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Sensitivity of one-neutron knockout to the nuclear structure of halo nuclei
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Background: Information about the structure of halo nuclei are often inferred from one-neutron knockout
reactions. Typically the parallel-momentum distribution of the remaining core is measured after a high-energy
collision of the exotic projectile with a light target.
Purpose:We study how the structure of halo nuclei affects knockout observables considering an eikonal model
of reaction.
Method: To evaluate the sensitivity of both the diffractive and stripping parallel-momentum distributions to the
structure of halo nuclei, we consider several descriptions of the projectile within a halo effective-field theory.
We consider the case of 11Be, the archetypical one-neutron halo nucleus, impinging on 12C at 68 MeV/nucleon,
which are usual experimental conditions for such measurements. The low-energy constants of the description of
11Be are fit to experimental data as well as to predictions of an ab initio nuclear-structure model.
Results: The one-neutron knockout reaction is confirmed to be purely peripheral, the parallel-momentum
distribution of the remaining core is sensitive only to the asymptotics of the ground-state wave function and
not to its norm. The presence of an excited state in the projectile spectrum reduces the amplitude of the breakup
cross section; the corresponding probability flux is transferred to the inelastic-scattering channel. Although the
presence of a resonance in the core-neutron continuum significantly affects the energy distribution, it has no
impact on the parallel-momentum distribution.
Conclusions: The one-neutron knockout cross section can be used to infer information about the tail of the
ground-state wave function, viz. its asymptotic normalization coefficient (ANC). The independence of the
parallel-momentum distribution on the continuum description makes the extraction of the ANC from this
observable very reliable.

DOI: 10.1103/PhysRevC.100.054607

I. INTRODUCTION

Halos are very exotic nuclear structures observed far from
stability, close to the driplines. Compared with stable nuclei,
halo nuclei exhibit a very large matter radius [1]. This unusual
size results from the low separation energy for one or two
nucleons observed in these nuclei. Thanks to that lose bind-
ing, the valence nucleons can tunnel far into the classically
forbidden region and exhibit a high probability of presence at
a large distance from the other nucleons. They thus form a sort
of diffuse halo around a compact core [2]. These structures
challenge the usual description of the nucleus, which sees
the nucleons pilling up and forming compact objects. It is
therefore important to better understand how they form in
order to improve our knowledge on the nuclear structure
within the entire nuclear chart. Because of their strongly
clusterized structure, halo nuclei are usually described as
few-body objects: a compact core, which contains most of the
nucleons, to which one or two nucleons are loosely bound.
Archetypical halo nuclei are 11Be, seen as a 10Be core with
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one neutron in its halo, and 11Li, seen as a 9Li core with a
two-neutron halo.

Being very short-lived, halo nuclei cannot be probed with
usual spectroscopic methods but have to be studied through
indirect techniques, such as reactions. For example, elastic-
scattering data provide information about the size of the
nucleus [3,4]. Since they are very sensitive to the single-
particle structure of nuclei, transfer reactions are particularly
well suited to study halo nuclei [5,6]. In breakup reactions
the core-halo structure dissociates through its interaction with
a target, hence revealing the cluster structure of the nu-
cleus [7,8]. Experimentally, breakup reactions of halo nuclei
are of great interest, because the cross sections are large
thanks to the low binding energy of the halo nucleons. In
this work, we present a theoretical analysis of such reac-
tions involving one-neutron halo nuclei, such as 11Be. In
particular, we focus on inclusive breakup, also called one-
neutron knockout [9]. In these measurements, only the core
of the nucleus is detected [10–13]. Contrary to exclusive
measurements, in which both the core and the halo nucleon(s)
are measured in coincidence [7,8], inclusive measurements
exhibit a much higher statistics and hence are often favored
for the low-intensity beams available at radioactive-ion-beam
facilities.
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Theoretical models that describe the inclusive breakup of
two-body projectiles have been developed in the eighties in
Refs. [14,15]. The corresponding cross sections are obtained
as the sum of the cross section for the diffractive—or elastic—
breakup, in which the collision leads to the dissociation of
the halo neutron from the core, and that of the stripping,
where only the core survives the reaction and the neutron is
absorbed by the target. These models treat the remaining core
as a spectator, which is merely scattered elastically off the
target. Because they occur at intermediate-to-high energies,
these reactions are often analyzed within the eikonal model
[9–13,16]. Recently, this framework has been extended to
three-body projectiles [17,18].

