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pT -dependent particle number fluctuations from principal-component analyses in hydrodynamic
simulations of heavy-ion collisions
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We carry out a principal component analysis of fluctuations in a hydrodynamic simulation of heavy-ion
collisions, and compare with experimental data from the CMS Collaboration. The principal components of
anisotropic flow reproduce the trends seen in data, but multiplicity fluctuations show a difference in transverse
momentum dependence. We construct an analytical toy model and verify that hydrodynamic simulations agree
with its predictions. The difference in the momentum trend is likely due to larger fluctuations in transverse
momentum of hydrodynamic models than seen experimentally.
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I. INTRODUCTION

The expansion of the matter formed in nucleus-nucleus
collisions at relativistic energies produces a collective trans-
verse flow. This flow is the response to the density gradients
in the initial fireball. It is azimuthally asymmetric because
the initial fireball is anisotropic and contains hot spots. These
inhomogeneities are of interest: they reflect the poorly known
mechanism of energy deposition, via the strong interaction,
when two nuclei collide, and their influence on the final flow
depends on fluid properties, which are also poorly known
(e.g., shear and bulk viscosities). A lot of work has been done
to relate initial inhomogeneities and final flow of produced
particles. In particular the mapping between initial conditions
and anisotropic flow has been studied globally and event by
event [1–6]. To get more detailed information on fluctuations
in the initial state, a useful observable is the factorization
breaking ratio [7–13], which encodes the correlations of flow
harmonics at different transverse momenta or pseudorapidi-
ties. More recently a new more precise tool was proposed,
the principal component analysis (PCA) for event-by-event
fluctuations [14–16] and first experimental results for such an
analysis have been presented by the CMS Collaboration [17].
The aim of this paper is to present a hydrodynamical study
of these observables and point out an interesting difference
between data and some hydrodynamic simulations for the
n = 0 leading and subleading components, corresponding to
multiplicity fluctuations. These components are sensitive to
physics not explored by anisotropic flow and can put new
constraints on initial conditions models, in particular on the
transverse size of the fireball and its fluctuations.

II. PRINCIPAL COMPONENT ANALYSIS

Principal component analysis is a common technique for
finding patterns in data of high dimension. One tries to
find new variables that incorporate as many as possible of

the variations. This amounts to diagonalizing the covariance
matrix (e.g., Ref. [18]). It was first suggested to use it to study
event-by-event fluctuations in relativistic nuclear collisions in
Ref. [14]. Consider a set of collisions or events. For each
event, the single-particle distribution can be expanded as

dN

d �p = 1

2π

+∞∑
n=−∞

N (pT )Vn(pT )e−inφ (1)

=
+∞∑

n=−∞
Vn(pT )e−inφ, (2)

where d �p = dyd pT dφ, φ is the azimuthal angle of the particle
momentum. Vn(pT ) is a Fourier coefficient (without the usual
normalization by multiplicity), which is complex for n �= 0.
Its magnitude and orientation vary for each event.

For each transverse momentum bin, the variance can
be computed 〈|Vn(pa

T )|2〉 − |〈Vn(pa
T )〉|2 (the average is per-

formed over events) but brings no information about possible
relationship between different bins. To investigate how differ-
ent bins are correlated, one constructs the covariance matrix:
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. (3)

The terms 〈Vn(pa
T )〉 are zero by azimuthal symmetry, except

for n = 0.
This covariance matrix is real, symmetric, positive

semidefinite. It can be diagonalized and rewritten in term of
its real orthogonal eigenvectors V (α)

n (pT )
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T , pb
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) =
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α

V (α)
n

(
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T

)V (α)
n

(
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T

)
, (4)

from which one can express the flow vector in a given event
as

Vn(pT ) =
∑

α

ξ (α)
n V (α)

n (pT ), (5)
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FIG. 1. First two scaled principal components from the ideal fluid calculation in two centrality windows corresponding to central
(left) and midcentral (right) collisions. Top: elliptic flow (n = 2). Bottom: triangular flow (n = 3). Experimental data are from the CMS
Collaboration [17] (n = 2, 3). Symbols corresponding to experiment and theory have been slightly shifted left and right for the sake of
readability.

