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Relativistic quantum molecular dynamics with scalar and vector interactions based on the relativistic mean
meson field theory, RQMD.RMF, is developed. It is implemented into the microscopic transport code JAM, which
includes both hadron resonances from the PDG book and string degrees of freedom. The sensitivity of the
directed and of the elliptic proton flow in high energy heavy-ion collisions on the stiffness of the RMF equation
of state (EoS) is examined. These new calculations are compared to high statistics experimental data at mid-
central Au + Au collisions in the beam energy range 2.5 <

√
sNN < 20 GeV. This new RQMD model with the

relativistic mean-field scalar and vector meson interactions does describe consistently, with one RMF parameter
set, the beam energy dependence of both the directed flow and the elliptic flow, from SIS18 to AGS and RHIC
BES-II energies,

√
sNN < 10 GeV. This is interesting, as there are different sensitivities of these different kinds

of flow to the EoS: elliptic flow is most sensitive to the nuclear incompressibility constant, at the moderate beam
energies

√
sNN < 3 GeV, whereas the directed flow is most sensitive to the effective baryon mass at saturation

density at 3 <
√

sNN < 5 GeV. This self-consistent relativistic N-body hadronic transport approach describes
well the experimental flow data up to higher beam energies,

√
sNN < 10 GeV, by a stiff, monotonous EoS.

Matters abruptly change in the next higher energy range,
√

sNN � 10–20 GeV: the directed flow data show a
double change of sign of the slope of v1, inverting twice in this energy range, in sudden contradiction to the
RQMD.RMF calculation for a monotonous, stiff EoS. This surprising oscillating behavior, a double change of
sign of the v1 slope, points to the appearance of a hitherto unknown first-order phase transition in excited QCD
matter at high baryon densities in mid-central Au + Au collisions.

DOI: 10.1103/PhysRevC.100.054902

I. INTRODUCTION

The phase structure of QCD in different regions of the
T -μB phase diagram [1] is of fundamental interest in nuclear
and astrophysics: the structure and the maximum mass of neu-
tron stars and the dynamics of binary neutron star collisions,
as observed in gravitational wave detectors, as well as the
subsequent black hole formation and supernova explosions
depend sensitively on the stiffness of the nuclear equation of
state at high temperature and density [2]. Hence, substantial
effort has been devoted by theorists and experimentalists alike
to measure the equation of state (EoS) in the laboratory
[3–10]. New phases of hot and dense nuclear matter can
be formed in microscopic quantities in high energy heavy-
ion collisions; there, experimental data can reveal the phase
properties by unexpected changes of physical observables
when varying the beam energy (the excitation function), the
system size, and the centrality of the colliding systems.

This search for a conjectured first-order phase transition
and the critical end point at high baryon density QCD matter
is a challenging goal of high energy heavy-ion collision
research [11]. Different species of collective flow are observed
in high energy heavy-ion collisions, which result from a

complex interplay between the initial state geometry, non-
equilibrium effects and viscosity, and the equation of state—
the pressure, which acts as a barometer for the bulk prop-
erties of strongly interacting compressed and highly excited
nuclear matter. Anisotropic flows, such as the directed flow
v1 = 〈cos φ〉 = 〈px/pT 〉 and the elliptic flow v2 = 〈cos 2φ〉 =
〈(p2

x − p2
y )/p2

T 〉, are generated by the pressure already during
the early stages of the collisions. Here φ is the azimuthal angle
with respect to the reaction plane. Distinct flow coefficients
serve as sensitive messengers (barometers) of the EoS [3–10].
Large elliptic flow had been observed experimentally both at
the fixed target accelerators Bevalac, SIS, AGS, and SPS, as
well as at the colliders RHIC and LHC. The measured flow is
in reasonably good agreement with hydrodynamic simulations
[12–18].

The ongoing Beam Energy Scan (BES) program [19,20]
at the BNL-RHIC-STAR and the CERN-SPS-NA49 and -
NA61/SHINE experiments [21] seek to find the conjectured
“point of onset of deconfinement” (CPOD) and the con-
jectured associated critical point (CP). Future experiments,
such as RHIC-BES-II [22], STAR-FXT, CBM and HADES
at FAIR [23,24], BM@N and MPD at NICA [25], HIAF at
Canton, as well as the proposed J-PARC-HI [26] will offer
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excellent high statistics data which will allow to explore the
highest density baryonic matter sector of QCD, and reveal
the phase structure of QCD at high baryochemical potential
μB ≈ 1 GeV.

Significant progress in modeling heavy-ion collisions at
high baryon density is in order to interpret the wealth of
the new data. Improved ideal and viscous hydrodynamic
theory and transport models have been developed over the
last decade, simulating the dynamics of high energy heavy-
ion collisions [27–31]. To date, all these models have not
been successful in explaining and reproducing the unique
prediction of the strange looking “double change of sign,”
from a positive slope of v1 to a negative slope and back to
a positive slope of v1, for mid-rapidity protons in Pb + Pb
collisions, which should only occur if there is a first-order
phase transition in the dense baryonic matter (see Ref. [10]
and references therein).

These predicted negative proton v1 slopes were observed
with moderate statistics more than a decade ago at

√
sNN =

8.8 and 17.3 GeV by the NA49 Collaboration in fixed target
experiments at the SPS [32]. The heavy-ion beam energy
dependence of the directed flow of all hadrons, baryons, and
mesons was measured recently with much higher statistics and
in smaller steps in the BES, from

√
sNN = 7.7 to 200 GeV,

by the STAR Collaboration at BNL’s RHIC facility. Here,
the predicted drastic double change of sign of the directed
flow was now clearly discovered, with negative mid-rapidity
slopes for both the net proton and the net lambda directed flow
between

√
sNN = 11.5 and 19.5 GeV [33,34], in near central

Au-Au collisions. This signal can easily be distinguished
from the monotonous negative proton v1 flow predicted for
peripheral collisions at high energy

√
sNN > 30 GeV: There,

secondary interactions, which only start after the two nuclei
have passed through each other, cause this geometrical effect,
which does not predict a double change in sign as a function
of energy [35]. All standard microscopic transport models
which do not implement a first-order phase transition fail to
reproduce the negative proton v1 slope with double change of
sign at around

√
sNN = 8.8–19.6 GeV [36,37]. In “ideal fluid”

relativistic hydrodynamics, i.e., without a first-order phase
transition, there is also no change in sign of v1 predicted.
However, if a first-order phase transition is put into the fluid’s
EoS, it generates negative v1 values at the heavy-ion energy
around the “softest point,”

√
sNN ≈ 3–5 GeV. This seems

to be in contradiction to the positive v1 data observed at
the AGS [38,39]. Three-fluid model (3FD) simulations [40]
predict a minimum in the excitation function for the slope of
v1 at

√
sNN ≈ 6 GeV. Hadronic transport model calculations

with strongly attractive mean fields, supposedly simulating the
effect of a first-order phase transition, show antiflow at AGS
energies [41]. Microscopic transport models which take into
account the effects of the softening by the modified collision
term also predict the negative flow at

√
sNN = 3–5 GeV

[42,43]. Hybrid models such as hydro + UrQMD [44] show
no sensitivity of the directed flow on details of the EoS.

Microscopic transport models have been extensively em-
ployed to study the dynamics of nuclear collisions (see
Ref. [45] for the recent comparison of heavy-ion transport
codes). Microscopic transport models such as single-particle

density Boltzmann-Uehling-Uhlenbeck (BUU) [46,47] and
Vlasov-Uehling-Uhlenbeck (VUU) [48] and N-body quantum
molecular dynamics (QMD) models [49] have been widely
used to simulate the space-time dynamics of nuclear colli-
sions. These approaches used non-relativistic Skyrme forces,
where the single-particle potentials are given by baryon den-
sity (ρB) dependent attractive and repulsive terms and momen-
tum dependent terms [50–52]:

Vsk = αρB + βρ
γ
B + C

∫
d3 p′ f (x, p′)

1 + (p − p′)2/�2
. (1)

However, these non-relativistic approaches do not reproduce
the observed beam energy dependencies of either the directed
or the elliptic flow, if a single Skyrme parameter set is used
[9,53–57]; it seems that a hard EoS is required at lower beam
energies

√
sNN < 3 GeV, and a soft EoS is favored at higher

beam energies. It was suggested that this provides evidence
for a softening of the EoS, and even for the onset of the
conjectured first-order phase transition.

A relativistic transport approach, based on the single-
particle density relativistic meson mean-field theory (RMF)
has been developed, called RBUU [52,58], RVUU [59], or
RLV [60]. In these covariant approaches, relativistic me-
son mean fields are implemented instead of non-relativistic
Skyrme potentials. These meson fields interact with the
baryons via scalar and vector meson couplings. This is very
different from the non-relativistic potential approaches. It was
demonstrated that the beam energy dependence of both the
sidewards 〈px〉 and the elliptic flow are reproduced, up to top
AGS energies

√
sNN < 5 GeV, within this RBUU model, only

if the scalar and vector form factors at the vertices cut off the
interaction at high momenta (p > 1 GeV/c) [61]. A similar
relativistic mean-field approach was also implemented into
the framework of the relativistic N-body quantum molecular
dynamics (RQMD) approach (see Ref. [62]) and used for
simulating heavy-ion collisions up to Elab � 2A GeV; here
only a few hadron resonances were included, but the effects of
the density dependence of the coupling constants of the meson
mean fields on the transverse flow were studied.

