
PHYSICAL REVIEW C 100, 054620 (2019)

Isospin composition of the high-momentum fluctuations in nuclei
from asymptotic momentum distributions

Jan Ryckebusch , Wim Cosyn , Tom Vieijra, and Corneel Casert
Department of Physics and Astronomy, Ghent University, B-9000 Ghent, Belgium

(Received 6 August 2019; published 25 November 2019)

Background: High-momentum nucleons in a nuclear environment can be associated with short-range corre-
lations (SRC) that primarily occur between nucleon pairs. Observations and theoretical developments have
indicated that the SRC properties can be captured by general quantitative principles that are subject to model
dependence upon quantification. The variations in the aggregated effect of SRC across nuclei, however, can be
quantified in an approximately model-independent fashion in terms of the so-called SRC scaling factors that
capture the aggregated effect of SRC for a specific nucleus A relative to the deuteron (A-to-d).
Purpose: We aim to provide predictions for the SRC scaling factors across the nuclear periodic table and
determine the relative contribution of the different nucleon pair combinations to this quantity. We will also
determine the SRC scaling factors for both bound protons and bound neutrons and study how these quantities
evolve with the neutron-to-proton ( N

Z ) ratio in asymmetric nuclei.
Methods: We employ the low-order correlation operator approximation (LCA) to compute the SRC contribution
to the single-nucleon momentum distribution and ratios of A-to-d momentum distributions. We do this for a
sample of fifteen nuclei from He to Pb, thereby gaining access to the evolution of the SRC scaling factor with
the nuclear mass 4 � A � 208 and the neutron-to-proton ratio 1.0 � N

Z � 1.54.
Results: We provide evidence for approximate A-to-d scaling of the single-nucleon momentum distribution at
nucleon momenta exceeding about 4 fm−1. For the studied sample of fifteen nuclei, the total SRC scaling factor is
in the range 4.05–5.14, of which roughly 3 can be attributed to proton-neutron (pn) correlations. The SRC scaling
factors receive sizable contributions from pp and nn correlations. They depend on the ( N

Z ) ratio reflecting the fact
that the minority species (protons) becomes increasingly more short-range correlated with increasing ( N

Z ). We
compare the computed SRC scaling factors in the LCA with those of ab initio calculations and with measured
quantities from SRC-sensitive inclusive electron-scattering data.
Conclusions: It is shown that the LCA provides predictions for the SRC scaling factors across the nuclear table
that are in line with measured values. In asymmetric nuclei there are sizable differences between the SRC scaling
factors for protons and neutrons. It is suggested that this phenomenon may impact the variations of the magnitude
of the European Muon Collaboration (EMC) effect across nuclei. Our results corroborate the finding that SRC
physics can be qualitatively understood by universal principles that build on local modifications of mean-field
wave functions of nucleon pairs.
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I. INTRODUCTION

Nuclear short-range correlations (SRC) are a primary
source of high-momentum and high-energy spatio-temporal
fluctuations in atomic nuclei. They are connected to nucleon-
pair correlations in nuclei and induce dynamical effects that
go beyond the independent-nucleon picture of atomic nuclei
[1–4]. Throughout the last decade an improved quantitative
understanding of SRC has been accomplished thanks to con-
certed experimental efforts in exclusive and semiexclusive
electron-scattering reactions of nuclei under peculiar kinemat-
ics. The analysis of A(e, e′ pp), A(e, e′np) [5], and A(e, e′N )
reactions for example has provided detailed information on
the isospin dependence [5–9], on the quantum numbers [10],
and on the center-of-mass motion [11,12] of short-range cor-
related nucleon pairs.

There are also two known classes of inclusive electron-
scattering A(e, e′) reactions that have been connected to SRC.

In both situations the aggregated impact of SRC in nucleus
A is determined relative to the deuteron d and involves the
observation of a scaling mechanism of the ratio of the cross
sections on A relative to d . Both classes, however, refer
to different resolution scales and nucleon-momentum condi-
tions. These physical conditions are commonly quantified by
the virtuality Q2 = −qμqμ of the exchanged virtual photon
[four-momentum qμ(ω, �q) in the laboratory frame] in the
electron-nucleus interaction, and the Lorentz scalar known
as the Bjorken-Feynman variable x = Q2

2MN ω
, with MN the

nucleon mass.

(1) First, it has been observed that in well-selected
kinematics [13]—namely sufficiently small resolution
scales and x values 1.5 � x � 1.9 that single out
virtual-photon absorption on nucleon pairs—the A-
to-d (e, e′) cross sections approximately scale. The
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extraction of the scaling factor

aexp
2 (A) = 2

A

σ A(e, e′)
σ d (e, e′)

(1.5 � x � 1.9; Q2 ≈ 2 GeV2)

(1)

has been the subject of intense experimental cam-
paigns. To our knowledge, the aexp

2 (A) have been mea-
sured [14–16] for nine target nuclei: 3He, 4He, 9Be,
12C, 27Al, 56Fe, 63Cu, 197Au, 208Pb.

(2) The European Muon Collaboration (EMC) effect
refers to the observation that, at resolution scales that
probe partons (Q2 � 5 GeV2) and conditions 0.2 �
x � 0.7 (moderate- to high-momentum quarks), the
ratio of the nucleon-weighted cross sections 2

A
σ A(e,e′ )
σ d (e,e′ )

depends on the target nucleus. This observation is
commonly parametrized by means of the quantity

bexp
2 (A) ≡ −dREMC(A, x)

dx

= −
d
(

2F A
2 (x,Q2 )

AF d
2 (x,Q2 )

)
dx

(0.2 � x � 0.7; Q2 � 5 GeV2), (2)

where one has that σ A(e, e′) ∼ F A
2 (x, Q2). The bexp

2 (A)
have been measured for the same nine target nuclei
for which aexp

2 (A) data are available. It came as a
rather big surprise [17–19] that within the error bars
the size of the EMC effect parameterized by bexp

2 (A) is
roughly linearly correlated with the measured values
of aexp

2 (A).