where ξ (α)
n are coefficients that vary from event to event

(specifically, uncorrelated, random complex numbers with
zero mean and unit variance). Terms in the right-hand side
of Eq. (4) are ordered according to the magnitude of the
eigenvalues. Even by truncating the sum to the first two or
three terms, one typically obtains a very good approximation
to the left-hand side. The largest component V (1)

n (pT ) is called
the leading mode, V (2)

n (pT ) the subleading mode, etc. For
comparison with standard flow, it is useful to introduce the
following scaled principal components

v(α)
n (pT ) = V (α)

n (pT )

〈V0(pT )〉 . (6)

Once the dominant terms in Eq. (4) are determined (i.e.,
patterns are found in our high-dimension data), the physical
meaning of these terms must be investigated. This was done
in Refs. [14–16,19,20] and is discussed in Secs. III (n = 2, 3)
and IV (n = 0).

III. RESULTS FOR ANISOTROPIC FLOW

In this section and the next, we present results obtained
from a hydrodynamic simulation for a perfect fluid expand-
ing in 3 + 1 dimensions starting from NeXus initial condi-
tions [21]. The code used, NEXSPHERIO, has been shown to
lead to a consistent description of many flow data at top RHIC
energies [22–29].

We also have some data accumulated for two centrality
windows (0–5 and 20–30%, where centrality is defined
according to the number of participant nucleons) at√

s = 2.76 TeV and their compatibility with flow observables
more subtly related to fluctuations (scaled harmonic flow

distributions, factorization breaking ratio) has been
tested [30]. This code is therefore an interesting tool for
a first investigation of the PCA results obtained recently by
CMS at the LHC [17].

For n = 2–3, we show the first two scaled principal com-
ponents and comparison with CMS data in Fig. 1. Our cuts
are |η| < 2.5 (equivalent to CMS) but pT > 0.5 GeV, slightly
higher than CMS pT > 0.3 GeV. We used similar pT bins as
experimentally.

The leading component is straightforward to inter-
pret [14–16]. If it dominates, Eq. (4) yields Vn�(pa

T , pb
T ) ≈

V (1)
n (pa

T )V (1)
n (pb

T ), i.e., there is flow factorization. The
event flow defined by Eq. (5) reduces to Vn(pT ) ≈
ξ (1)

n (pT )V (1)
n (pT ), i.e., the leading component corresponds to

usual anisotropic flow. Concentrating on the region from 0–
2 GeV, we see that our hydrodynamic simulation slightly
overestimates the leading components. Inclusion of viscosity
would damp them and improve agreement with data, as ex-
plicitly shown for the pT -integrated n = 3 leading component
in Ref. [15].

Higher-order principal components encode the information
about the momentum dependence of flow fluctuations. They
are in particular responsible for the breaking of factorization
of two-particle correlations [7]. This effect is often quantified
using the factorization breaking ratio rn [10], which is a
function of two variables pa

T and pb
T . Higher-order principal

components express the same information in a simpler way,
because they are functions of a single variable pa

T . We only
show the subleading component. In the range 0–2 GeV, our
simulations capture the main features of the data. The sub-
leading component changes sign as a function of pT , which
is imposed by orthogonality with the leading mode. The fact
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FIG. 2. First two scaled principal components for n = 0 (multiplicity fluctuations). The top panels display a comparison between our ideal
fluid calculation, CMS data [17] and the approximate result from the toy model, Eq. (15) (lines). The bottom panels display our predictions and
the toy model for Au+Au collisions at 200 GeV. As in Fig. 1, the left panels correspond to central collisions, and the right panels to midcentral
collisions.

that our pT cut is slightly higher than in data shifts this
crossing point to the right. Note that inclusion of viscosity
is not expected to change significantly the magnitude of the
subleading mode, as was shown for n = 3 in Ref. [15].