The N-body RQMD approach with relativistic meson mean
fields and a large number of PDG hadrons and resonances had
not been developed to date. That input is clearly most impor-
tant for describing heavy-ion experiments at higher energy:
at the AGS and SPS, numerous high mass hadrons and res-
onances with additional conserved charges, like strangeness
and charm, are produced in the collisions, and multi-particle
production, efficiently described by string and Hagedorn bag
models, plays an important role.

This paper presents the implementation of the relativistic
meson mean fields into the relativistic Hamiltonian N-body
RQMD code JAM with a wealth of PDG book baryons,
mesons, and hadronic resonances as well as strings included.
This allows to investigate the N-body multi-hadron collision
dynamics, beyond the time evolution of single-particle dis-
tribution functions like the RBUU approach. In this paper,
we specifically examine the beam energy dependence of the
directed and elliptic flow in the beam energy range

√
sNN =

2.5–20 GeV within the RQMD.RMF approach, where the
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scalar and vector interactions are implemented in the micro-
scopic transport code JAM [63].

This paper is organized as follows: Section II describes the
non-linear σ -ω model and its implementation into the RQMD
framework. Section III presents the results for the beam
energy dependence of the directed and the elliptic flows, as
well as the rapidity dependence of the directed flow. The high
sensitivity of the directed flow at forward-backward rapidity
on the relativistic mean-field interactions is emphasized. The
summary is given in Sec. IV.

II. MODEL

Here, relativistic mean-field interactions of the most abun-
dant PDG hadrons are implemented for the first time into
the relativistic N-body propagation protocol of RQMD, as
realized in the transport code JAM [63]. The code is prepared
to simulate nuclear collisions up to

√
sNN ≈ 30 GeV. The

collision term of RQMD-JAM models particle production by
the excitations of hadrons, hadronic resonances, and strings
and their decays, analogously as in the original RQMD code1

and UrQMD models [66,67]. Secondary products are allowed
to re-scatter, which generates collective effects within the
RQMD.RMF approach. Details of the collision term in JAM

can be found in Ref. [63].

A. Relativistic mean field

The relativistic mean-field theory employed here uses σ

and ω meson-baryon interactions. The corresponding equilib-
rium thermodynamics yields the energy density for nuclear
matter:

e =
∫

d3 pE∗ f (p) + 1

2
m2

ωω2 + U (σ ). (2)

Here f (p) is the Fermi-Dirac distribution for the different
baryon species. The second term contains the ω contribution
as the zeroth component of the vector potential ωμ. The spatial
components vanish in uniform, stationary nuclear matter. The
single-particle energy E∗ =

√
m∗2 + p2 contains the single-

particle scalar potential S,

m∗ = m − S = m − gsσ, (3)

through the linear coupling of the σ meson field to the baryon.
This modifies the value of the vacuum nucleon mass m = 938
MeV in the medium. We consider here also Boguta’s non-
linear self-interactions of the scalar field [68],

U (σ ) = m2
σ

2
σ 2 + g2

3
σ 3 + g3

4
σ 4. (4)

1Here the term RQMD is used as the name of the code developed
by Sorge, Stoecker, and Greiner [64,65]. However, the term RQMD
is here also used for the underlying theoretical N-body model, i.e.,
the relativistic extension of the N-body QMD model. Several groups
have developed RQMD codes by using approximations to and based
on the RQMD formalism by Sorge, Stoecker, and Greiner. We use
the term RQMD for the theoretical approach throughout this paper.

TABLE I. Parameters for the relativistic mean-field theory with
non-linear scalar interaction for a binding energy of B = −16 MeV
and for normal nuclear matter density of ρ0 = 0.168 1/fm3. A σ

mass of mσ = 2.79 1/fm and an ω mass of mω = 3.97 1/fm are used.

Type K m∗/m gs gv g2 g3

(MeV) (1/fm)

NS1 230 0.800 8.182 7.721 31.623 −3.7977
NS2 380 0.800 7.211 7.721 −17.889 197.64
NS3 380 0.722 8.562 9.601 0.4429 44.704

The σ field is obtained by solving the self-consistent equation

m2
σ σ + g2σ

2 + g3σ
3 = gsρs. (5)

Here ρs = ∫
d3 pm∗

E∗ f (p) is the scalar baryon density. The
coupling constants which reproduce nuclear matter saturation
values for a given incompressibility constant K and for a given
effective nucleon mass m∗ at ground state nuclear density are
given in Table I.

Figure 1 compares the energy per nucleon at zero tem-
perature as a function of the baryon density for different
parameter sets. Note that parameter sets with equal effective
masses yield similar EoS (see, e.g., NS1 and NS2). Also
note that smaller effective masses always yield stiffer EoS,
i.e., hard repulsion at high densities, even if the ground
state incompressibility constant is not large. For instance,
NS2 (m∗/m = 0.8) and NS3 (m∗/m = 0.722) have identical
ground state K = 380 MeV values, but at high density, NS2 is
much softer than NS3. This behavior is due to the fact that the
effective mass at saturation density determines the strength of
the vector interaction Cv = gv/mω, which is independent of
the scalar interaction term due to the Weisskopf relation:√

m∗2 + p2
F (ρ0) + Cvρ0 = m + B. (6)

Here pF = (3/2π2ρ0)2/3 is the Fermi momentum at saturation
density, and B = −16 MeV is the ground state binding energy
per particle of infinite nuclear matter. Hence, the hardness
of the EoS is nearly linearly related to the effective baryon

FIG. 1. Total energy per nucleon as a function of the normalized
baryon density at zero temperature.
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mass at high baryon densities. The hardness is barely sen-
sitive to the ground state incompressibility as was pointed
out in Refs. [69,70]. For comparison, the E/A values for the
non-relativistic Skyrme potential [Eq. (1)], for a hard EoS
with K = 380 (circles) and a soft EoS with K = 215 MeV
(squares) [52], are plotted as a function of the baryon vector
density. Note that the non-relativistic Skyrme potential yields
a similar E/A as a function of the vector density as the soft
relativistic parameter set with m∗/m = 0.8 (NS1 and NS2).

B. Relativistic quantum molecular dynamics

The different relativistic EoS are now implemented into
the framework of the RQMD approach [64], formulated based
on the constraint Hamiltonian dynamics [71] to simulate the
N-body non-equilibrium dynamics.

8N four-vectors qμ
i and pμ

i (i = 1, . . . , N) are used
throughout the manifestly covariant formalism for the N-body
dynamics. In order to reduce the number of dimensions from
8N to the physical 6N , 2N constraints are employed, namely,

φi ≈ 0 (i = 1, . . . , 2N ), (7)

where the sign ≈ stands for Dirac’s weak equality: this
equality has to be satisfied on the physical 6N phase space.
2N − 1 Poincaré invariant constraints are used, while the
2N th constraint determines the evolution parameter τ , which
is not necessarily Poincaré invariant. The Hamiltonian of the
system is constructed as the linear combination of 2N − 1
constraints

H =
2N−1∑

j=1

u j (τ )φ j (8)

with the Lagrange multipliers u j (τ ). The equations of motion
are given by

dqi

dτ
= [H, qi] ≈

2N−1∑
j=1

u j
∂φ j

∂ p j
,

d pi

dτ
= [H, pi] ≈ −

2N−1∑
j=1

u j
∂φ j

∂q j
, (9)

where the Poisson brackets are defined as

[A, B] =
∑

k

(
∂A

∂ pk
· ∂A

∂qk
− ∂B

∂qk
· ∂B

∂ pk

)
. (10)

The constraints are conserved in time:

dφi

dτ
= ∂φi

∂τ
+ [H, φi] ≈ 0. (11)

As 2N − 1 constraints do not depend explicitly on τ , the
Lagrange multipliers ui are solved as

ui ≈ −∂φ2N

∂τ
C2N,i (i = 1, . . . , 2N − 1), (12)

where C−1
i j = [φi, φ j]. Thus, the trajectory of the coupled sys-

tem of particles in 6N phase space is uniquely determined by
the equations of motion [Eqs. (9)] together with the Lagrange
multipliers [Eq. (12)].

Here, N on-mass shell conditions are imposed:

φi ≡ p∗2
i − m∗2

i = (pi − Vi )
2 − (mi − Si )

2 (i = 1, . . . , N )

(13)

for the ith particle, where V μ
i and Si are the single-particle

vector and scalar potentials, which are functions of the baryon
current Jμ

i and scalar density ρsi. Within the RQMD approach,
these densities of the ith particle are influenced by all the other
particles,

ρs,i =
∑
j 	=i

m∗
j

p∗0
j

ρi j, Jμ
i =

∑
j 	=i

B jv
∗μ
j ρi j, (14)

here v
∗μ
j = p∗μ

j /p∗0
j and Bj are, respectively, the velocity and

the baryon number of the jth particle, while ρi j is the so-called
interaction density (the overlap of density with other hadron
wave packets) given by the Gaussian in RQMD:

ρi j = γi j

(4πL)3/2
exp

(
q2

Ti j/4L
)
. (15)

qTi j is the center-of-mass frame distance between the par-
ticles i and j, and γi j is the respective Lorentz γ -factor
which ensures the correct normalization of the Gaussians
[72]. Throughout this work, the Gaussian width is fixed at
L = 1.0 fm2.