As it is inherently challenging to compute the coefficients
bexp

2 (A) and aexp
2 (A) from ratios of computed σ A(e, e′) and

σ d (e, e′) cross sections in selected but large ranges of phase
space, one has resorted to alternate techniques to gain theoret-
ical access to their values. It has been argued that theoretical
predictions for the aexp

2 (A) [and indirectly for the bexp
2 (A)] can

be obtained by evaluating ratios of bound-nucleon probability
distributions in the limits of vanishing relative distance r12, or,
equivalently, infinitely high relative momentum p12:

a2(A) = lim
r12→0

ρA(r12,�)

ρd (r12,�)
, (3)

a2(A) = lim
p12→∞

nA(p12,�)

nd (p12,�)
. (4)

Here, the ρA(r12,�)r2
12dr12 is related to the probability

of finding a nucleon pair in A with a relative separation
r12 = |�r1 − �r2| in the interval [r12, r12 + dr12]. Similarly, the
nA(p12,�)p2

12d p12 is related to the probability of finding a
nucleon pair in A with a relative momentum p12 = | �p1 − �p2|
in the interval [p12, p12 + d p12]. The validity of the Eqs. (3)
and (4) is very much based on the idea that the very short
internucleon behavior in nuclei is characterized by universal
functions that simply differ across nuclei by a scaling factor
that relates to the measured aexp

2 (A). In coordinate space this
property can be captured by the factorization expression

ρA
NN ′∈{pn,pp,nn}(r12�r�,�)≈CA

NN ′ (�)|ψNN ′ (r12,�)|2. (5)

The r� is of the order of 1 fm. Its precise value is connected
with the ultraviolet regulator scale � implicit for a particular
nucleon-nucleon interaction model, and the larger � is, the
smaller r� is [20]. Further, the variation across nuclei is con-
tained in the factor CA

NN ′ (�), whereby the index NN ′ accounts
for variations in the scaling factors across the different types
of nucleon pairs. The quantities CA

NN ′ (�) are often referred
to as the “contacts” for NN ′ pairs [21–24]. The distributions
in Eqs. (3) and (4) are model dependent [20,25], an aspect
that is highlighted by the label �. By evaluating A-to-d
ratios as in Eqs. (3) and (4), however, one can gain access
to quantities that are approximately model-independent and
forge connections with measured quantities. The model inde-
pendence of the ratio of Eqs. (3) can be intuitively understood
by realizing that for a given nucleon-nucleon interaction the
highly local positional neighborhood of a nucleon in nucleus
A is not very different from the one of a nucleon in the
deuteron.

A major challenge is to isolate the generative mechanisms
in the scaling factors aexp

2 (A) and bexp
2 (A). For example, the

isospin dependence of the size of the EMC effect bexp
2 (A) pro-

vides access to the important issue of the flavor dependence
in nuclear quark distributions [26,27], and has been a subject
of recent debates [16,28,29]. Access to these issues can be
gained from determining the contribution of the different
nucleon pair combinations to the short-distance modifications
of nucleons embedded in a nuclear environment. This is the
major topic of investigation in this paper.

Ab initio low-energy nuclear theory has been used to
compute the a2(A) for a number of light nuclei with A � 40
[20,30]. The calculations use advanced importance-sampling
based quantum many-body theories [31–33] in combination
with various forms of nucleon-nucleon (NN) interactions to
determine the limr12→0

ρA(r12,�)
ρd (r12,�) of Eq. (3). These calculations

have also shed light on the appropriateness of the expression
(3) and the sensitivity to the adopted model “�”. The 40Ca
result in Fig. 3 of [20] has illustrated that the proposed A-
to-d scaling for the relative density distribution at very short
internucleon distances is approximate. Also the shrinking
size of phase space for limr12→0 poses challenges for the
importance-sampling techniques. The (generalized) contact
formalism [21–24,34] builds on the Eq. (5) to construct
pair-density functions and correlation functions for the pp,
nn, and pn pairs. The contact formalism can be applied to
heavy nuclei (A > 40) but requires input either from data
[5] or from computed momentum distributions [22,24]. As
A > 40 ab initio calculations are not available, no systematic
predictions for the SRC scaling factor for medium-heavy and
heavy nuclei have been produced so far.

The low-order correlation operator approximation (LCA)
as proposed in [35,36] is an alternate approximate method to
compute the impact of SRC on nuclear momentum distribu-
tions. Recently, we have shown [36] that LCA can reproduce
the major trends of the observed N/Z dependence of SRC
[9]. In line with the results of alternate calculations [37,38],
LCA accounts for the fact that, through the operation of the
tensor force, the minority component (protons) is substantially
more correlated than the majority component (neutrons) in
asymmetric nuclei.
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In this work we present a systematic study of the SRC
scaling factors based on the asymptotic high-momentum be-
havior of single-nucleon momentum distributions computed
in LCA. We include fifteen nuclei in our study, including eight
for which aexp

2 (A) and bexp
2 (A) data are available. One of the

major goals of the presented study is to uncover the trends
in the isospin (flavor) composition of the high-momentum
(short-distance) behavior of nuclei. To this end, we have
included both symmetric ( N

Z = 1) and asymmetric ( N
Z > 1)

nuclei, providing a window on asymmetric neutron-rich mat-
ter [39]. The selection of nuclei was not random but was
made on the basis of reaching a good coverage of both the
mass dependence (4 � A � 208) and the neutron-to-proton
dependence (1 � N

Z � 1.54) of SRC. The four symmetric
nuclei that are contained in our study are 4He, 12C, 16O, 40Ca.
The eleven asymmetric ones are 9Be, 27Al, 40Ar, 48Ca, 56Fe,
63Cu, 84Kr, 108Ag, 124Xe, 197Au, 208Pb. With the presented
calculations we can also address questions like (i) the degree
of validity of the scaling behavior of the Eq. (4) and (ii) to
what extent do the short-distance modifications affect protons
and neutrons differently in asymmetric nuclear matter.

In what follows, Sec. II A introduces the LCA method for
computing the SRC contribution to single-nucleon momen-
tum distributions. In Sec. II B we discuss the pair composition
of the SRC part of the nucleon momentum distributions
and forge connections to measured quantities from exclusive
electroinduced two-nucleon knockout. In Sec. II C we proceed
with presenting and discussing the LCA results for the SRC
scaling factors for 15 nuclei. We have included checks and
balances and compared the computed SRC scaling factors
with both data and theoretical results of ab initio calculations.
We also conduct robustness checks of the presented method-
ology by testing the sensitivity of the SRC scaling factors to
the momentum range that determines the “asymptotic part”
of the single-nucleon momentum distribution. Section II D
focuses on the differences in the SRC scaling factors for
proton and neutrons in asymmetric nuclei. In Sec. II E we
exploit the conjectured relationship between the size of the
EMC effect and the SRC scaling factors to shed light on the
isospin dependence of the underlying (unknown) generative
mechanisms.

II. FORMALISM AND RESULTS

A. Single-nucleon momentum distributions

The LCA is a methodology with applications in nuclear
reactions and nuclear structure. In LCA one can compute
the observables for SRC dominated nucleon knockout reac-
tions [10,40–43]. Furthermore, the impact of SRC on nuclear
momentum distributions [35,36] can be quantified across the
nuclear mass range because even for the heaviest nuclei the
numerical calculations are manageable. Central to the results
of this work is the single-nucleon momentum distribution, that
is generally defined as

nA( �p) ∼ 〈�A|a†
�p a �p|�A〉, (6)

with |�A〉 the ground-state wave function of nucleus A. In
LCA, the complexity of the calculation is shifted from the

wave functions to the operators. The complicated |�A〉 is
obtained from a simple wave function |�A〉 through the action
of an operator:

|�A〉 = 1√
〈�A|Ĝ†Ĝ|�A〉

Ĝ|�A〉, (7)

where |�A〉 is a Slater determinant wave function for nucleus
A, and Ĝ is an operator that accounts for the SRC correlations.
In LCA, we account for the central (Jastrow), tensor and spin-
isospin SRC correlations:

