Pauli principle,
taken into account by properly constructing the color-spin-
flavor wave function, together with the color-spin interac-
tion, provide the mechanism for short-distance baryon-baryon
interaction.

For kinetic terms, there are in total eight terms in a trib-
aryon, five terms in a dibaryon, and two terms in a baryon,
respectively. Because all kinetic terms are the same in flavor
SU(3) symmetric limit, these terms cancel to each other in
Eq. (10) as long as the quarks inside either the baryon,
dibaryon or tribaryon occupy the same spatial size. Together
with the previous argument on color-color interaction, one
finds that only the color-spin interaction from the hadrons are
relevant in the second equation in Eq. (10).

Therefore, from now on, we will use the following formula
for the intrinsic three-nucleon interaction, where we neglected
the additional kinetic terms and use only the color-spin part of
the respective hadron masses:

V3 = MT −
3∑

i=1

MDi +
3∑

i=1

MBi . (11)

Here, MT,D,B’s contain only the contribution from the color-
spin matrix element in Eq. (5) where the magnitude of the
spatially integrated part of g in Eq. (7) will be common for all
quark pairs in the tribaryon, dibaryon, and baryon.

V. TRANSFORMATION COEFFICIENTS

As we can see in Eq. (1), all flavor states of the dibaryon
except for the flavor singlet state contain two channels in
terms of baryon-baryon flavor configuration. For example, the
flavor octet dibaryon, contains both the 8 ⊗ 8 and 8 ⊗ 10. We
can determine the fractions of different channels in a dibaryon
configuration using transformation coefficients [22,23]. In Ta-
ble I, we represent the transformation coefficient T2(D, B1 ⊗
B2) for the dibaryon in terms of normalized probability of
baryon-baryon flavor configuration excluding the hidden color
state.

In a similar way, we can calculate the transformation
coefficients for tribaryon decomposing into a baryon and a
dibaryon, where the results for the normalized probability
T3(T, B ⊗ D) are given in Table II. The transformation co-
efficients can be calculated using a baryon and a dibaryon
basis. Using Young-Yamanouchi basis of S9 symmetric group
[25], we can construct the outer product state of a baryon
and a dibaryon to satisfy certain flavor and spin symmetric
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TABLE I. Transformation coefficients T2(D, B1 ⊗ B2) for
dibaryon. These coefficients show the ratio among different
baryon ⊗ baryon channels. The first row and column represents the
corresponding baryon ⊗ baryon and dibaryon channels, respectively.
Empty boxes represent Pauli forbidden states.

B1 ⊗ B2

D(F, S) 8 ⊗ 8 8 ⊗ 10 10 ⊗ 10

(1,0) 1
(8,1) 4

9
5
9

(8,2) 1
(10,1) 1

9
8
9

(10,1) 5
9

4
9

(10,3) 1
(27,0) 5

9
4
9

(27,2) 4
9

5
9

(28,0) 1
(35,1) 4

9
5
9

property. Then, we can calculate the transformation coeffi-
cients T3(T, B ⊗ D) as follows.

T3(T, B ⊗ D) = 〈�tribaryon|�baryon ⊗ �dibaryon〉2. (12)

Using these coefficients, we can transform the expression for
the intrinsic three-body interaction strength given in Eq. (11)
to the corresponding three-body interaction strength in a

specific three-baryon channel as follows:

V (B1⊗B2⊗B3 )k
3

= MT − 3
n∑

j=1

1

P(T, (B1 ⊗ B2 ⊗ B3)k )
T3(T, B1 ⊗ D j )

× T2(D j, B2 ⊗ B3)MD, j +
3∑

i=1

MBi . (13)

Here, the subscript k denotes the possible baryon flavor
combinations contributing to a given flavor spin state in the
tribaryon configuration given in Table III. Additionally, j
corresponds to a possible dibaryon state in a corresponding
tribaryon configuration, T2(D, B1 ⊗ B2) and T3(T, B ⊗ D) are
transformation coefficients of dibaryon and tribaryon given in
Tables I and II, and P(T, (B1 ⊗ B2 ⊗ B3)k ) is the probability
of three-baryon channels for each tribaryon configuration
given in Table III, which can be obtained by combining
Tables I and II. Additionally, since the color-spin-flavor wave
function of a tribaryon is totally antisymmetric, the contribu-
tions coming from the three possible dibaryons are the same,
leading to the factor 3 in the second term in Eq. (13) instead
of the summation for dibaryons in Eq. (11).