In addition to the N on-mass shell constraints of Eq. (13),
the time fixation constraints, which equate all time coor-
dinates of particles in the computational frame, follow the
Maruyama model [73] and Ref. [74] for the rest of the N
constraints:

φi+N ≡ â · (qi − qN ) (i = 1, . . . , N − 1),

φ2N ≡ â · qN − τ, (16)

where â is a four-dimensional vector and is a unit vector â =
(1, 0) in the reference frame [73]. Hence, â must be changed
under Lorentz transformation into other frames to maintain
the Lorentz covariance. A convenient choice is â = P/

√
P2

with P = ∑N
i pi. Then the clock time of all particles is the

same in the total center-of-mass system; it becomes the unit
vector (1, 0) in the center-of-mass frame [74]. By choosing
those 2N constraints, together with the assumption that the
arguments of the potentials are replaced by the free ones, the
equations of motion are obtained for particle i:

ẋi = p∗
i

p∗0
i

+
N∑
j

(
m∗

j

p∗0
j

∂m∗
j

∂ pi
+ v

∗μ
j

∂Vjμ

∂ pi

)
,

ṗi = −
N∑
j

(
m∗

j

p∗0
j

∂m∗
j

∂ri
+ v

∗μ
j

∂Vjμ

∂ri

)
. (17)

Note that the equations of motion for non-relativistic QMD
are recovered easily by neglecting the scalar potential and
taking only the time component of the vector potential into
account.

The actual simulations evaluate the non-linear σ field as
well as the ω field at each space-time point using a local
density approximation [52,58,59]; neglecting the derivatives
of the meson fields as in Eq. (5) for the σ field, the vector
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potential is simply proportional to the baryon current. This
approximation is widely applied to high energy nuclear col-
lision simulations [75–77]. There, the meson field radiation
and retardation effects [78] were found to be on the percent
level. The present study uses identical coupling constants for
all baryons.

Note that the above mean-field interactions are combined
with the collision term, which applies Monte Carlo methods
to evaluate the scattering kernel. These collision terms treat
the change of the potentials due to scattering as small at
high energies as compared to the momenta of the outgoing
particles. Hence, the treatment of the final state phase space
factors for the outgoing particles is the same as in cascade
simulations. Changes of the effective masses are taken into ac-
count for outgoing particles of different species. The violation
of the global and local energy conservation is found to be less
than 1%. A detailed discussion of the collision term treatment
is found in Ref. [79]. Relativistic on- and off-shell parton
scattering was recently studied [80] by basing the scattering
processes on explicit matrix elements squared, which are well
defined also off-shell, hence incorporating the changes of the
final-state phase space by default.

III. RESULTS

A. Beam energy dependence of the flow

The upper panel of Fig. 2 compares the beam energy
dependence of the slope of the proton directed flow at
mid-rapidity (|y| < 0.8) from the JAM calculations in the
RQMD.RMF mode (JAM/RQMD) with the E895 [81], NA49
[32,82], and STAR [33,34,83] experimental data. Only for
the parameter sets NS1 (K = 230 MeV) and NS2 (K =
380 MeV) is good agreement with the data found, up to√

sNN = 7.7 GeV, nicely demonstrating the insensitivity of
the directed flow to the incompressibility constant at the
ground state density ρ0. The fact that the NS3 parameter
set simulations significantly overestimate the v1 data clearly
demonstrates the strong dependence of the directed flow on
the baryons’ effective mass. The directed flow is—up to
maximum AGS/SIS100 energies—not sensitive to the incom-
pressibility constant at the ground state density, but shows a
strong sensitivity to the effective mass at saturation density. A
strong influence of the effective mass on the directed flow at
the lower BEVALAC/SIS18 energies (Elab = 1–2A GeV) had
been found in both RBUU and RVUU calculations [58,59].
The reason for this strong dependence on m∗ is that smaller
effective masses imply larger values of the ω meson coupling
constant, hence the stronger repulsion. An earlier approach
based on non-relativistic Skyrme potentials with K = 210
MeV [9] seems to correspond to the parameter sets NS1 and
NS2; both give the same hardness of the EoS.

The model predicts at beam energies
√

sNN > 8 GeV still
positive v1 slopes; the directed flow slope at mid-rapidity
here was insensitive to the EoS. Because the model yields
nearly the same results as the cascade model, it indicates that
mean-field effects are very weak on v1 at mid-rapidity at SPS
energies. The experimental data, however, show negative v1

slopes at
√

sNN = 10–20 GeV. It has been argued that this is

FIG. 2. Beam energy dependence of (a) proton v1 slope and
(b) v2 (|y| < 0.2) at mid-rapidity in mid-central Au+Au colli-
sions (4.6 � b � 9.4 fm) from the JAM cascade (dashed lines),
RQMD/NS1 (dash-dotted lines), RQMD/NS2 (solid lines), and
RQMD/NS3 (dotted lines). The slopes of the proton v1 are obtained
by fitting the rapidity dependence of v1 to a cubic equation at
|y| < 0.8. The experimental v1 data are taken from the E895 [81],
NA49 [32,82], and STAR [33,34,83] Collaborations, respectively.
The STAR data [84] for v2 are for charged hadrons, while the data
points by E895/E877 [53] and by FOPI [85] are for protons. The JAM

v2 values are for protons at
√

sNN < 5 GeV, while the higher energy
data are for charged particles.

an indication of the softening of the EoS. However, note that
theoretical calculations which implement a first-order phase
transition do predict negative v1 slopes for protons at AGS
energies,

√
sNN < 5 GeV, but not at SPS energies [38,39,41–

43]. The present results, which are for an EoS without a
high density phase transition, do not reproduce the observed
negative v1 data at

√
sNN > 8 GeV. Is this the long-sought-

after first-order QCD-deconfinement phase transition?
The lower panel of Fig. 2 compares the beam energy

dependence of the elliptic flow v2 of the present RQMD.RMF
model with experimental heavy-ion data of the FOPI [85],
E897/E877 [53], and the STAR [84] Collaborations. At lower
beam energies (

√
sNN < 10 GeV), the strength of the ellip-

tic flow is the result of the interplay between out-of-plane
(squeeze-out) and in-plane emission [6,86]. Pure cascade
models lack the pressure to generate the observed strong
out-of-plane emission (negative v2) at low beam energies
and result in the larger (positive sign) elliptic flow at

√
sNN

< 5 GeV. A previous work predicted a strong enhancement of
v2 [87,88], as well as of v4 [89], when a first-order phase tran-
sition occurs. This is due to the suppression of the squeeze-out
as a result of the softening of the EoS [90]. Here, just on the
contrary, the strongly repulsive interactions suppress v2.

Figure 2 demonstrates that elliptic flow is not sensitive
to the ground state incompressibility constant anymore when
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FIG. 3. Rapidity dependence of proton sideward flow 〈px〉
in mid-central Au + Au collision at

√
sNN = 4.86 GeV

from RQMD/NS1 (solid line), RQMD/NS2 (dotted line),
and RQMD/NS3 (dot-dashed line) compared with the E877
experimental data [92].

√
sNN ≈ 5 GeV; both the NS1 and the NS2 parameter sets

yield very similar values of v2 for beam energies
√

sNN

> 5 GeV. However, the calculations with NS1 show less
squeeze-out at lower beam energies

√
sNN < 3 GeV, while the

NS2 parameter set yields reasonable agreement with the data.
Thus at lower energies, elliptic flow is sensitive to the ground
state incompressibility of the EoS.

The calculations with the relativistic mean field predict
considerably larger v2 values than the cascade calculations
at SPS/BES-II energies. This agreement with the v2 data at
the SPS is remarkable, as the elliptic flow achieved with the
Skyrme forces does not show an enhancement of v2; the same
small values as in the cascade calculations are found with
Skyrme forces at the beam energies

√
sNN > 6 GeV [88,91].

B. Rapidity dependence of the directed flow

The rapidity dependence of the directed flow shown in
Fig. 3 compares the sidewards flow 〈px〉 in mid-central
Au + Au collisions at

√
sNN = 4.89 GeV, as computed from

RQMD.RMF simulations with different parameter sets, to the
E877 data [92]. The calculations using the NS3 parameter set
(m∗/m = 0.722) yield stronger directed flow than those using
the set NS2, even though the ground state incompressibility
constants of both parameter sets NS2 and NS3 have the same
value, K = 380 MeV. However, the directed flow results from
using the NS1 (K = 230 MeV) parameter set are almost
identical to the NS2 results, as it has the same effective mass
parameter as NS1. Hence, the slope of the directed flow at
mid-rapidity as well as its rapidity dependence is quite sensi-
tive to the stiffness of the high density EoS, i.e., the effective
mass parameter, but is practically insensitive to the ground
state incompressibility constant at AGS/SIS100 energies.

Figure 4 shows the rapidity dependence of v1 of protons
(upper panel) and pions (lower panel) from JAM/cascade, JAM

RQMD/NS1, and JAM attractive orbit mode in mid-central
Pb + Pb collisions at 8.87 GeV together with the NA49 data
[32]. NA49 observed the collapse of flow at mid-rapidity that
is in good agreement with the JAM attractive orbit mode [42].