Ĝ = Ŝ
⎛
⎝ A∏

i< j=1

[1 − gc(ri j ) + ftτ (ri j )̂Si j �τi · �τ j

+ fστ (ri j )�σi · �σ j �τi · �τ j]

⎞
⎠

= Ŝ
⎛
⎝ A∏

i< j=1

[1 + Ĝi j (ri j )]

⎞
⎠, (8)

where Ŝ and Ŝi j are the symmetrization and tensor operators.
In computing the nA( �p) in LCA all terms are included up to
order O(G2), which implies that the impact of SRC on nA( �p) is
included as two-body operators. The momentum distribution
nA( �p) is then the sum of two terms [see also the diagrams (b)
and (c) of Fig. 1],

nA( �p) = nA
IPM( �p) + nA

SRC( �p) + O(G3). (9)

The first term nA
IPM (IPM stands for independent particle

model) is reminiscent of independent nucleons:

nA
IPM( �p) ∼

∑
N∈{p,n}

∑
α

〈Nα|a†
�p a �p|Nα〉, (10)

where α extends over all occupied single-particle states in the
Slater determinant |�A〉. The second term is the result of the
SRC operators of Eq. (8). It is determined by two-nucleon
contributions, of which the dominant contribution is of the
form [see also diagram of Fig. 1(c)]

nA
SRC( �p)∼

∑
NN ′∈{p,n}

∑
αβ

∑
�K �k �k′

Ĝ†
12

( �K
2

+�k− �p
)
Ĝ12

( �K
2

+�k′− �p
)

×〈Nα, N ′β|a†
�K
2 +�k a†

�K
2 −�k a �K

2 +�k′ a �K
2 −�k′ |Nα, N ′β〉.

(11)

For the sake of simplicity of the notation we make an abstrac-
tion of the spin- and isospin dependence of the above two-
body matrix elements. Note that in computing the nA

SRC( �p)
one integrates over the center-of-mass momentum �K of the
correlated pair, as well as over the relative momenta �k and �k′.
The neglected terms of order O(G3) in Eq. (9) include three-
body correlations. The computation of those terms across the
nuclear mass table is computationally prohibitive. There are
indications, however, that the effect of three-nucleon correla-
tions in the tail part of the nA( �p) is relatively small. Direct
evidence comes from nuclear-matter calculations where the
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FIG. 1. Schematic representation of the dominant contributions to the single-nucleon momentum distribution nA( �p) [defined in diagram
(a)] in LCA. The nA( �p) quantifies the probability of removing from the nuclear ground state a momentum �p at a certain location �r and putting
it instantly back at another location �r ′ for all possible combinations of �r and �r ′. The black dashed lines denote IPM nucleons: they are
characterized by their isospin N, N ′ ∈ {p, n} and other IPM quantum numbers α, β. The purple dotted lines denote the correlation operators
in Eq. (8). Diagram (b) is the IPM contribution expressed in the format of Eq. (13). The IPM contribution dominates for p < pF . Diagram
(c) represents one of the SRC contributions between nucleon pairs [see Eq. (11)] and provides the bulk of the strength to nA( �p) for p > pF .

impact of three-nucleon effects has been studied [44]. Indirect
theoretical evidence for the dominant role of two-nucleon
correlations stems from the fact that quantum Monte Carlo
calculations for light nuclei, that include all possible dia-
grams, provide strong indications for A-to-d scaling in the tail
part of nA( �p) [33].

We restrict ourselves to spherically symmetric nuclei
nA

SRC(p) ∼ nA
SRC( �p). Of high relevance for the isolation of the

isospin composition of SRC is that both contributions (10) and
(11) to nA(p) can be written as a sum of four terms:

nA(p) ≡ nA
pp(p) + nA

pn(p)︸ ︷︷ ︸
nA

p (p) (proton part)

+ nA
nn(p) + n[1]

np (p)︸ ︷︷ ︸
nA

n (p) (neutron part)

. (12)

As schematically shown in Fig. 1 the separation in the four
pair combinations can done for both the IPM and the SRC
contribution in Eq. (9). For the SRC contribution of Eq. (11)
the pairs Nα, N ′β in the matrix elements give rise to the
four pair combinations considered. In order to identify the
pair combinations to the IPM contribution, one can rewrite
Eq. (10) as

nA
IPM( �p) ∼

∑
N∈{p,n}

∑
N ′∈{p,n}

∑
α

∑
β

∑
�p′

× 〈Nα|a†
�p a �p|Nα〉〈N ′β|a†

�p′ a �p′ |N ′β〉. (13)

Herein, the summations
∑

N∈{p,n}
∑

N ′∈{p,n} naturally give rise
to four pair combinations. Note that in identifying the different
pair combinations contributing to nA(p) in the IPM, one
integrates over the momentum of the second nucleon N ′β. We
adopt the normalization convention

∫
d p p2nA(p) = A. In the

adopted LCA, the four pair combinations stemming from pp,
pn, nn and np contribute respectively fractions Z (Z−1)

(A−1) , NZ
(A−1) ,

N (N−1)
(A−1) , and NZ

(A−1) to the total norm A of nA(p). These normal-
izations are not artificially imposed but obtained by expanding
the matrix element of 〈�A|Ĝ†Ĝ|�A〉 in the denominator in
Eq. (7) up to the second order in the correlation operator [35].

One finds

〈�A|Ĝ†Ĝ|�A〉 = A + CA + O(G3), (14)

where CA can be interpreted as a measure for the aggregated
effect of SRC in nucleus A(N,Z) [35].

Of great relevance for reactions involving nuclear targets is
the probability distribution

PA(p) = p2nA(p)/A

(∫
d pPA(p) = 1

)
(15)

to find a nucleon with momentum p in A(N, Z ). An immediate
consequence of Eq. (12) is that

PA(p) = PA
pp(p) + PA

pn(p)︸ ︷︷ ︸
PA

p (p) (proton part)

+ PA
nn(p) + PA

np(p)︸ ︷︷ ︸
PA

n (p) (neutron part)

. (16)

The correlation functions in Eq. (8) are input to the LCA
approach. We adopt a data-driven methodology and use a
set that has been systematically tested in comparisons of
reaction-model calculations and SRC-driven data [10,45–47].
The ftτ (r12) and fστ (r12) correlation functions are from a
variational calculation [48]. An analysis of 12C(e, e′ pp) [45]
and 16O(e, e′ pp) [47] experimental results systematically ex-
cluded “soft” central correlation functions gc and preferred a
“hard” gc(r12) inferred from a G-matrix calculation with the
Reid soft-core interaction in nuclear matter [49].