Let us now calculate the intrinsic three-nucleon force
based on Eq. (13). We first consider 8 ⊗ 8 ⊗ 8 interaction
contributing to the flavor spin state (F, S) = (8, 1

2 ). Since
there are five possible dibaryon ⊗ baryon states containing
8 ⊗ 8 ⊗ 8 in (F, S) = (8, 1

2 ) tribaryon, which are (8, 1
2 ) ⊗

TABLE II. Transformation coefficients T3(T, B ⊗ D) for tribaryon. These coefficients show the ratio among different baryon ⊗ dibaryon
channels. The first row and column represent the corresponding tribaryon and baryon ⊗ dibaryon channels, respectively.

T(F, S)

B(F, S) ⊗ D(F, S) (1, 3
2 ) (1, 5

2 ) (1, 9
2 ) (8, 1

2 ) (8, 3
2 ) (8, 5

2 ) (8, 7
2 ) (10, 3

2 ) (10, 3
2 ) (27, 1

2 ) (27, 3
2 ) (27, 5

2 ) (35, 1
2 ) (35, 1

2 ) (64, 3
2 )

(8, 1
2 ) ⊗ (1, 0) 1

16

(8, 1
2 ) ⊗ (8, 1) 7

16
1
6

1
8

1
240

5
48

10
81

7
1296

(8, 1
2 ) ⊗ (8, 2) 7

48
4
9

43
200

7
50

9
80

1
80

21
400

2
675

(8, 1
2 ) ⊗ (10, 1) 5

24
1
8

1
30

5
162

7
81

1
30

(8, 1
2 ) ⊗ (10, 1) 1

24
1

40
1
6

1
162

7
405

1
6

(8, 1
2 ) ⊗ (10, 3) 1

90
1
6

14
135

(8, 1
2 ) ⊗ (27, 0) 5

48
1
9

1
150

1
6

(8, 1
2 ) ⊗ (27, 2) 1

100
21

100
1

30
2
15

31
225

26
225

1
12

(8, 1
2 ) ⊗ (28, 0) 4

25

(8, 1
2 ) ⊗ (35, 1) 7

30
14
81

5
81

2
15

1
12

(10, 3
2 ) ⊗ (1, 0) 1

40

(10, 3
2 ) ⊗ (8, 1) 5

48
1

40
7

80
1
6

5
81

7
405

4
135

1
15

(10, 3
2 ) ⊗ (8, 2) 1

80
1

600
361

3600
2
15

1
10

1
15

7
75

28
675

1
5

(10, 3
2 ) ⊗ (10, 1) 1

6
8
81

7
162

2
27

2
15

(10, 3
2 ) ⊗ (10, 1) 7

20
2
5

1
6

9
100

7
50

7
81

529
8100

7
675

1
30

(10, 3
2 ) ⊗ (10, 3) 1

15
7
45 1 7

75
16
225

1
4

7
75

98
675

7
40

(10, 3
2 ) ⊗ (27, 0) 1

4
7

120
1

12
1
9

1
30

(10, 3
2 ) ⊗ (27, 2) 2

15
1
25

6
25

9
20

7
30

1
3

7
45

4
225

49
225

2
15

1
3

5
24

(10, 3
2 ) ⊗ (28, 0) 7

40

(10, 3
2 ) ⊗ (35, 1) 7

81
16
81

7
27

2
15

1
3

5
24

055201-4



INTRINSIC THREE-BODY NUCLEAR INTERACTION FROM … PHYSICAL REVIEW C 100, 055201 (2019)

TABLE III. Probability P(T, (B1 ⊗ B2 ⊗ B3)k ) of three-baryon
channels for each tribaryon configurations. The first column repre-
sents tribaryon configurations.