FIG. 4. Rapidity dependence of proton and pion v1 in mid-
central Pb+Pb collision at

√
sNN = 8.87 GeV as calculated by the

JAM cascade mode (dashed line), by RQMD/NS1 (solid line), and by
JAM in the attractive scattering mode (dotted line). The calculations
are compared to the NA49 Collaboration’s experimental data [32].

The JAM attractive orbit mode selects only inwards scatter-
ings (“attractive orbit mode”) for all binary scatterings, to
mimic the softening of the EoS. In stark contrast, calculations
without a softening of the EoS, such as JAM/cascade and
RQMD/NS1, clearly show no collapse of the directed flow

FIG. 5. Rapidity dependence of proton and pion v1 in mid-
central Pb+Pb collision at

√
sNN = 8.87 GeV from the JAM cas-

cade (dashed line), RQMD/NS1 (solid line), and RQMD/NS3 (dot-
dashed line) are compared with the NA49 experimental data [32].
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at all. Note that the RQMD/NS1 calculations show the same
slope as the cascade results at mid-rapidity (|y| < 0.5). This
may be because baryons are not fully stopped at this energy,
and the baryon density at mid-rapidity is small, leading to a
diminished strength of the baryon potential. In the present
calculations, potential interactions of preformed hadrons are
not included. They dominate the early stages of the collisions
at 8.87 GeV. This is another reason that here is no effect of
the potential on the mid-rapidity directed flow, which is most
sensitive to the early compression stages of the collisions.

Figure 5 compares the calculated rapidity dependence of
v1 of protons and pions with the NA49 data [32] for a wider
rapidity region. v1 at forward rapidity, where the baryon
density is large, does strongly depend on the EoS; it is very
sensitive to the effective mass parameter, but insensitive to
the incompressibility constant. At even higher beam energies,
v1 in forward-rapidity regions is still sensitive to the mean
field. Hence, the v1 data at forward rapidity contain valuable
information about the EoS at high baryon density in high
energy heavy-ion collisions.

IV. SUMMARY

Relativistic scalar and vector meson mean-field interac-
tions are implemented into the JAM transport code based on
the framework of the relativistic quantum molecular dynamics
model (RQMD.RMF). The influence of the EoS on the beam
energy dependence of anisotropic flow, both directed and
elliptic flow, from SIS18 to AGS/SIS100 energies is repro-
duced by the same parameter set of the scalar-vector-type
interaction. The elliptic flow at low energies

√
sNN < 3 GeV is

sensitive to the ground state incompressibility and the directed
flow is sensitive to the ground state effective mass parame-
ter in the EoS at energies

√
sNN < 5 GeV. The experimen-

tally observed negative proton directed flow at 10 <
√

sNN

< 20 GeV cannot be explained by “normal,” monotonously

increasing relativistic mean fields, whereas the elliptic flow is
in good agreement with the data for the whole energy region
2.5 <

√
sMN < 20 GeV. No EoS dependent change of sign

of the directed flow is predicted in RQMD.RMF with the
“normal” EoS, either for directed or for elliptic flow, at beam
energies above

√
sNN > 10 GeV at mid-rapidity. This does

not imply that mean-field effects are negligible, as mean fields
enhance strongly the elliptic flow at SPS energies relative to
the cascade model. The directed flow at the forward-backward
rapidity region depends strongly on the EoS.

References [93–95] studied the influence of the mean-field
potentials on the cumulant ratios of protons within QMD
models with Skyrme forces. Relativistic ω fields may suppress
the kurtosis of the baryon number distribution at high baryon
densities in mean-field nuclear matter calculations [96]. An
investigation of such a suppression within the RQMD.RMF
dynamical approach is under way.

The late hadronic fluid stage of collisions at RHIC/LHC
energies is usually described by hadronic cascade models.
However, the mean-field effects presented here may also be
relevant for this late evolution stage of the hadronic fluid stage
at RHIC/LHC energies. Observables such as baryon spectra
at forward rapidity as well as flow v1 and also v2 can allow
for a study of the mean-field effects on the final hadronic fluid
stage on an event-by-event basis.

ACKNOWLEDGMENTS

We thank W. Cassing and J. Steinheimer for valuable
comments on the manuscript. This work was supported in part
by the Grants-in-Aid for Scientific Research from JSPS (Grant
No. JP17K05448). H.S. appreciates the generous endowment
of the Judah M. Eisenberg Laureatus professorship. Compu-
tational resources have been provided by GSI, Darmstadt, and
LOEWE CSC, Goethe Universität Frankfurt.

[1] Edited by B. Friman, C. Höhne, J. Knoll, S. Leupold, J.
Randrup, R. Rapp, and P. Senger, in The CBM Physics Book,
Lecture Notes in Physics, Vol. 814 (Springer, Berlin, Heidel-
berg, 2011), p. 1.

[2] E. R. Most, L. J. Papenfort, V. Dexheimer, M. Hanauske, S.
Schramm, H. Stöcker, and L. Rezzolla, Phys. Rev. Lett. 122,
061101 (2019).

[3] H. Stöcker, J. A. Maruhn, and W. Greiner, Phys. Rev. Lett. 44,
725 (1980).

[4] H. Stöcker, L. P. Csernai, G. Graebner, G. Buchwald, H. Kruse,
R. Y. Cusson, J. A. Maruhn, and W. Greiner, Phys. Rev. C 25,
1873 (1982).

[5] G. Buchwald, G. Graebner, J. Theis, J. Maruhn, W. Greiner, H.
Stöcker, K. Frankel, and M. Gyulassy, Phys. Rev. C 28, 2349
(1983).

[6] H. Stoecker and W. Greiner, Phys. Rep. 137, 277 (1986).
[7] C. Hartnack, J. Aichelin, H. Stoecker, and W. Greiner, Phys.

Lett. B 336, 131 (1994).
[8] J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992).
[9] P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298, 1592

(2002).
[10] H. Stoecker, Nucl. Phys. A 750, 121 (2005).

[11] M. Asakawa and K. Yazaki, Nucl. Phys. A 504, 668 (1989);
D. H. Rischke, Prog. Part. Nucl. Phys. 52, 197 (2004); M. A.
Stephanov, Prog. Theor. Phys. Suppl. 153, 139 (2004); Int. J.
Mod. Phys. A 20, 4387 (2005); K. Fukushima and C. Sasaki,
Prog. Part. Nucl. Phys. 72, 99 (2013).

[12] U. Heinz and R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123
(2013).

[13] C. Gale, S. Jeon, and B. Schenke, Int. J. Mod. Phys. A 28,
1340011 (2013).

[14] P. Huovinen, Int. J. Mod. Phys. E 22, 1330029 (2013).
[15] T. Hirano, P. Huovinen, K. Murase, and Y. Nara, Prog. Part.

Nucl. Phys. 70, 108 (2013).
[16] S. Jeon and U. Heinz, Int. J. Mod. Phys. E 24, 1530010

(2015).
[17] A. Jaiswal and V. Roy, Adv. High Energy Phys. 2016, 9623034

(2016).
[18] P. Romatschke and U. Romatschke, Relativistic Fluid Dynamics

In and Out of Equilibrium, Cambridge Monographs on Math-
ematical Physics (Cambridge University Press, Cambridge,
2019).

[19] S. Singha, P. Shanmuganathan, and D. Keane, Adv. High
Energy Phys. 2016, 2836989 (2016).