Different interactions generate different correlations—
particularly for the central ones—and are sources of theoreti-
cal uncertainties in LCA. In Ref. [36] we have presented LCA
results with the “hard” gc from [49] and the “soft” gc from
[48] that are consistent with the adopted ftτ and fστ . The
choice of the gc mainly affects the highest momentum parts
of the single-nucleon momentum distributions. We found,
however, that for light and medium-heavy nuclei the LCA in
combination with the “hard” gc produces nA( �p) that are in line
with those from quantum Monte Carlo calculations with the
effective AV18 NN interaction. In addition, many extracted
SRC properties are obtained from ratios of nA( �p) for which the
sensitivity to the choice of the gc is at the percent level [36].
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FIG. 2. The probability distribution PA(p) of finding a nucleon with momentum p as computed in LCA for four nuclei. The separate
contributions from the four possible NN ′ combinations detailed in Eq. (16) are shown together with the total. For 40Ca we compare the LCA
result for PA(p) with the one from the Argonne group obtained with the effective AV18 nucleon-nucleon interaction [33].

In this work, all calculations are performed in coordinate
space with a “hard” gc and harmonic oscillator (HO) single-
particle states |Nα〉 as they offer the possibility to separate
the pair’s relative and center-of-mass motions in the pair wave
functions |Nα, N ′β〉 of Eq. (11) with the aid of Moshinsky
brackets. As the major purpose of this study is to determine
the systematic properties of the SRC scaling factors and their
pair composition, we use the HO parameters from the global
parametrization h̄ω = 45A− 1

3 − 25A− 2
3 . More advanced cal-

culations could find the optimum HO parameter for each spe-
cific nucleus, but this complication is beyond the scope of the
current paper. It has been numerically shown [11,35,40,42,50]
and experimentally confirmed [10,47] that the major source
of SRC strength stems from correlation operators acting on
IPM pairs in a nodeless relative S state. This can be intuitively
understood by noting that the probability of finding close-
proximity IPM pairs is dominated by pairs in a nodeless
relative S state. Those S wave functions are not very sensitive
to the details of the mean-field potential, which partially
explains the robustness of the SRC properties in nuclei.

Figure 2 displays the probability distributions PA(p) of
Eq. (16) for four nuclei out of our sample of fifteen nuclei.
In essence, there are two separated momentum regimes in the
probability distributions. The underlying generative dynamics
for the observed p dependence has been discussed in great

detail in Refs. [35,36]. Summarizing, the low-momentum part
is reminiscent of the independent-particle model. The high-
momentum regime is characterized by a fat tail that displays a
universal momentum dependence across the different nuclei.
The pair composition of the low-momentum regime is roughly
determined by the combinatorics imposed by the neutron and
the proton numbers N and Z . In the SRC regime, on the
other hand, there is an obvious proton-neutron dominance.
As one approaches the highest momenta studied here, the
proton-proton and neutron-neutron parts gain in relative im-
portance relative to the dominant pn contribution. There is a
degree of model-dependence in the probability distributions
PA(p) of Fig. 2 [25,36,51]. Inclusion of SRC physics through
the operators of Eq. (8) preserves the long-distance physics,
which makes the momentum dependence of the probability
distributions below the Fermi momentum pF = 1.25 fm−1

independent of the choices made with regard to the correlation
operators. For p < pF the major effect of the SRC correlations
is to deplete the PA(p < pF ) with a scaling factor that is
model dependent. As we have shown in Ref. [36] the high-
momentum tail PA(p � 2 fm−1) displays some sensitivity to
the choices made with respect to the correlation functions. For
40Ca—the heaviest nucleus for which ab initio momentum
distributions are available—we can compare the LCA result
for PA(p) with the one obtained with quantum Monte Carlo
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FIG. 3. The nuclear mass dependence of the ratios (in percent units) of pp-to-pn SRC correlated pairs in two momentum ranges above
the Fermi momentum pF . The blue circles are LCA predictions based on the ratio of the pp and pn contributions to the PA(p) in the selected
momentum ranges. The data are from Ref. [5].

methods using a realistic phenomenological NN interaction
[33]. We observe a fair agreement, providing confidence in
our approach. In the following Sec. II B we connect the LCA
predictions for the pair composition of the SRC tail of PA(p)
to recent A(e, e′np) and A(e, e′ pp) data.

B. Tail part of single-nucleon momentum distributions

The relative weight of the pp and pn correlations in
the tail of the momentum distribution can be “measured”
by evaluating the ratio of the triple-coincidence A(e, e′ pp)
and A(e, e′np) cross sections in a large-acceptance detector,
thereby probing a large fraction of the phase space and impos-
ing kinematical cuts selecting initial 2N SRC pairs [5]. This
amounts to evaluating a cross-section ratio of the form

σen

2σep

σA(e, e′ pp)

σA(e, e′np)
∼ Probability for pp SRC pair in A

Probability for pn SRC pair in A
. (17)

Here, σep (σen) denotes the off-shell electron-proton (electron-
neutron) cross section and σA(e, e′NN ′) is the cross section
for NN ′ knockout [where typically the “fast” nucleon has
pN � pF and the recoil nucleon of the SRC pair has pN ′ =
O(pF )] aggregated over a certain initial-nucleon momentum
range. The above ratio of probabilities can be made condi-
tional on certain constraints, for example with regard to the
initial nucleon momenta where the picture is adopted that
the “fast” nucleon N has absorbed the virtual photon. As
experiments probing SRC quantities often tag the momentum
of the “active” nucleon and require events with an inactive
A−2 core, the single-nucleon momentum distribution [see
diagram (c) in Fig. 1] offers many opportunities for theory-
experiment comparisons [36]. The theoretical counterpart
of the ratio (17) reads

C
∫ ph

pl
d pPA

pp(p)∫ ph

pl
d p

[
PA

np(p) + PA
pn(p)

] , (18)

where pl and ph are determined by the experimental cuts for
the inferred initial-nucleon momenta. The ratio of Eq. (17) has

recently been measured for carbon, aluminium, iron, and lead
for two initial momentum ranges [pl , ph] [5]. We use Eq. (18)
to compare those data to the LCA predictions. The results
for the other 11 nuclei in our sample provide more detailed
information about the variations across nuclei. The results of
the theory-experiment comparisons are summarized in Fig. 3.
Apart from effects stemming from detector efficiencies for
example, an important contribution to the factor C in the
above equation are the final-state interactions (FSI). Atten-
uation will roughly equally affect protons and neutrons at
the kinetic energies considered [52]. Single-charge exchange
(SCX), however, is an important correction factor [42] when
extracting SRC information for two-nucleon knockout reac-
tions. Indeed a considerable amount of detected pp knockout
events originate from virtual-photon absorption on pn SRC
pairs. In Fig. 3 an overall reduction factor C = 0.5 in the
theoretical ratio of Eq. (18) is used. In line with the data,
the LCA predictions for the number of pp-to-pn SRC pairs
are fairly constant among the fifteen nuclei in our sample
and increase with increasing nucleon momentum. For a fixed
momentum range, the variation in the predicted pp-to-pn SRC
pair ratios across nuclei is of the order of few percent, in line
with the experimental observations.