IV. RESULTS FOR MULTIPLICITIES

We now discuss multiplicity fluctuations, corresponding
to n = 0 principal components. The comparison between our
results and CMS data is displayed in the top panels of Fig. 2.
There is rough overall agreement, but not as good as in
Fig. 1. The leading component is rather independent of pT in
experiment, while it increases with pT in our hydrodynamic
calculation. The increase is less strong at RHIC energies
(bottom panel of Fig. 2). The increase at LHC energies is
not specific to our implementation, as it has been seen by
other groups [16,31]. Such qualitative disagreement between
hydrodynamics and experimental data is rare, therefore, we
investigate its origin in detail.1

In order to understand the principal components for n =
0, we introduce a toy model where the fluctuation of the
multiplicity in a pT bin originates from two sources: (i)
fluctuations of the total multiplicity N . (ii) fluctuations of
the mean transverse momentum p̄T . We assume that the pT

spectrum is exponential:

1

2π

dN

dyd pT
= V0(pT ) = 2pT N

π p̄2
T

e− 2pT
p̄T , (7)

1Note that the transport model AMPT without hydrodynamics
predicts a flat leading component, as seen in data.

where N is the total multiplicity per unit rapidity and p̄T is
the mean transverse momentum in one event. Next, we allow
N and p̄T in a given event to deviate from the event-averaged
total multiplicity 〈N〉, and the event-averaged mean transverse
momentum 〈p̄T 〉 in a centrality bin, respectively:

N = 〈N〉 + δN, (8)

p̄T = 〈p̄T 〉 + δ p̄T . (9)

Expanding Eq. (7) to first order in δN and δ p̄T , one obtains:

δV0(pT )

〈V0(pT )〉 = δN

〈N〉 − 2
δ p̄T

〈p̄T 〉 + 2
pT δ p̄T

〈p̄T 〉2
. (10)

The covariance (3) is then given by

V0�

(
pa

T , pb
T

) ≡ 〈
δV0

(
pa

T

)
δV0

(
pb

T

)〉
, (11)

where angular brackets denote an average over events in a
centrality bin. Inserting Eq. (10) into Eq. (11), one obtains:

V0�

(
pa

T , pb
T

)
〈V0

(
pa

T

)〉〈V0
(
pb

T

)〉 = σ 2
N

〈N〉2
+ 4

σ 2
pT

〈p̄T 〉2
− 4

〈δNδ p̄T 〉
〈N〉〈p̄T 〉

+ 2

(
〈δNδ p̄T 〉
〈N〉〈p̄T 〉 − 2

σ 2
pT

〈p̄T 〉2

)
pa

T + pb
T

〈p̄T 〉

+ 4
σ 2

pT

〈p̄T 〉2

pa
T pb

T

〈p̄T 〉2
, (12)

where σ 2
N ≡ 〈δN2〉 and σ 2

pT
≡ 〈δ p̄2

T 〉 denote the variance of
the multiplicity and mean pT , respectively. Inspection of
the dependence on pa

T and pb
T shows that the scaled prin-

cipal components defined by Eqs. (4) and (6) can only be
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TABLE I. Values of the variances and covariance of N and p̄T at
LHC and RHIC in our hydrodynamical calculation using NeXSPhe-
RIO. The number in italics are approximate values extracted from
CMS data through a rough fit of the principal components v(1)

0 (pT )
and v(2)

0 (pT ), shown in the top panels of Fig. 2, using Eq. (15).