054902-7

https://doi.org/10.1103/PhysRevLett.122.061101
https://doi.org/10.1103/PhysRevLett.122.061101
https://doi.org/10.1103/PhysRevLett.122.061101
https://doi.org/10.1103/PhysRevLett.122.061101
https://doi.org/10.1103/PhysRevLett.44.725
https://doi.org/10.1103/PhysRevLett.44.725
https://doi.org/10.1103/PhysRevLett.44.725
https://doi.org/10.1103/PhysRevLett.44.725
https://doi.org/10.1103/PhysRevC.25.1873
https://doi.org/10.1103/PhysRevC.25.1873
https://doi.org/10.1103/PhysRevC.25.1873
https://doi.org/10.1103/PhysRevC.25.1873
https://doi.org/10.1103/PhysRevC.28.2349
https://doi.org/10.1103/PhysRevC.28.2349
https://doi.org/10.1103/PhysRevC.28.2349
https://doi.org/10.1103/PhysRevC.28.2349
https://doi.org/10.1016/0370-1573(86)90131-6
https://doi.org/10.1016/0370-1573(86)90131-6
https://doi.org/10.1016/0370-1573(86)90131-6
https://doi.org/10.1016/0370-1573(86)90131-6
https://doi.org/10.1016/0370-2693(94)90237-2
https://doi.org/10.1016/0370-2693(94)90237-2
https://doi.org/10.1016/0370-2693(94)90237-2
https://doi.org/10.1016/0370-2693(94)90237-2
https://doi.org/10.1103/PhysRevD.46.229
https://doi.org/10.1103/PhysRevD.46.229
https://doi.org/10.1103/PhysRevD.46.229
https://doi.org/10.1103/PhysRevD.46.229
https://doi.org/10.1126/science.1078070
https://doi.org/10.1126/science.1078070
https://doi.org/10.1126/science.1078070
https://doi.org/10.1126/science.1078070
https://doi.org/10.1016/j.nuclphysa.2004.12.074
https://doi.org/10.1016/j.nuclphysa.2004.12.074
https://doi.org/10.1016/j.nuclphysa.2004.12.074
https://doi.org/10.1016/j.nuclphysa.2004.12.074
https://doi.org/10.1016/0375-9474(89)90002-X
https://doi.org/10.1016/0375-9474(89)90002-X
https://doi.org/10.1016/0375-9474(89)90002-X
https://doi.org/10.1016/0375-9474(89)90002-X
https://doi.org/10.1016/j.ppnp.2003.09.002
https://doi.org/10.1016/j.ppnp.2003.09.002
https://doi.org/10.1016/j.ppnp.2003.09.002
https://doi.org/10.1016/j.ppnp.2003.09.002
https://doi.org/10.1143/PTPS.153.139
https://doi.org/10.1143/PTPS.153.139
https://doi.org/10.1143/PTPS.153.139
https://doi.org/10.1143/PTPS.153.139
https://doi.org/10.1142/S0217751X05027965
https://doi.org/10.1142/S0217751X05027965
https://doi.org/10.1142/S0217751X05027965
https://doi.org/10.1142/S0217751X05027965
https://doi.org/10.1016/j.ppnp.2013.05.003
https://doi.org/10.1016/j.ppnp.2013.05.003
https://doi.org/10.1016/j.ppnp.2013.05.003
https://doi.org/10.1016/j.ppnp.2013.05.003
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0218301313300294
https://doi.org/10.1142/S0218301313300294
https://doi.org/10.1142/S0218301313300294
https://doi.org/10.1142/S0218301313300294
https://doi.org/10.1016/j.ppnp.2013.02.002
https://doi.org/10.1016/j.ppnp.2013.02.002
https://doi.org/10.1016/j.ppnp.2013.02.002
https://doi.org/10.1016/j.ppnp.2013.02.002
https://doi.org/10.1142/S0218301315300106
https://doi.org/10.1142/S0218301315300106
https://doi.org/10.1142/S0218301315300106
https://doi.org/10.1142/S0218301315300106
https://doi.org/10.1155/2016/9623034
https://doi.org/10.1155/2016/9623034
https://doi.org/10.1155/2016/9623034
https://doi.org/10.1155/2016/9623034
https://doi.org/10.1155/2016/2836989
https://doi.org/10.1155/2016/2836989
https://doi.org/10.1155/2016/2836989
https://doi.org/10.1155/2016/2836989


YASUSHI NARA AND HORST STOECKER PHYSICAL REVIEW C 100, 054902 (2019)

[20] J. Adam et al. (STAR Collaboration), Phys. Rev. C 99, 064905
(2019).

[21] L. Turko (NA61/SHINE Collaboration), Universe 4, 52 (2018);
K. Grebieszkow (NA61/SHINE Collaboration), PoS CORFU
2018 347, 152 (2019).

[22] G. Odyniec, EPJ Web Conf. 95, 03027 (2015).
[23] T. Ablyazimov et al. (CBM Collaboration), Eur. Phys. J. A 53,

60 (2017).
[24] C. Sturm, B. Sharkov, and H. Stoecker, Nucl. Phys. A 834, 682c

(2010).
[25] V. Kekelidze, A. Kovalenko, R. Lednicky, V. Matveev, I.

Meshkov, A. Sorin, and G. Trubnikov, Nucl. Phys. A 956, 846
(2016).

[26] H. Sako et al. (J-PARC Heavy-Ion Collaboration), Nucl. Phys.
A 931, 1158 (2014); 956, 850 (2016).

[27] H. Petersen, J. Steinheimer, G. Burau, M. Bleicher, and H.
Stocker, Phys. Rev. C 78, 044901 (2008).

[28] P. Batyuk, D. Blaschke, M. Bleicher, Y. B. Ivanov, Iu.
Karpenko, S. Merts, M. Nahrgang, H. Petersen, and O.
Rogachevsky, Phys. Rev. C 94, 044917 (2016).

[29] C. Shen and B. Schenke, Phys. Rev. C 97, 024907 (2018).
[30] G. S. Denicol, C. Gale, S. Jeon, A. Monnai, B. Schenke, and

C. Shen, Phys. Rev. C 98, 034916 (2018).
[31] Y. Akamatsu, M. Asakawa, T. Hirano, M. Kitazawa, K. Morita,

K. Murase, Y. Nara, C. Nonaka, and A. Ohnishi, Phys. Rev. C
98, 024909 (2018).

[32] C. Alt et al. (NA49 Collaboration), Phys. Rev. C 68, 034903
(2003).

[33] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 112,
162301 (2014).

[34] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 120,
062301 (2018).

[35] R. J. M. Snellings, H. Sorge, S. A. Voloshin, F. Q. Wang, and
N. Xu, Phys. Rev. Lett. 84, 2803 (2000).

[36] H. Petersen, Q. Li, X. Zhu, and M. Bleicher, Phys. Rev. C 74,
064908 (2006).

[37] V. P. Konchakovski, W. Cassing, Y. B. Ivanov, and V. D. Toneev,
Phys. Rev. C 90, 014903 (2014).

[38] D. H. Rischke, Y. Pursun, J. A. Maruhn, H. Stoecker, and W.
Greiner, Acta Phys. Hung. A 1, 309 (1995).

[39] J. Brachmann, S. Soff, A. Dumitru, H. Stöcker, J. A. Maruhn,
W. Greiner, L. V. Bravina, and D. H. Rischke, Phys. Rev. C 61,
024909 (2000).

[40] Y. B. Ivanov and A. A. Soldatov, Phys. Rev. C 91, 024915
(2015); Eur. Phys. J. A 52, 10 (2016).

[41] B. A. Li and C. M. Ko, Phys. Rev. C 58, R1382 (1998).
[42] Y. Nara, H. Niemi, A. Ohnishi, and H. Stöcker, Phys. Rev. C 94,

034906 (2016).
[43] Y. Nara, H. Niemi, J. Steinheimer, and H. Stoecker, Phys. Lett.

B 769, 543 (2017).
[44] J. Steinheimer, J. Auvinen, H. Petersen, M. Bleicher, and H.

Stöcker, Phys. Rev. C 89, 054913 (2014).
[45] J. Xu et al., Phys. Rev. C 93, 044609 (2016); Y. X. Zhang

et al., ibid. 97, 034625 (2018); A. Ono et al., ibid. 100, 044617
(2019).

[46] G. F. Bertsch, H. Kruse, and S. Das Gupta, Phys. Rev. C 29,
673(E) (1984); 33, 1107 (1986); G. F. Bertsch and S. Das Gupta,
Phys. Rep. 160, 189 (1988).

[47] W. Cassing, V. Metag, U. Mosel, and K. Niita, Phys. Rep. 188,
363 (1990).

[48] H. Kruse, B. V. Jacak, J. J. Molitoris, G. D. Westfall, and H.
Stöcker, Phys. Rev. C 31, 1770 (1985); H. Kruse, B. V. Jacak,
and H. Stöcker, Phys. Rev. Lett. 54, 289 (1985);

[49] J. Aichelin and H. Stoecker, Phys. Lett. B 176, 14 (1986); J.
Aichelin, Phys. Rep. 202, 233 (1991).

[50] G. M. Welke, M. Prakash, T. T. S. Kuo, S. Das Gupta, and C.
Gale, Phys. Rev. C 38, 2101 (1988); C. Gale, G. M. Welke, M.
Prakash, S. J. Lee, and S. Das Gupta, ibid. 41, 1545 (1990).

[51] B. A. Li, L. W. Chen, and C. M. Ko, Phys. Rep. 464, 113 (2008).
[52] O. Buss et al., Phys. Rep. 512, 1 (2012).
[53] C. Pinkenburg et al. (E895 Collaboration), Phys. Rev. Lett. 83,

1295 (1999).
[54] P. Danielewicz, R. A. Lacey, P. B. Gossiaux, C. Pinkenburg, P.

Chung, J. M. Alexander, and R. L. McGrath, Phys. Rev. Lett.
81, 2438 (1998).

[55] G. Rai et al. (E895 Collaboration), Nucl. Phys. A 661, 162
(1999).

[56] P. Hillmann, J. Steinheimer, and M. Bleicher, J. Phys. G 45,
085101 (2018).

[57] Y. Nara and A. Ohnishi, Nucl. Phys. A 956, 284 (2016).
[58] B. Blattel, V. Koch, W. Cassing, and U. Mosel, Phys. Rev. C 38,

1767 (1988); B. Blaettel, V. Koch, and U. Mosel, Rept. Prog.
Phys. 56, 1 (1993).

[59] C. M. Ko, Q. Li, and R. C. Wang, Phys. Rev. Lett. 59, 1084
(1987); C. M. Ko and Q. Li, Phys. Rev. C 37, 2270 (1988); Q.
Li, J. Q. Wu, and C. M. Ko, ibid. 39, 849 (1989); H. T. Elze,
M. Gyulassy, D. Vasak, H. Heinz, H. Stoecker, and W. Greiner,
Mod. Phys. Lett. A 2, 451 (1987).