(B1 ⊗ B2 ⊗ B3)k

T(F, S) k = 1 k = 2 k = 3 k = 4
8 ⊗ 8 ⊗ 8 8 ⊗ 8 ⊗ 10 8 ⊗ 10 ⊗ 10 10 ⊗ 10 ⊗ 10

(1, 3
2 ) 7

36
7

12 0 2
9

(1, 5
2 ) 0 2

3 0 1
3

(1, 9
2 ) 0 0 0 1

(8, 1
2 ) 13

54
5

12
7
36

4
27

(8, 3
2 ) 1

12
3
5

1
20

4
15

(8, 5
2 ) 0 7

20
23
60

4
15

(8, 7
2 ) 0 0 1

2
1
2

(10, 3
2 ) 1

180
71

180
4
9

7
45

(10, 3
2 ) 5

36
7
36

4
9

2
9

(27, 1
2 ) 10

81
7
27

4
9

14
81

(27, 3
2 ) 7

324
179
540

16
45

118
405

(27, 5
2 ) 0 11

135
68
135

56
135

(35, 1
2 ) 1

135
2
15

32
45

4
27

(35, 1
2 ) 5

27 0 4
9

10
27

(64, 3
2 ) 0 1

9
5
18

11
18

(1, 0), (8, 1
2 ) ⊗ (8, 1), (8, 1

2 ) ⊗ (10, 1), (8, 1
2 ) ⊗ (10, 1), and

(8, 1
2 ) ⊗ (27, 0), we can determine each contributions using

transformations coefficients and probabilities in Tables I, II,
and III, which are 27

104 : 4
13 : 5

52 : 5
52 : 25

104 . Using the formula
in Eq. (13) and the matrix elements of color-spin interaction
which are represented in Appendix A, we can then calculate
the intrinsic three-body interaction strength given as follows:

V 8⊗8⊗8
3

(
F = 8, S = 1

2

)
= {

4 − 3
[

27
104 (−24) + 4

13

(− 28
3

) + 5
52

(
8
3

) + 5
52

(
8
3

)
+ 25

104 (8)
] + (−8 − 8 − 8)

}
Ig

= 0, (14)

where Ig is the expectation value for the spatial part of the
color-spin interaction, which are common to all states.

In a similar way, we can show that the intrinsic three-body
interaction strength vanishes for all possible flavor and spin
quantum numbers for specific three-baryon channel.

Additionally, we can also consider the intrinsic three-body
interaction strength including all possible three-baryon chan-
nels in tribaryon configurations with given quantum number.
In order to calculate this, we need to determine the ratio
among possible three-baryon channels for each tribaryon
state. We represent the ratios in Table III, which can be
obtained using Tables I and II. Then, the formula for three-
body interaction is transformed as follows:

V3 =
4∑

k=1

P(T, (B1 ⊗ B2 ⊗ B3)k )V (B1⊗B2⊗B3 )k
3

= MT − 3
n∑

j=1

T3(T, B j1 ⊗ D j )T2(D j, B j2 ⊗ B j3 )MD, j

+
4∑

k=1

P(T, (B1 ⊗ B2 ⊗ B3)k )
3∑

i=1

MBi , (15)

where (B1 ⊗ B2 ⊗ B3)k denote the possible three-baryon
channels representing the configurations from 8 ⊗ 8 ⊗ 8 to
10 ⊗ 10 ⊗ 10 through the different value of the k index. Using
this formula, we can also verify that the intrinsic three-body
interaction for all tribaryon configurations are zero.

One can show that the intrinsic three-nucleon interaction
also vanishes for flavor-spin type of two-quark interaction
[26]. For flavor-spin interaction, we can use the following
formula in the flavor SU(3) symmetric limit:

−
N∑

i< j

λF
i λF

j σi · σ j

= N (N − 10) + 4

3
S(S + 1) + 2CF + 4CC, (16)

where CF (CC) is the first kind of Casimir operator of flavor
(color) SU(3) [27]. We represent the expectation value of this
flavor-spin factor for dibaryons and tribaryons in Appendix A.
Using the same transformation coefficients, we can calculate
the intrinsic three-body force for flavor-spin interaction. Sim-
ilar to the color-spin interaction case, we find that the intrinsic
three-body interaction vanishes for all quantum numbers.