The experimentally determined aexp
2 (A) of Eq. (1) is ex-

tracted from ratios of A-to-d (e, e′) cross sections. In the
impulse approximation, those cross sections can be computed
by integrating the phase-space weighted momentum distribu-
tions over selected ranges R determined by experimentally
imposed conditions:

aexp
2 (A) = 2

A

σ A(e, e′)
σ d (e, e′)

∼ 2

A

∫
R d p p2nA(p)∫
R d p p2nd (p)

∼
∫
R d p PA(p)∫
R d p Pd (p)

.

(19)

Here, R is the momentum range that corresponds to high
initial-nucleon momenta and constant A-to-d (e, e′) cross
sections. As those conditions can be associated with the tail
part of the probability distributions of Fig. 2, an estimate of
the aexp

2 (A) of Eq. (19) can be obtained from the ratio of the
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FIG. 4. LCA results for the the SRC scaling factors a2(A) (or-
ange open diamonds) along with the separate pp (blue open trian-
gles), nn, and pn (purple solid circles) contributions plotted versus
atomic weight A. The shaded regions mark the pn (blue) and the
pp + nn (green) contributions. All results are computed from the
A-to-d weight of the tail part (p > 2 fm−1) of the nucleon probability
distribution PA(p) [see Eq. (20)]. All PA(p) (including the deuteron
one) are computed in LCA. The aexp

2 (A) data are from the extended
data tables of Ref. [16] and include data from Ref. [15].

weights in the tail parts of the computed PA(p)

a2(A) =
∫

p>2 fm−1 d p PA(p)∫
p>2 fm−1 d p Pd (p)

. (20)

With the aid of the decomposition (16), the contribution
of the pp, nn, and pn + np pairs to the numerator can be
computed and the isospin composition of the SRC can be
quantified. The denominator of Eq. (20) accounts for the
weight of the tail part of the deuteron momentum distribu-
tion. Obviously, this number is model dependent [51,53]. For
example, the denominator is 0.127 with the AV18 deuteron
momentum distribution, and 0.103 with the LCA deuteron
momentum distribution. These numbers correspond with the
tail part carrying about 10–13% of the total probability in
the deuteron. In Fig. 4 we present results of the above ratio
for the 15 nuclei in our sample. For reasons of consistency,
the deuteron probability distribution used is also computed in
LCA. From 4He to 208Pb the SRC scaling factor as computed
with the aid of the Eq. (20) has an increment of about 25%—
from ≈3.8 to ≈4.8—indicative of a very soft A dependence
that is also observed in the data. The soft A dependence of
the a2 can be intuitively understood by considering that a2

is determined by the local neighborhood of a nucleon. For
light nuclei and increasing A � 20, the local neighborhood
gradually fills up to reach approximate saturation for A � 20.
In the A-to-d ratio the pn + np contribution is about 70% of
the total value and the pp part is of the order of 10%. For
N
Z = 1 the pp and nn parts equally contribute. For 197Au and
208Pb, the two most asymmetric nuclei in our sample, the nn
contribution approaches 20% of the total. These numbers are

to be compared to N (N−1)
A(A−1) = 0.36 and 0.37, and are indicative

of the isospin selectivity of the SRC. In comparing the LCA
predictions to the data it is important to realize that there are
corrections to be applied, for example stemming from the
center-of-mass motion of the NN pairs [15,54] and the fact
that in a finite nucleus pairs can have excitation energies [55].
These corrections require either a full reaction model or a
detailed Monte Carlo simulation and are outside the scope of
this work.

C. Asymptotic single-nucleon momentum
distributions and SRC scaling factors

In what follows we extract the SRC scaling factors a2 from
the asymptotic behavior of the A-to-d momentum distribu-
tions. The SRC scaling factors extracted from this method will
be compared with those from Fig. 4 that use the aggregated
weight in the SRC part of the PA(p). With this comparison
we explore the sensitivity of our methodology to the choices
made with regard to the limits of integration in the tail parts
of the single-nucleon momentum distributions. We start with
studying the momentum dependence of the A-to-d probability
distributions to identify the momentum ranges for which an
A-to-d scaling behavior emerges. In Fig. 5 we display the
momentum dependence of the four ratios

PA(p)

Pd (p)
,

[
PA

pn(p) + PA
np(p)

]
Pd (p)

,
PA

nn(p)

Pd (p)
,

PA
pp(p)

Pd (p)

for our sample of fifteen nuclei. For each value of the momen-
tum p, the PA(p)

Pd (p) provides the ratio of the per-nucleon proba-
bility of finding a nucleon in A(N, Z ) relative to the deuteron.
Obviously, any deviation from 1 is a measure of the medium
dependence of the nucleon probabilities. The increased A-to-d
relative probability PA

Pd for 0.75 � p � 1.65 fm−1 is connected
to Fermi motion in finite nuclei. In that momentum range
the pp, nn, and pn contribute to PA

Pd roughly in accordance
to their weight in A(A−1)

2 . At p � 2.25 fm−1 one observes

a plateau in the PA(p)
Pd (p) that extends to the highest momenta

studied here. The plateau is characterized by an approximately
universal momentum dependence of the A-to-d ratio PA(p)

Pd (p) at
high momenta. Variations across nuclei can be captured by
an SRC scaling factor that depends on A(N, Z ). The onset
of a plateau in the high-momenta results of PA(p)

Pd (p) in Fig. 5
provide support for the use of Eq. (4) for extracting the
SRC scaling factor. Indeed, in the limit of very high nucleon
momenta, relations between single-nucleon and two-nucleon
momentum distributions can be established [22]. The major
trends in the A-to-d ratios of Fig. 5 are in line with those
of a study for six nuclei with A � 10 reported in [22]. The
numerical calculations of that study also identify the p �
4 fm−1 region as the one suitable for extracting the A-to-d
SRC scaling factor.

The SRC scaling factor extracted from the “high-
momentum” (p ≈ 4.5 fm−1) behavior of PA(p)

Pd (p) for the total

probability distribution for 4He is about 4. For the lightest
nuclei in our sample—9Be, 12C, 16O, 27Al—the SRC scaling
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FIG. 5. The nucleon momentum dependence of the ratio of the single-nucleon momentum distribution for nucleus A relative to the deuteron.
Ratios are shown for the total momentum distribution, the sum of the proton-neutron and neutron-proton contributions, and the neutron-neutron
and proton-proton contributions. All the nucleon momentum distributions (including the deuteron one) are computed in LCA. Note that the
y-axis scale for the nn and pp contributions (bottom figures) is different from the one used for the “total” and ‘‘pn + pn” ones (top figures).
The grey shaded area shows the momentum range where Fermi motion dominates the displayed A-to-d momentum distributions.

factor increases with A to reach the value of approximately
4.8 for 27Al. Small increments in the high-momentum values
of PA(p)

Pd (p) with increasing mass are observed for A > 27.
A closer look at the pp, nn, and pn + np contributions

to the PA(p)
Pd (p) in Fig. 5 indicates that the onset of the high-

momentum plateau is most prominent for the pn + np parts.
For the pp and nn contributions to PA(p)