[60] C. Fuchs and H. H. Wolter, Nucl. Phys. A 589, 732
(1995).

[61] P. K. Sahu, A. Hombach, W. Cassing, and U. Mosel, Nucl. Phys.
A 640, 493 (1998); P. K. Sahu, W. Cassing, U. Mosel, and A.
Ohnishi, ibid. 672, 376 (2000); P. K. Sahu and W. Cassing, ibid.
712, 357 (2002).

[62] C. Fuchs, E. Lehmann, L. Sehn, F. Scholz, T. Kubo, J. Zipprich,
and A. Faessler, Nucl. Phys. A 603, 471 (1996).

[63] Y. Nara, N. Otuka, A. Ohnishi, K. Niita, and S. Chiba, Phys.
Rev. C 61, 024901 (1999).

[64] H. Sorge, H. Stoecker, and W. Greiner, Ann. Phys. 192, 266
(1989).

[65] H. Sorge, Phys. Rev. C 52, 3291 (1995).
[66] S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998).
[67] M. Bleicher et al., J. Phys. G 25, 1859 (1999).
[68] J. Boguta and A. R. Bodmer, Nucl. Phys. A 292, 413 (1977).
[69] J. Boguta and H. Stoecker, Phys. Lett. B 120, 289 (1983).
[70] B. M. Waldhauser, J. A. Maruhn, H. Stöcker, and W. Greiner,

Phys. Rev. C 38, 1003 (1988).
[71] A. Komar, Phys. Rev. D 18, 1881 (1978); 18, 1887 (1978); 18,

3617 (1978).
[72] D. Oliinychenko and H. Petersen, Phys. Rev. C 93, 034905

(2016).
[73] T. Maruyama, K. Niita, T. Maruyama, S. Chiba, Y. Nakahara,

and A. Iwamoto, Prog. Theor. Phys. 96, 263 (1996); D.
Mancusi, K. Niita, T. Maruyama, and L. Sihver, Phys. Rev. C
79, 014614 (2009).

[74] R. Marty and J. Aichelin, Phys. Rev. C 87, 034912 (2013).
[75] G. Q. Li, C. M. Ko, and G. E. Brown, Phys. Rev. Lett. 75, 4007

(1995); Nucl. Phys. A 606, 568 (1996).
[76] A. B. Larionov, O. Buss, K. Gallmeister, and U. Mosel, Phys.

Rev. C 76, 044909 (2007).