VI. CONCLUSION

In this work, by studying the compact tribaryon configu-
rations in flavor SU(3) symmetric limit and subtracting out
the contributions from the two-baryon interactions, we found
that the intrinsic three-baryon interaction at short distance
vanishes for all quantum numbers. Because we are using a
constituent quark model based on two-body quark interac-
tions, when we calculate the mass of a tribaryon, we auto-
matically include quark-based baryon-baryon interaction and
interquark interactions within a baryon. The quark interaction
in the tribaryon configuration cancels those from the dibaryon
and baryon configuration when extracting the intrinsic three-
baryon interaction based on Eq. (11). It is interesting to note
that the number of quark interaction also cancels in Eq. (11).
There are total (9

2) quark-quark interaction terms in a tribaryon
configuration. When calculating the intrinsic three-body inter-
action, we consider three possible dibaryon configurations in
a tribaryon, so there are 3 × (6

2) two-quark interactions, while

there are three baryons, contributing 3 × (3
2) terms. Therefore,

considering Eq. (11), one notes that the number of two-body
terms cancel in the intrinsic three-body interaction because
36 − 45 + 9 = 0.

So far, our result was based on using two-body quark
interactions. On the other hand, we can consider intrinsic
three-body interaction using intrinsic three-quark interactions
such as the f -type or d-type [17] interaction, which cannot be
decomposed into two-quark interactions. However, summing
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TABLE IV. Matrix elements of color-spin and flavor-spin inter-
action of dibaryon for possible flavor and spin states.

(F, S) (1,0) (27,0) (28,0) (8,1) (10,1)

− ∑
i< j λ

c
i λ

c
jσi · σ j −24 8 48 − 28

3
8
3

− ∑
i< j λ

F
i λF

j σi · σ j −24 −8 12 − 46
3 − 28

3

(F,S) (10,1) (35,1) (8,2) (27,2) (10,3)

−∑
i< j λ

c
i λ

c
jσi · σ j

8
3

80
3 −4 16 16

− ∑
i< j λ

F
i λF

j σi · σ j − 28
3

8
3 −10 0 4

over all three quark interaction within a color singlet state
composed of N quarks, one finds the following formula:

∑
i �= j �=k

f abcλa
i λ

b
jλ

c
k = 0,

∑
i �= j �=k

dabcλa
i λ

b
jλ

c
k = −8NC1(q)

(
2C1(q) − 13

3

)
, (17)

where f , d are respectively the antisymmetric and symmetric
constants for SU(3), and C1(q) is the first Casimir operator of
each quarks. As we can see in Eq.(17), the f -type interaction
always sums up to zero while the d type of interaction
shows linear dependence on the total number of quarks, which
suggests that it cancels in Eq. (11) so that it does not affect the
intrinsic three-baryon interaction. Therefore, we can conclude
that the short distance part of the intrinsic three-body interac-
tion vanishes in the flavor SU(3) symmetric limit. In a realistic
flavor SU(3) breaking case, the cancellation will not be exact.
Hence, we need to look at the intrinsic three-body force with
realistic strange quark mass taking into account the spatial
dependence that will be different for all quark pairs. However,
it is known that the short distance part of the baryon-baryon

TABLE V. Matrix elements of color-spin and flavor-spin interac-
tion of tribaryon for possible flavor and spin states.

(F, S) (8, 1
2 ) (27, 1

2 ) (35, 1
2 ) (35, 1

2 ) (1, 3
2 )

−∑
i< j λ

c
i λ

c
jσi · σ j 4 24 40 40 −4

−∑
i< j λ

F
i λF

j σi · σ j −2 8 16 16 −4

(F,S) (8, 3
2 ) (10, 3

2 ) (10, 3
2 ) (27, 3

2 ) (64, 3
2 )

−∑
i< j λ

c
i λ

c
jσi · σ j 8 20 20 28 56

−∑
i< j λ

F
i λF

j σi · σ j 2 8 8 12 26

(F,S) (1, 5
2 ) (8, 5

2 ) (27, 5
2 ) (8, 7

2 ) (1, 9
2 )

−∑
i< j λ

c
i λ

c
jσi · σ j

8
3

44
3

104
3 24 24

−∑
i< j λ

F
i λF

j σi · σ j
8
3

26
3

56
3 18 24

potential calculated from lattice calculation for the flavor
SU(3) breaking case is similar to those obtained in the flavor
SU(3) symmetric limit [20]. Hence, while a realistic calcula-
tion should be a work in the future, we believe that the domi-
nant contribution cancels such that the intrinsic three-nucleon
interaction will be small also in the flavor SU(3) broken case.
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APPENDIX: MATRIX ELEMENTS OF COLOR-SPIN
AND FLAVOR-SPIN INTERACTION

Here, we summarize the matrix elements of color-spin and
flavor-spin interaction for dibaryon [28] and tribaryon [17]
configurations in Tables IV and V.
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