Energy Centrality σN
〈N〉

σpT
〈 p̄T 〉

√
〈δNδ p̄T 〉
〈N〉〈 p̄T 〉

2.76 TeV 0–5 % hydro 0.12 0.026 0.041
CMS 0.09 0.010 0

20–30 % hydro 0.16 0.041 0.070
CMS 0.13 0.019 0.020

200 GeV 0–10 % hydro 0.11 0.017 0.017
20–30 % hydro 0.12 0.025 0.031

of the form

v
(α)
0 (pT ) = a(α) + b(α) pT

〈p̄T 〉 , (13)

i.e., they are linear in pT . Since they span a two-dimensional
space, this in turn implies that there are at most two prin-
cipal components (remember that principal components are
mutually orthogonal). The full analytic expressions of these
principal components are cumbersome. Therefore, we make
further simplifying assumptions, by identifying the leading
terms in Eq. (12).

Table I gives the values of the relative fluctuations of N
and p̄T in our hydrodynamic calculation, as well as their
covariance. The relative fluctuations of N are larger by an
order of magnitude, which is explained by the large width of
the centrality bin. In the limit where σpT and 〈δNδ p̄T 〉 can be
neglected, only the first term remains in the right-hand side
of Eq. (12). The covariance matrix trivially factorizes, i.e.,
there is only one principal component. The scaled principal
component, defined by Eq. (6), is

v
(1)
0 (pT ) � σN

〈N〉 . (14)

It is independent of pT . Thus, the fact that our hydrodynamic
calculation reproduces the magnitude of v

(1)
0 (pT ) at low pT

(i.e., for the bulk of produced particles) simply means that
it has the correct multiplicity fluctuations. These are largely
dominated by the width of the centrality bin used for the
analysis, or, equivalently, by impact parameter fluctuations.

We now consider the more general case where σpT /〈p̄T 〉
and 〈δNδ p̄T 〉/〈N〉〈p̄T 〉 are not zero, but can still be treated as
small quantities. Then, to leading order in these quantities, the
scaled principal components are:

v
(1)
0 (pT ) � σN

〈N〉 +

⎡
⎢⎣−

(
σpT
〈p̄T 〉

)2
+ 2 〈δNδ p̄T 〉

〈N〉〈p̄T 〉(
σN
〈N〉

)
⎤
⎥⎦ pT

〈p̄T 〉 ,

v
(2)
0 (pT ) � −3

2

σpT

〈p̄T 〉
(

1 − 4

3

pT

〈p̄T 〉
)

. (15)

One can check that with these expressions, the decomposi-
tion (4) is satisfied. In terms of the scaled components, this

equation can be written:

V0�

(
pa

T , pb
T

)
〈V0

(
pa

T

)〉〈V0
(
pb

T

)〉 = v
(1)
0

(
pa

T

)
v

(1)
0

(
pb

T

) + v
(2)
0

(
pa

T

)
v

(2)
0

(
pb

T

)
.

(16)

Inserting Eq. (15) into Eq. (16), and expanding to first order
in 〈δNδ p̄T 〉 and σ 2

pT
, one recovers Eq. (12) except for the

second and third terms of the first line, which are subleading
corrections to the first term.

Equation (15) is a refinement of the zeroth-order result,
Eq. (14). A subleading mode v

(2)
0 (pT ) appears, which is

directly proportional to σpT /〈p̄T 〉. The connection between
the subleading mode and pT fluctuations was already made in
Ref. [16]. The change of sign of the subleading mode occurs at
pT = (3/4)〈p̄T 〉, which depends little on centrality. Figure 2
displays a comparison between Eq. (15) and the result from
the full hydrodynamic calculation. Agreement is very good
at RHIC and a little worse at LHC (presumably due to the
different lower pT cuts). We therefore conclude that Eq. (15)
captures the physics of the first two n = 0 modes.