054902-8

https://doi.org/10.1103/PhysRevC.99.064905
https://doi.org/10.1103/PhysRevC.99.064905
https://doi.org/10.1103/PhysRevC.99.064905
https://doi.org/10.1103/PhysRevC.99.064905
https://doi.org/10.3390/universe4030052
https://doi.org/10.3390/universe4030052
https://doi.org/10.3390/universe4030052
https://doi.org/10.3390/universe4030052
https://doi.org/10.22323/1.347.0152
https://doi.org/10.22323/1.347.0152
https://doi.org/10.22323/1.347.0152
https://doi.org/10.22323/1.347.0152
https://doi.org/10.1051/epjconf/20159503027
https://doi.org/10.1051/epjconf/20159503027
https://doi.org/10.1051/epjconf/20159503027
https://doi.org/10.1051/epjconf/20159503027
https://doi.org/10.1140/epja/i2017-12248-y
https://doi.org/10.1140/epja/i2017-12248-y
https://doi.org/10.1140/epja/i2017-12248-y
https://doi.org/10.1140/epja/i2017-12248-y
https://doi.org/10.1016/j.nuclphysa.2010.01.124
https://doi.org/10.1016/j.nuclphysa.2010.01.124
https://doi.org/10.1016/j.nuclphysa.2010.01.124
https://doi.org/10.1016/j.nuclphysa.2010.01.124
https://doi.org/10.1016/j.nuclphysa.2016.03.019
https://doi.org/10.1016/j.nuclphysa.2016.03.019
https://doi.org/10.1016/j.nuclphysa.2016.03.019
https://doi.org/10.1016/j.nuclphysa.2016.03.019
https://doi.org/10.1016/j.nuclphysa.2014.08.065
https://doi.org/10.1016/j.nuclphysa.2014.08.065
https://doi.org/10.1016/j.nuclphysa.2014.08.065
https://doi.org/10.1016/j.nuclphysa.2014.08.065
https://doi.org/10.1016/j.nuclphysa.2016.03.030
https://doi.org/10.1016/j.nuclphysa.2016.03.030
https://doi.org/10.1016/j.nuclphysa.2016.03.030
https://doi.org/10.1103/PhysRevC.78.044901
https://doi.org/10.1103/PhysRevC.78.044901
https://doi.org/10.1103/PhysRevC.78.044901
https://doi.org/10.1103/PhysRevC.78.044901
https://doi.org/10.1103/PhysRevC.94.044917
https://doi.org/10.1103/PhysRevC.94.044917
https://doi.org/10.1103/PhysRevC.94.044917
https://doi.org/10.1103/PhysRevC.94.044917
https://doi.org/10.1103/PhysRevC.97.024907
https://doi.org/10.1103/PhysRevC.97.024907
https://doi.org/10.1103/PhysRevC.97.024907
https://doi.org/10.1103/PhysRevC.97.024907
https://doi.org/10.1103/PhysRevC.98.034916
https://doi.org/10.1103/PhysRevC.98.034916
https://doi.org/10.1103/PhysRevC.98.034916
https://doi.org/10.1103/PhysRevC.98.034916
https://doi.org/10.1103/PhysRevC.98.024909
https://doi.org/10.1103/PhysRevC.98.024909
https://doi.org/10.1103/PhysRevC.98.024909
https://doi.org/10.1103/PhysRevC.98.024909
https://doi.org/10.1103/PhysRevC.68.034903
https://doi.org/10.1103/PhysRevC.68.034903
https://doi.org/10.1103/PhysRevC.68.034903
https://doi.org/10.1103/PhysRevC.68.034903
https://doi.org/10.1103/PhysRevLett.112.162301
https://doi.org/10.1103/PhysRevLett.112.162301
https://doi.org/10.1103/PhysRevLett.112.162301
https://doi.org/10.1103/PhysRevLett.112.162301
https://doi.org/10.1103/PhysRevLett.120.062301
https://doi.org/10.1103/PhysRevLett.120.062301
https://doi.org/10.1103/PhysRevLett.120.062301
https://doi.org/10.1103/PhysRevLett.120.062301
https://doi.org/10.1103/PhysRevLett.84.2803
https://doi.org/10.1103/PhysRevLett.84.2803
https://doi.org/10.1103/PhysRevLett.84.2803
https://doi.org/10.1103/PhysRevLett.84.2803
https://doi.org/10.1103/PhysRevC.74.064908
https://doi.org/10.1103/PhysRevC.74.064908
https://doi.org/10.1103/PhysRevC.74.064908
https://doi.org/10.1103/PhysRevC.74.064908
https://doi.org/10.1103/PhysRevC.90.014903
https://doi.org/10.1103/PhysRevC.90.014903
https://doi.org/10.1103/PhysRevC.90.014903
https://doi.org/10.1103/PhysRevC.90.014903
https://doi.org/10.1103/PhysRevC.61.024909
https://doi.org/10.1103/PhysRevC.61.024909
https://doi.org/10.1103/PhysRevC.61.024909
https://doi.org/10.1103/PhysRevC.61.024909
https://doi.org/10.1103/PhysRevC.91.024915
https://doi.org/10.1103/PhysRevC.91.024915
https://doi.org/10.1103/PhysRevC.91.024915
https://doi.org/10.1103/PhysRevC.91.024915
https://doi.org/10.1140/epja/i2016-16010-9
https://doi.org/10.1140/epja/i2016-16010-9
https://doi.org/10.1140/epja/i2016-16010-9
https://doi.org/10.1140/epja/i2016-16010-9
https://doi.org/10.1103/PhysRevC.58.R1382
https://doi.org/10.1103/PhysRevC.58.R1382
https://doi.org/10.1103/PhysRevC.58.R1382
https://doi.org/10.1103/PhysRevC.58.R1382
https://doi.org/10.1103/PhysRevC.94.034906
https://doi.org/10.1103/PhysRevC.94.034906
https://doi.org/10.1103/PhysRevC.94.034906
https://doi.org/10.1103/PhysRevC.94.034906
https://doi.org/10.1016/j.physletb.2017.02.020
https://doi.org/10.1016/j.physletb.2017.02.020
https://doi.org/10.1016/j.physletb.2017.02.020
https://doi.org/10.1016/j.physletb.2017.02.020
https://doi.org/10.1103/PhysRevC.89.054913
https://doi.org/10.1103/PhysRevC.89.054913
https://doi.org/10.1103/PhysRevC.89.054913
https://doi.org/10.1103/PhysRevC.89.054913
https://doi.org/10.1103/PhysRevC.93.044609
https://doi.org/10.1103/PhysRevC.93.044609
https://doi.org/10.1103/PhysRevC.93.044609
https://doi.org/10.1103/PhysRevC.93.044609
https://doi.org/10.1103/PhysRevC.97.034625
https://doi.org/10.1103/PhysRevC.97.034625
https://doi.org/10.1103/PhysRevC.97.034625
https://doi.org/10.1103/PhysRevC.97.034625
https://doi.org/10.1103/PhysRevC.100.044617
https://doi.org/10.1103/PhysRevC.100.044617
https://doi.org/10.1103/PhysRevC.100.044617
https://doi.org/10.1103/PhysRevC.100.044617
https://doi.org/10.1103/PhysRevC.29.673
https://doi.org/10.1103/PhysRevC.29.673
https://doi.org/10.1103/PhysRevC.29.673
https://doi.org/10.1103/PhysRevC.29.673
https://doi.org/10.1103/PhysRevC.33.1107
https://doi.org/10.1103/PhysRevC.33.1107
https://doi.org/10.1103/PhysRevC.33.1107
https://doi.org/10.1016/0370-1573(88)90170-6
https://doi.org/10.1016/0370-1573(88)90170-6
https://doi.org/10.1016/0370-1573(88)90170-6
https://doi.org/10.1016/0370-1573(88)90170-6
https://doi.org/10.1016/0370-1573(90)90164-W
https://doi.org/10.1016/0370-1573(90)90164-W
https://doi.org/10.1016/0370-1573(90)90164-W
https://doi.org/10.1016/0370-1573(90)90164-W
https://doi.org/10.1103/PhysRevC.31.1770
https://doi.org/10.1103/PhysRevC.31.1770
https://doi.org/10.1103/PhysRevC.31.1770
https://doi.org/10.1103/PhysRevC.31.1770
https://doi.org/10.1103/PhysRevLett.54.289
https://doi.org/10.1103/PhysRevLett.54.289
https://doi.org/10.1103/PhysRevLett.54.289
https://doi.org/10.1103/PhysRevLett.54.289
https://doi.org/10.1016/0370-2693(86)90916-0
https://doi.org/10.1016/0370-2693(86)90916-0
https://doi.org/10.1016/0370-2693(86)90916-0
https://doi.org/10.1016/0370-2693(86)90916-0
https://doi.org/10.1016/0370-1573(91)90094-3
https://doi.org/10.1016/0370-1573(91)90094-3
https://doi.org/10.1016/0370-1573(91)90094-3
https://doi.org/10.1016/0370-1573(91)90094-3
https://doi.org/10.1103/PhysRevC.38.2101
https://doi.org/10.1103/PhysRevC.38.2101
https://doi.org/10.1103/PhysRevC.38.2101
https://doi.org/10.1103/PhysRevC.38.2101
https://doi.org/10.1103/PhysRevC.41.1545
https://doi.org/10.1103/PhysRevC.41.1545
https://doi.org/10.1103/PhysRevC.41.1545
https://doi.org/10.1103/PhysRevC.41.1545
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1016/j.physrep.2011.12.001
https://doi.org/10.1016/j.physrep.2011.12.001
https://doi.org/10.1016/j.physrep.2011.12.001
https://doi.org/10.1016/j.physrep.2011.12.001
https://doi.org/10.1103/PhysRevLett.83.1295
https://doi.org/10.1103/PhysRevLett.83.1295
https://doi.org/10.1103/PhysRevLett.83.1295
https://doi.org/10.1103/PhysRevLett.83.1295
https://doi.org/10.1103/PhysRevLett.81.2438
https://doi.org/10.1103/PhysRevLett.81.2438
https://doi.org/10.1103/PhysRevLett.81.2438
https://doi.org/10.1103/PhysRevLett.81.2438
https://doi.org/10.1016/S0375-9474(99)85018-0
https://doi.org/10.1016/S0375-9474(99)85018-0
https://doi.org/10.1016/S0375-9474(99)85018-0
https://doi.org/10.1016/S0375-9474(99)85018-0
https://doi.org/10.1088/1361-6471/aac96f
https://doi.org/10.1088/1361-6471/aac96f
https://doi.org/10.1088/1361-6471/aac96f
https://doi.org/10.1088/1361-6471/aac96f
https://doi.org/10.1016/j.nuclphysa.2016.01.026
https://doi.org/10.1016/j.nuclphysa.2016.01.026
https://doi.org/10.1016/j.nuclphysa.2016.01.026
https://doi.org/10.1016/j.nuclphysa.2016.01.026
https://doi.org/10.1103/PhysRevC.38.1767
https://doi.org/10.1103/PhysRevC.38.1767
https://doi.org/10.1103/PhysRevC.38.1767
https://doi.org/10.1103/PhysRevC.38.1767
https://doi.org/10.1088/0034-4885/56/1/001
https://doi.org/10.1088/0034-4885/56/1/001
https://doi.org/10.1088/0034-4885/56/1/001
https://doi.org/10.1088/0034-4885/56/1/001
https://doi.org/10.1103/PhysRevLett.59.1084
https://doi.org/10.1103/PhysRevLett.59.1084
https://doi.org/10.1103/PhysRevLett.59.1084
https://doi.org/10.1103/PhysRevLett.59.1084
https://doi.org/10.1103/PhysRevC.37.2270
https://doi.org/10.1103/PhysRevC.37.2270
https://doi.org/10.1103/PhysRevC.37.2270
https://doi.org/10.1103/PhysRevC.37.2270
https://doi.org/10.1103/PhysRevC.39.849
https://doi.org/10.1103/PhysRevC.39.849
https://doi.org/10.1103/PhysRevC.39.849
https://doi.org/10.1103/PhysRevC.39.849
https://doi.org/10.1142/S0217732387000562
https://doi.org/10.1142/S0217732387000562
https://doi.org/10.1142/S0217732387000562
https://doi.org/10.1142/S0217732387000562
https://doi.org/10.1016/0375-9474(95)00180-9
https://doi.org/10.1016/0375-9474(95)00180-9
https://doi.org/10.1016/0375-9474(95)00180-9
https://doi.org/10.1016/0375-9474(95)00180-9
https://doi.org/10.1016/S0375-9474(98)00464-3
https://doi.org/10.1016/S0375-9474(98)00464-3
https://doi.org/10.1016/S0375-9474(98)00464-3
https://doi.org/10.1016/S0375-9474(98)00464-3
https://doi.org/10.1016/S0375-9474(99)00854-4
https://doi.org/10.1016/S0375-9474(99)00854-4
https://doi.org/10.1016/S0375-9474(99)00854-4
https://doi.org/10.1016/S0375-9474(99)00854-4
https://doi.org/10.1016/S0375-9474(02)01287-3
https://doi.org/10.1016/S0375-9474(02)01287-3
https://doi.org/10.1016/S0375-9474(02)01287-3
https://doi.org/10.1016/S0375-9474(02)01287-3
https://doi.org/10.1016/0375-9474(96)80012-G
https://doi.org/10.1016/0375-9474(96)80012-G
https://doi.org/10.1016/0375-9474(96)80012-G
https://doi.org/10.1016/0375-9474(96)80012-G
https://doi.org/10.1103/PhysRevC.61.024901
https://doi.org/10.1103/PhysRevC.61.024901
https://doi.org/10.1103/PhysRevC.61.024901
https://doi.org/10.1103/PhysRevC.61.024901
https://doi.org/10.1016/0003-4916(89)90136-X
https://doi.org/10.1016/0003-4916(89)90136-X
https://doi.org/10.1016/0003-4916(89)90136-X
https://doi.org/10.1016/0003-4916(89)90136-X
https://doi.org/10.1103/PhysRevC.52.3291
https://doi.org/10.1103/PhysRevC.52.3291
https://doi.org/10.1103/PhysRevC.52.3291
https://doi.org/10.1103/PhysRevC.52.3291
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1016/0375-9474(77)90626-1
https://doi.org/10.1016/0375-9474(77)90626-1
https://doi.org/10.1016/0375-9474(77)90626-1
https://doi.org/10.1016/0375-9474(77)90626-1
https://doi.org/10.1016/0370-2693(83)90446-X
https://doi.org/10.1016/0370-2693(83)90446-X
https://doi.org/10.1016/0370-2693(83)90446-X
https://doi.org/10.1016/0370-2693(83)90446-X
https://doi.org/10.1103/PhysRevC.38.1003
https://doi.org/10.1103/PhysRevC.38.1003
https://doi.org/10.1103/PhysRevC.38.1003
https://doi.org/10.1103/PhysRevC.38.1003
https://doi.org/10.1103/PhysRevD.18.1881
https://doi.org/10.1103/PhysRevD.18.1881
https://doi.org/10.1103/PhysRevD.18.1881
https://doi.org/10.1103/PhysRevD.18.1881
https://doi.org/10.1103/PhysRevD.18.1887
https://doi.org/10.1103/PhysRevD.18.1887
https://doi.org/10.1103/PhysRevD.18.1887
https://doi.org/10.1103/PhysRevD.18.3617
https://doi.org/10.1103/PhysRevD.18.3617
https://doi.org/10.1103/PhysRevD.18.3617
https://doi.org/10.1103/PhysRevC.93.034905
https://doi.org/10.1103/PhysRevC.93.034905
https://doi.org/10.1103/PhysRevC.93.034905
https://doi.org/10.1103/PhysRevC.93.034905
https://doi.org/10.1143/PTP.96.263
https://doi.org/10.1143/PTP.96.263
https://doi.org/10.1143/PTP.96.263
https://doi.org/10.1143/PTP.96.263
https://doi.org/10.1103/PhysRevC.79.014614
https://doi.org/10.1103/PhysRevC.79.014614
https://doi.org/10.1103/PhysRevC.79.014614
https://doi.org/10.1103/PhysRevC.79.014614
https://doi.org/10.1103/PhysRevC.87.034912
https://doi.org/10.1103/PhysRevC.87.034912
https://doi.org/10.1103/PhysRevC.87.034912
https://doi.org/10.1103/PhysRevC.87.034912
https://doi.org/10.1103/PhysRevLett.75.4007
https://doi.org/10.1103/PhysRevLett.75.4007
https://doi.org/10.1103/PhysRevLett.75.4007
https://doi.org/10.1103/PhysRevLett.75.4007
https://doi.org/10.1016/0375-9474(96)00191-1
https://doi.org/10.1016/0375-9474(96)00191-1
https://doi.org/10.1016/0375-9474(96)00191-1
https://doi.org/10.1016/0375-9474(96)00191-1
https://doi.org/10.1103/PhysRevC.76.044909
https://doi.org/10.1103/PhysRevC.76.044909
https://doi.org/10.1103/PhysRevC.76.044909
https://doi.org/10.1103/PhysRevC.76.044909