Pd (p) the high-momentum
scaling is not so pronounced as for the pn + np parts but
there are indications that also these two ratios approximately
saturate for p � 4 fm−1. After all, this is not so surprising
given that there are no proton-proton and neutron-neutron
correlations in the deuteron. Along the same lines, there are
stronger variations for the pp and nn contributions to PA(p)

Pd (p)
across nuclei than for the pn + np contribution. The variation
in the pp and nn contribution to the A-to-d SRC scaling
factor cannot be captured by an A dependence. In Sec. II D
it will be shown that the N/Z ratio plays an important role
in explaining those variations. For the pn + np parts the A-
to-d SRC corrections at nucleon momenta p � 4 fm−1 are
substantially larger than the corrections attributed to the Fermi
motion in the 0.75 � p � 1.65 fm−1 range. For the pp and
nn parts, on the other hand, the SRC A-to-d modifications
are of the same order as the ones attributed to Fermi motion.
Following up on the above discussion about the fact that the

PA
pp(p)

Pd (p) and PA
nn(p)

Pd (p) plateaus are not really very flat at high nucleon

momentum, we have confirmed that the corresponding
PA

pp(p)

P4He(p)

and PA
nn(p)

P4He(p)
plateaus are far more flat.

The results of Fig. 5 provide support for extracting to A-to-
d SRC scaling factor from the high-momentum behavior of
the ratio

a2(A) = lim
high p

PA(p)

Pd (p)
, (21)

where “high p” stands for the momentum range for which
a plateau in the A-to-d momentum distribution is visible.
We stress that the above expression for a2(A) is similar in
vein to the ones of Eqs. (3) and (4) that have been derived
within the context of effective field theories (EFTs) [20,30]
and of the contact formalism [21,23,24]. The following results
are computed in the spirit of the expression (21) whereby
we have defined “high p” as being well into the asymp-
totic p region of the A-to-d momentum distributions (see
Fig. 5). As is clear from Fig. 5 the plateau in the A-to-
d probability distributions can be clearly identified for the
dominant pn contribution. For the pp and nn parts, on the
other hand, the A-to-d scaling is approximately realized but at
the highest p there are indications of saturation. Therefore, the
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FIG. 6. LCA results for the the SRC scaling factors a2(A) (or-
ange open diamonds) along with the separate pp (blue open trian-
gles), nn (brown stars), and pn (purple solid circles) contributions
plotted versus atomic weight A. The shaded regions mark the pn
(blue) and the pp + nn (green) contributions. All results are obtained
from the asymptotic high-p behavior of the A-to-d single-nucleon
nucleon momentum distribution PA(p) [see Eq. (21) and text for
details]. All PA(p) (including the deuteron one) are computed in
LCA. The aexp

2 (A) data are from the extended data tables of Ref. [16]
and include data from Ref. [15].

“high-p limit” limhigh p of the A-to-d probability distributions
of Eq. (21) was numerically evaluated by means of the ratios

a2(A) = lim
high p

PA(p)

Pd (p)
≈

∫
�phigh d p PA(p)∫
�phigh d pPd (p)

. (22)

Similar expressions are used to evaluate the limhigh p of the

ratios
PA

pp

Pd , PA
nn

Pd ,
PA

np

Pd , and
PA

pn

Pd . Based on the location of the
occurrence of the plateaus in Fig. 5 the range �phigh of high-
p values is [phigh

l , phigh
u ] with phigh

l > 3.8 fm−1 and phigh
u <

4.5 fm−1. In the process of selecting the boundaries of the
range �phigh we have also taken into consideration the good
practice of keeping the nucleon momenta smaller than the
nucleon mass in nonrelativistic calculations. The range �phigh

is of the order of 100 MeV. There are some systematic uncer-
tainties in our approach that are connected with the selection
of the “high-momentum” regime. Referring to the results of
Fig. 5, the highest uncertainty stems from the nn contribution.
A very conservative estimate of the error induced by defining
a “high-p” regime of the ratios of A-to-d is that it induces an
uncertainty in the extracted ap

2 and an
2 of the order of 0.50,

which corresponds to an error of about 10%.
Figure 6 shows the SRC scaling factors as computed with

the aid of the expression (22) for the fifteen nuclei in our
sample. We provide the total SRC scaling factor as well as the
separated proton-proton, neutron-neutron, and proton-neutron
contributions to it. The results can be compared with those
of Fig. 4 that use the aggregated weight in the SRC part of
the momentum distributions [Eq. (20)]. All in all, the two
methods to determine the SRC scaling factors a2(A) provide

FIG. 7. Comparison of the LCA results for the SRC scaling fac-
tors a2(A) with those from ab initio calculations and with measured
values. The ab initio results are from Table II of Ref. [20] (results
referred to as “N2LO Eτ R0 = 1.0 fm” except for 40Ca where the sole
available ab initio result uses the “AV4′ + UIXc” nucleon-nucleon
interaction). The aexp

2 (A) data are from the extended data tables of
Ref. [16] and include data from Ref. [15].

comparable predictions for all nuclei considered in this work.
The method based on the evaluation of the high-p limit of
PA(p)
Pd (p) tends to predict larger pp and nn contributions to a2(A).
In essence, Figs. 4 and 6 use different ranges of integration
(p > 2 fm−1 and 3.8 < p < 4.5 fm−1) to determine the a2(A).
The difference between the extracted numbers can be seen
as a measure for the sensitivity to the adopted ranges of
integration in the tail parts of the single-nucleon momentum
distributions.

Figure 7 compares the LCA results for a2 using Eq. (21)
with those from ab initio calculations and data. Within the
error bars the LCA results are compatible with those from
ab initio calculations and the data. For 40Ca and 48Ca we
predict a2 = 4.99 and a2 = 4.89. The heaviest nucleus for
which ab initio results are available is 40Ca, and the LCA
result of 4.99 compares well with the ab initio result of
5.15 ± 0.67. The LCA prediction for 12C (a2 = 4.48) is in
line with the measured values: aexp

2 = 4.49 ± 0.17 [16] and
aexp

2 = 4.75 ± 0.16 [17].

D. Proton and neutron SRC scaling factors
for symmetric and asymmetric nuclei

In an asymmetric N 
= Z nuclear environment one can
anticipate that the A-to-d SRC scaling factors are different
for protons and neutrons [36]. In order to quantify this and
gain better insight into the N

Z dependence of the SRC scaling
factors, we introduce

a2(A) = lim
high p

PA(p)

Pd (p)
= lim

high p

PA
p (p) + PA

n (p)

Pd (p)

≡ Zap
2 (A) + Nan

2(A)

A
. (23)
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TABLE I. Results for the proton and neutron SRC scaling factors ap
2 and an

2 and related quantities as computed in LCA for a sample of
15 nuclei. The ap

2 and an
2 are computed with the aid of Eq. (25). The − dREMC

dx are computed with the aid of Eq. (28).