Using CMS data on principal components, shown in Fig. 2,
one can estimate the quantities appearing in the right-hand
side of Eq. (15). The corresponding numbers are reported in
Table I, and should be considered rough figures. As explained
above, the value of σN/〈N〉 is given by the value of v

(1)
0 (pT )

at low pT . The value of 〈pT 〉 is inferred from the value of
pT for which v

(2)
0 (pT ) crosses the horizontal line. This gives

〈pT 〉 ≈ 0.75 GeV, in reasonable agreement with the value
0.81 GeV obtained by direct integration of pT spectra in the
same range (0.3–3 GeV) [32]. The value of σpT /〈p̄T 〉 is then
estimated by fitting v

(2)
0 (pT ) at low pT , and the resulting

values agree with those from a dedicated analysis [33]. The
covariance 〈δNδ p̄T 〉/〈N〉〈p̄T 〉 is finally inferred from the pT

dependence of v
(1)
0 (pT ). While the values of σN/〈N〉 from the

hydrodynamic calculation are in reasonable agreement with
data, values of σpT /〈p̄T 〉 are too large by a factor ≈2, and the
discrepancy is even worse for the covariance. We come back
to this point below.

The motivation for building the toy model was to under-
stand under which condition the leading mode is independent
of pT , or rises with pT . The first line of Eq. (15) shows
that a rise with pT can be ascribed to a positive correlation
between the mean transverse momentum and the multiplicity,
represented by the quantity 〈δNδ p̄T 〉. The fact that this rise is
seen in hydrodynamic calculations, not in data, implies that
hydrodynamic calculations overestimate 〈δNδ p̄T 〉, as illus-
trated by the numbers in Table I (the covariance extracted from
CMS data for central collisions is compatible with 0). This
can be related to the fact that hydrodynamic models yield too
large δ p̄T in general, as pointed out by a study of transverse
momentum fluctuations [34].2 Since transverse momentum
fluctuations in hydrodynamics originate from fluctuations in

2The same study shows that σpT /〈 p̄T 〉 does not depend much on
transport coefficients, which suggests that one would obtain similar
results in viscous hydrodynamics.
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the transverse size of the interaction region [35]3 this in turn
implies that existing models of initial fluctuations tend to
overestimate the size fluctuations.

The conclusion of this study is that a model that predicts
the right multiplicity and pT fluctuations should capture the
first two principal components for n = 0. The reason why our
hydrodynamical model predicts a rise of the leading mode
with pT , which is not seen in data, can be related to the fact
that that σpT is larger in our model than in data. Despite the
fact that our hydrodynamic calculation at 2.76 TeV does not
reproduce CMS data, we expect our predictions for 200 GeV
collisions, shown in the bottom panels of Fig. 2, should cor-
rectly predict the first two modes of multiplicity fluctuations
at RHIC. The reason is that the values of σN/〈N〉 from Table I
are comparable with experimental values from PHENIX [36],
and the values of σpT /〈p̄T 〉 are slightly too large compared to
STAR data [37], but in fair agreement.

V. CONCLUSION

We have compared results from a hydrodynamic simula-
tion using the code NEXSPHERIO with recent experimental data
by CMS, on the principal component analysis. The trends
for the leading and subleading components of elliptic and
triangular flow are in fair agreement with data. In contrast,
for multiplicity fluctuations, we have pointed out a qualitative
disagreement: The leading component increases with pT in
hydrodynamics (here as well as in Refs. [16,31]) while it
is constant in data at LHC energies. We have constructed
a toy model that gives result in good agreement with the
full hydrodynamic calculation. In this toy model, the sub-

3At a given centrality, a smaller size implies a larger density and
temperature, hence a larger mean transverse momentum.

leading component is proportional to the standard deviation
of the mean pT , σpT . The leading component is close to
σN/〈N〉 at low pT , but increases with pT if the fluctuations
of pT are large and correlated with the fluctuations of the
multiplicity.

We have thus related n = 0 results from the principal
component analysis to multiplicity and transverse momen-
tum fluctuations. Fluctuations in N and p̄T have been at-
tracting attention for a long time because they may probe
the QCD phase transition (see, e.g., Ref. [38]), as well as
initial inhomogeneities (see, for example, Refs. [35,39]). The
principal components are sensitive not only to the width of
multiplicity and transverse momentum fluctuations, but also
to their mutual covariance. They open a new window on initial
fluctuations, which can be used to rule out initial condition
models.
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