SENSITIVITY OF THE EXCITATION FUNCTIONS OF … PHYSICAL REVIEW C 100, 054902 (2019)

[77] W. Cassing, A. Palmese, P. Moreau, and E. L. Bratkovskaya,
Phys. Rev. C 93, 014902 (2016); A. Palmese, W. Cassing, E.
Seifert, T. Steinert, P. Moreau, and E. L. Bratkovskaya, ibid. 94,
044912 (2016).

[78] K. Weber, B. Blattel, V. Koch, A. Lang, W. Cassing, and U.
Mosel, Nucl. Phys. A 515, 747 (1990).

[79] T. Hirano and Y. Nara, Prog. Theor. Exp. Phys. 2012, 01A203
(2012).

[80] P. Moreau, O. Soloveva, L. Oliva, T. Song, W. Cassing, and
E. Bratkovskaya, Phys. Rev. C 100, 014911 (2019).

[81] H. Liu et al. (E895 Collaboration), Phys. Rev. Lett. 84, 5488
(2000).

[82] H. Appelshauser et al. (NA49 Collaboration), Phys. Rev. Lett.
80, 4136 (1998).

[83] P. Shanmuganathan (STAR Collaboration), Nucl. Phys. A 956,
260 (2016).

[84] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 86,
054908 (2012).

[85] A. Andronic et al. (FOPI Collaboration), Phys. Lett. B 612, 173
(2005).

[86] H. Sorge, Phys. Rev. Lett. 78, 2309 (1997).
[87] J. Chen, X. Luo, F. Liu, and Y. Nara, Chin. Phys. C 42, 024001

(2018).
[88] Y. Nara, H. Niemi, A. Ohnishi, J. Steinheimer, X. Luo, and H.

Stoecker, Eur. Phys. J. A 54, 18 (2018).
[89] Y. Nara, J. Steinheimer, and H. Stoecker, Eur. Phys. J. A 54,

188 (2018).
[90] C. Zhang, J. Chen, X. Luo, F. Liu, and Y. Nara, Phys. Rev. C

97, 064913 (2018).
[91] M. Isse, A. Ohnishi, N. Otuka, P. K. Sahu, and Y. Nara, Phys.

Rev. C 72, 064908 (2005).
[92] J. Barrette et al. (E877 Collaboration), Phys. Rev. C 56, 3254

(1997).
[93] S. He, X. Luo, Y. Nara, S. Esumi, and N. Xu, Phys. Lett. B 762,

296 (2016).
[94] J. Steinheimer, Y. Wang, A. Mukherjee, Y. Ye, C. Guo, Q. Li,

and H. Stoecker, Phys. Lett. B 785, 40 (2018).
[95] Y. Ye, Y. Wang, J. Steinheimer, Y. Nara, H. J. Xu, P. Li, D. Lu,

Q. Li, and H. Stoecker, Phys. Rev. C 98, 054620 (2018).
[96] K. Fukushima, Phys. Rev. C 91, 044910 (2015).

054902-9

https://doi.org/10.1103/PhysRevC.93.014902
https://doi.org/10.1103/PhysRevC.93.014902
https://doi.org/10.1103/PhysRevC.93.014902
https://doi.org/10.1103/PhysRevC.93.014902
https://doi.org/10.1103/PhysRevC.94.044912
https://doi.org/10.1103/PhysRevC.94.044912
https://doi.org/10.1103/PhysRevC.94.044912
https://doi.org/10.1103/PhysRevC.94.044912
https://doi.org/10.1016/0375-9474(90)90283-R
https://doi.org/10.1016/0375-9474(90)90283-R
https://doi.org/10.1016/0375-9474(90)90283-R
https://doi.org/10.1016/0375-9474(90)90283-R
https://doi.org/10.1093/ptep/pts007
https://doi.org/10.1093/ptep/pts007
https://doi.org/10.1093/ptep/pts007
https://doi.org/10.1093/ptep/pts007
https://doi.org/10.1103/PhysRevC.100.014911
https://doi.org/10.1103/PhysRevC.100.014911
https://doi.org/10.1103/PhysRevC.100.014911
https://doi.org/10.1103/PhysRevC.100.014911
https://doi.org/10.1103/PhysRevLett.84.5488
https://doi.org/10.1103/PhysRevLett.84.5488
https://doi.org/10.1103/PhysRevLett.84.5488
https://doi.org/10.1103/PhysRevLett.84.5488
https://doi.org/10.1103/PhysRevLett.80.4136
https://doi.org/10.1103/PhysRevLett.80.4136
https://doi.org/10.1103/PhysRevLett.80.4136
https://doi.org/10.1103/PhysRevLett.80.4136
https://doi.org/10.1016/j.nuclphysa.2016.04.006
https://doi.org/10.1016/j.nuclphysa.2016.04.006
https://doi.org/10.1016/j.nuclphysa.2016.04.006
https://doi.org/10.1016/j.nuclphysa.2016.04.006
https://doi.org/10.1103/PhysRevC.86.054908
https://doi.org/10.1103/PhysRevC.86.054908
https://doi.org/10.1103/PhysRevC.86.054908
https://doi.org/10.1103/PhysRevC.86.054908
https://doi.org/10.1016/j.physletb.2005.02.060
https://doi.org/10.1016/j.physletb.2005.02.060
https://doi.org/10.1016/j.physletb.2005.02.060
https://doi.org/10.1016/j.physletb.2005.02.060
https://doi.org/10.1103/PhysRevLett.78.2309
https://doi.org/10.1103/PhysRevLett.78.2309
https://doi.org/10.1103/PhysRevLett.78.2309
https://doi.org/10.1103/PhysRevLett.78.2309
https://doi.org/10.1088/1674-1137/42/2/024001
https://doi.org/10.1088/1674-1137/42/2/024001
https://doi.org/10.1088/1674-1137/42/2/024001
https://doi.org/10.1088/1674-1137/42/2/024001
https://doi.org/10.1140/epja/i2018-12413-x
https://doi.org/10.1140/epja/i2018-12413-x
https://doi.org/10.1140/epja/i2018-12413-x
https://doi.org/10.1140/epja/i2018-12413-x
https://doi.org/10.1140/epja/i2018-12626-y
https://doi.org/10.1140/epja/i2018-12626-y
https://doi.org/10.1140/epja/i2018-12626-y
https://doi.org/10.1140/epja/i2018-12626-y
https://doi.org/10.1103/PhysRevC.97.064913
https://doi.org/10.1103/PhysRevC.97.064913
https://doi.org/10.1103/PhysRevC.97.064913
https://doi.org/10.1103/PhysRevC.97.064913
https://doi.org/10.1103/PhysRevC.72.064908
https://doi.org/10.1103/PhysRevC.72.064908
https://doi.org/10.1103/PhysRevC.72.064908
https://doi.org/10.1103/PhysRevC.72.064908
https://doi.org/10.1103/PhysRevC.56.3254
https://doi.org/10.1103/PhysRevC.56.3254
https://doi.org/10.1103/PhysRevC.56.3254
https://doi.org/10.1103/PhysRevC.56.3254
https://doi.org/10.1016/j.physletb.2016.09.053
https://doi.org/10.1016/j.physletb.2016.09.053
https://doi.org/10.1016/j.physletb.2016.09.053
https://doi.org/10.1016/j.physletb.2016.09.053
https://doi.org/10.1016/j.physletb.2018.07.068
https://doi.org/10.1016/j.physletb.2018.07.068
https://doi.org/10.1016/j.physletb.2018.07.068
https://doi.org/10.1016/j.physletb.2018.07.068
https://doi.org/10.1103/PhysRevC.98.054620
https://doi.org/10.1103/PhysRevC.98.054620
https://doi.org/10.1103/PhysRevC.98.054620
https://doi.org/10.1103/PhysRevC.98.054620
https://doi.org/10.1103/PhysRevC.91.044910
https://doi.org/10.1103/PhysRevC.91.044910
https://doi.org/10.1103/PhysRevC.91.044910
https://doi.org/10.1103/PhysRevC.91.044910