Nucleus N
Z ap

2 an
2

Zap
2+Nan

2
A aexp

2
Zap

2−Nan
2

A − dREMC
dx bexp

2

4He 1.00 4.05 4.05 4.05 3.60 ± 0.10 [17] −0.00 0.268 0.207 ± 0.025 [56], 0.222 ± 0.045 [57]
9Be 1.25 4.37 3.97 4.15 3.91 ± 0.12 [17] −0.26 0.336 0.326 ± 0.026 [56], 0.283 ± 0.028 [57]
12C 1.00 4.48 4.48 4.48 4.75 ± 0.16 [17] −0.00 0.306 0.340 ± 0.022 [16], 0.285 ± 0.026 [56],

4.49 ± 0.17 [16] 0.322 ± 0.033 [57]
16O 1.00 4.73 4.73 4.73 −0.00 0.328
27Al 1.08 4.83 4.69 4.76 4.83 ± 0.18 [16] −0.10 0.354 0.347 ± 0.022 [16]
40Ar 1.22 5.15 4.72 4.92 −0.28 0.408
40Ca 1.00 4.99 4.99 4.99 −0.00 0.351
48Ca 1.40 5.33 4.59 4.89 −0.46 0.446
56Fe 1.15 5.13 4.83 4.97 4.80 ± 0.22 [16] −0.21 0.397 0.472 ± 0.023 [16], 0.391 ± 0.025 [57]
63Cu 1.17 5.01 4.80 4.89 5.21 ± 0.20 [17] −0.29 0.407 0.391 ± 0.025 [57]
84Kr 1.33 5.38 4.77 5.03 −0.42 0.450
108Ag 1.30 5.38 4.85 5.08 −0.39 0.449
124Xe 1.30 5.42 4.92 5.14 −0.41 0.458
197Au 1.49 5.34 4.98 5.12 5.16 ± 0.22 [17] −0.84 0.554 0.511 ± 0.030 [57]
208Pb 1.54 5.64 4.77 5.11 4.84 ± 0.20 [16] −0.66 0.513 0.539 ± 0.020 [16]

We remind that with the adopted normalization conventions
one has ∫

d pPA
p (p) = Z

A
,

∫
d pPA

n (p) = N

A
, (24)

and that for the deuteron we can formally write Pd = Pd
p +

Pd
n = 2Pd

p = 2Pd
n . Rearranging the above equations leads to

the definitions ap
2 (A) and an

2(A):

ap
2 (A) = lim

high p

A PA
p

Z Pd
p

, an
2(A) = lim

high p

A PA
n

N Pd
n

. (25)

Accordingly, ap
2 (A) encodes the per-proton probability to find

a high-momentum proton in A(N, Z ) relative to d . Similarly,
an

2(A) encodes the per-neutron probability to find a high-
momentum neutron in A(N, Z ) relative to d . Note that ap

2 (A =
d ) = an

2(A = d ) = 1. A deviation from ap
2 (A) = an

2(A) is rem-
iniscent of the fact that there are differences in the per-
proton and per-neutron dynamical modifications attributed
to the short-distance structure of the nuclear environment in
A(N, Z ). We stress that in the absence of pp and nn correla-
tions the high-momentum tails of PA

p (PA
n ) would only receive

a PA
pn (PA

np) contribution. For predominant proton-neutron cor-
relations, one has that PA

pn(p > pF ) ≈ PA
np(p > pF ) and one

can infer that

ap
2 (A) ≈ N

Z
an

2(A) (for pn exclusivity). (26)

Note that the ap
2 and an

2 defined in Ref. [16] obey this “pn
exclusivity” inspired relation by construction, and that in the
limit of vanishing pp and nn correlations one has the strict
relationship between a2, ap

2 , and an
2

a2(A) = 2Z

A
ap

2 (A) = 2N

A
an

2(A) (for pn exclusivity). (27)

In Fig. 8 we show the evolution of the computed ap
2 (A),

an
2(A), and a2(A) with mass number A and proton-to-neutron

ratio N
Z . The limhigh p in Eq. (25) is numerically evaluated

as outlined in Eq. (22) and the discussion following this
expression. All numerical values for the ap

2 (A) and an
2(A)

are also contained in Table I. For asymmetric nuclei N
Z > 1

one finds that ap
2 (A) > an

2(A). This implies that per nucleon
the proton minority component contributes more to the SRC
scaling factors than the neutron majority component, which
is in line with previous observations [36–38]. This result
is not surprising given that pn exclusivity gives rise to the

relation ap
2 ≈ N

Z an
2 [Eq. (26)]. The ratio ap

2 (A)
an

2 (A) increases with

growing N
Z . Whereas for A � 27 the an

2(A) varies between
4.59 and 4.98, one observes that the ap

2 (A) increases with N
Z

to reach a value of about 5.5 for the most neutron-rich nuclei
considered here (197Au and 208Pb). For 48Ca ( N

Z = 1.4) the
ap

2 (A) is about 15% larger than the an
2(A). The outlier in the

SRC scaling factors at N
Z = 1.25 is for 9Be and reflects the

fact that for light nuclei the a2 is about one unit smaller than
for medium-heavy and heavy nuclei. In other words, 9Be is
the sole light asymmetric nucleus in our sample. Table I also

lists the values of Zap
2−Nan

2
A a quantity that vanishes for N = Z

nuclei. In asymmetric nuclei, Zap
2−Nan

2
A approaches zero in the

scenario of prevailing proton-neutron correlations. Obviously,
Zap

2−Nan
2

A grows increasingly negative with N
Z , which reflects

the fact that the nn correlations increase in importance with
growing N

Z , as can be inferred from Figs. 5 and 6.

E. Size of EMC effect

We exploit the conjectured linear relationship between
the a2 coefficients (per nucleon modification relative to the
deuteron) and the size of the EMC effect to connect the LCA
predictions for ap

2 (A) and an
2(A) to the EMC data. We suggest

parametrizing the size of the EMC effect as defined in Eq. (2)

054620-10



ISOSPIN COMPOSITION OF THE HIGH-MOMENTUM … PHYSICAL REVIEW C 100, 054620 (2019)

FIG. 8. The LCA predictions for the SRC scaling factors for a
sample of 15 nuclei as a function of A (top panel) and N/Z (bottom
panel). Results are displayed for the proton ap

2 (circles), neutron
an

2 (triangles) and total a2 (diamonds) SRC scaling factors. The
LCA results are obtained with the expression (22) with �phigh ≡
[3.90 fm−1, 4.40 fm−1]. The experimental data are from the extended
data tables of Ref. [16] and include data from Ref. [15].

in the following way:

bexp
2 (A) = −dREMC(A, x)

dx

= m1

(
Zap

2 (A) + Nan
2(A)

A
− 1

)

+ m2

(
Zap

2 (A) − Nan
2(A)

A

)
, (28)

with m1 and m2 being parameters that are here determined
from theory-experiment comparisons. By construction the
deuteron has a vanishing EMC effect. In the above linear
relationship that connects the measured size of the EMC
effect bexp

2 (A) to the computed SRC scaling factors for protons
and neutrons, the first term (weight m1) is reminiscent of an
isospin blind generative mechanism. Indeed, in the first term

FIG. 9. LCA results for the size of the EMC effect based on a
linear connection with the proton and neutron SRC scaling factors.
The “LCA (s)” results (blue open circles) assume a generative mech-
anism that is isospin (flavor) blind [m1 = 0.103 ± 0.002, m2 = 0 in
Eq. (28)]. The “LCA (s+v)” results (orange open diamonds) assume
generative mechanisms that are the combination of an isospin-
dependent and an isospin-independent component [m1 = 0.0878 ±
0.003, m2 = −0.229 ± 0.030 in Eq. (28)]. The nonisoscalar cor-
rected bexp

2 (A) data for the EMC slopes are from the summarizing
tables of Ref. [16]. Overlapping data points have been slightly
displaced for the sake of clarity.

of Eq. (28) the protons and neutrons contribute according
to their weights Z

A and N
A in the total number of nucleons.

For this reason, we refer to the term with weight m1 as the
“isoscalar” contribution. We refer to the second term (weight
m2) as the “isovector” contribution that could find its origin in
isospin-dependent generative mechanisms for the EMC effect.
Within the framework of relativistic quark-level models of
nuclear structure, it has been suggested that those so-called
flavor-dependent or isovector nuclear effects influence the size
of the EMC effect in nuclei with a neutron excess [26,27].
We remind that in the limit of vanishing proton-proton and
neutron-neutron correlations in N 
= Z nuclei, the ap

2 (A) and
an

2(A) obey the relation of Eq. (26) and the m2 term in the
above equation vanishes.

In Fig. 9 we compare the LCA predictions based on
Eq. (28) with data for the EMC slopes without applying
isoscalar corrections to those data. We use χ2 minimization
to fit the computed ap

2 (A) and an
2(A) to 13 measured EMC

slopes using the expression (28). We include the measured
EMC slopes for the following nuclei (with xm we denote
that there are x measurements for a particular target nucleus):
4He (2m), 9Be (2m), 12C (3m), 27Al (1m), 56Fe (2m), 63Cu
(1m), 197Au (1m), 208Pb (1m). Accordingly, there are eight
target nuclei included in the fit, including six asymmetric
ones. The best description of the data is obtained with the
combination (m1 = 0.0878 ± 0.003, m2 = −0.229 ± 0.030).
The values for the EMC slopes obtained with Eq. (28) are
contained in Table I. The extracted value for m1 = 0.0878 ±
0.003 is in line with the quoted value m1 = 0.084 ± 0.004 in
Ref. [20] that is based on fit of − dREMC(A,x)

dx versus aexp
2 (A). The
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fit of Ref. [20] includes all EMC data for light nuclei (A � 12)
and the isoscalar-corrected EMC data for 56Fe and 197Au. The
results presented in Ref. [20] include solely the first term of
the right-hand side of Eq. (28). The EMC data for A � 63 can
be reasonably reproduced without inclusion of an isovector
term (m1 = 0.103 ± 0.002, m2 = 0), a result referred to as
“LCA (s).” Without inclusion of the isovector term, the EMC
slopes for 4He and 27Al tend to be overpredicted whereas for
the EMC slopes of 197Au and 208Pb the opposite is observed.
Inclusion of the m2 term results in a stronger variation of the
EMC slopes across the nuclear mass table and results in an
improved description of the data. Indeed, after including the
m2 term the reduced χ2 is 2.66 whereas the fit with solely
the m1 term has a reduced χ2 of 7.3. Obviously, a more
precise determination of the m2 term requires more data and
extended studies on asymmetric N

Z > 1 nuclei. For example,
the effect of including the m2 term works very differently for
the nuclei 40Ca and 48Ca. Power-counting arguments within
the framework of effective-field theory [20] indicate that the

isovector term Zap
2 (A)−Nan

2 (A)
A can be neglected relative to the

isoscalar one Zap
2 (A)+Nan

2 (A)
A . Inspecting Table I we find that

the isoscalar term is in the range 4.05-05.11, whereas the
iosvector term is in the range −0.84–0.00. The isovector term
is vanishing for N = Z nuclei and reaches its largest values
for the most asymmetric nuclei considered here: −0.66 for
208Pb and −0.84 for 197Au. We stress that the above theory-
experiment comparisons for the EMC slopes cannot shed light
on underlying mechanisms that are due to non-SRC related
medium modifications.

III. CONCLUSIONS

The SRC scaling factors a2 represent the relative proba-
bility of nucleon-pair SRC in a specific nucleus relative to
the deuteron. They are conventionally expressed per nucleon
and can be computed from the high-momentum properties of
momentum probability distributions. In the framework of the
low-order correlation operator approximation used throughout
this work, one can determine the pp, pn, nn, np SRC con-
tributions to the momentum probability distributions PA(p)
for a specific nucleus A(N, Z ). We have determined those
contributions for a sample of 15 nuclei extending in mass
number from He to Pb. Across that sample, that includes
4 symmetric and 11 asymmetric nuclei, there is relatively

little variation in the computed a2, with values in the range
between 4.05 (for 4He) and ≈5.10 (all studied nuclei with
A � 108). We find that the pn contribution to the SRC scaling
factor is approximately 3 and that there are non-negligible
contributions from pp and nn correlations in the LCA ap-
proach. The pp and pn (nn and np) SRC contributions to
the high-momentum probability distributions determine the
proton (neutron) SRC scaling factors ap

2 (an
2). The ap

2 and
an

2 provide more detailed information on the abundance of
nucleon-pair SRC than the “total SRC scaling factor a2.” For
asymmetric N > Z nuclei one systematically finds that ap

2 >

an
2 with deviations approaching 20% for the most asymmetric

nuclei in our study. This means that in N > Z nuclei the SRC
induced medium modifications of the protons and the neutrons
are substantially different. We have done robustness checks
and used two different techniques to compute the SRC scaling
factors (a2, ap

2, an
2). For light and medium-heavy nuclei, the

LCA predictions for the SRC scaling factors are in line with
those from ab initio approaches and the values extracted from
inclusive electron scattering under selected conditions.

In the LCA framework we can shed light on the validity of
the A-to-d factorization of the momentum probability distri-

butions by studying the ratios
PA

NN ′ (p)
Pd (p) . For NN ′ = pn and np

the A-to-d factorization is very well realized at p � 3.5 fm−1.
For the pp and nn correlations, on the other hand, the A-to-d

factorization of
PA

NN ′ (p)
Pd (p) is only approximate but indications for

a plateau are visible for p � 4.0 fm−1. We have expressed the
measured size of the EMC effect in terms of the computed
proton and neutron SRC scaling factors. The measured size
of the EMC effect displays a stronger variation across the
nuclear mass table than the SRC scaling factor, and larger
EMC effects are observed in nuclei with a neutron excess.
These qualitative features can be captured in terms of a
linear relationship between the size of the EMC effect and
the computed proton and neutron SRC scaling factors that
includes both an isoscalar and an isovector term.
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