The goal of this work is to determine the physics of
one-neutron halo nuclei probed through inclusive breakup.
For this, we describe the one-neutron halo projectile within
a halo effective-field theory (Halo-EFT [19], see Ref. [20]
for a recent review). This model exploits the clear separation
of scales observed in halo nuclei, viz. the large size of the
halo Rhalo compared with the compact size of the core Rcore,
to expand the projectile Hamiltonian upon the small param-
eter Rcore

Rhalo
< 1. This very systematic expansion enables us to

identify the nuclear-structure observables, which affect most
the reaction process. Following Refs. [21,22], we apply this
method up to next-to-leading order (NLO) to simulate the
10Be-n interaction. Here we focus on the collision of 11Be on
12C at 68 MeV/nucleon and study in detail the sensitivity to
the description of 11Be of the parallel-momentum distribution
of the 10Be core following the inclusive breakup of the projec-
tile.

We begin by presenting the three-body model of the reac-
tion in Sec. II. In Sec. III A, we provide the numerical inputs
and the optical potentials considered in this study. We then
analyze in Sec. III B the sensitivity of the parallel-momentum
distribution of the remaining 10Be core to the 11Be ground-
state wave function. For this purpose, we consider various
Halo-EFT potentials, generating different ground-state wave
functions. In Secs. III C and III D, we study the sensitivity of
breakup observables to other features in the description of the
projectile; namely, the presence of an excited subthreshold
bound state and the description of the continuum. The con-
clusions drawn from these three analyses are summarized in
Sec. IV.

II. REACTION MODEL

We consider the knockout of a one-neutron halo nucleus
projectile P on a target T . As mentioned in the introduction,
halo nuclei exhibit strongly clusterized structures. Accord-
ingly, we model one-neutron halo nuclei as two-body objects,
composed of a spinless core c and a loosely bound neutron
n. The structure of the halo nucleus is thus described by the
internal single-particle Hamiltonian

hcn = p2

2μcn
+ Vcn(r), (1)

where p and r are, respectively, the c-n relative momentum
and distance, μcn is the c-n reduced mass, and Vcn is an ef-
fective potential simulating the c-n interaction. As mentioned

above, halo nuclei are good candidates for EFT expansion.
In this work, we follow Refs. [21,22]: we simulate the c-n
interaction with a Halo-EFT potential, and we constrain its
low-energy constants with the experimental binding energy of
the bound states and with theoretical predictions provided by
ab initio calculations [23] (see Sec. III A).

The single-particle eigenstates φlJM of hcn, characterizing
the c-n relative motion, are solutions of

hcnφlJM (E , r) = EφlJM (E , r), (2)

where l is the orbital angular momentum of the c-n system,
J is the total angular momentum, resulting from the composi-
tion of l and the spin of the neutron s, and M is its projection.
These eigenstates can be expressed from their radial part ulJ ,
a spinor χms

s , and spherical harmonics Y ml
l :

φlJM (E , r) = ulJ (E , r)

r
[χs ⊗ Yl (r̂)]JM . (3)

The eigenvalues E can be positive or negative. The neg-
atives energies EnlJ are discrete and correspond to bound
states. These states are characterized by an additional quantum
number, the number of nodes n in the radial wave function.
Asymptotically, their radial part behaves as

unlJ (EnlJ , r) −→
r→∞ bnlJ iκnlJh(1)

l (iκnlJ r), (4)

where bnlJ is the single-particle asymptotic normalization
coefficient (SPANC), κnlJ =

√
2μcn|EnlJ |/h̄2, and h(1)

l is a
modified spherical Bessel function of the third kind [24].
In the actual structure of the nucleus, several single-particle
configurations lJ contribute to each projectile state. The c-n
overlap wave function in the configuration lJ is characterized
by the asymptotic normalization constant ClJ (ANC). One can
relate the projectile ANC ClJ to the SPANC bnlJ through the
spectroscopic factor SnlJ :

ClJ = √
SnlJbnlJ . (5)

When SnlJ = 1, the projectile is described by only one single-
particle state and the normalization constants are equal.

The positive-energy part of the spectrum is continuous and
describes the states in which the neutron is not bound to the
core. These states are associated with the c-n wave number
k =

√
2μcnE/h̄2. Their radial components tend asymptoti-

cally to

ulJ (E , r) −→
r→∞ cos [δlJ (E )]kr jl (kr) + sin [δlJ (E )]krnl (kr),

(6)

where δlJ is the phase shift and jl and nl are the spherical
Bessel functions of the first and second kind, respectively
[24].

As usual in reaction theory, we neglect the structure of
the target and simulate its interaction with the projectile
constituents c and n by local optical potentials VcT and VnT ,
respectively [25]. Within this framework, the P-T relative
motion is described by the three-body wave function �, which
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FIG. 1. Set of coordinates of the three-body model of the colli-
sion: the c-n relative coordinate r; the relative coordinate R between
the projectile center-of-mass and the target and its component b
transverse to the beam axis ̂Z; the c-T and n-T relative coordinates
RcT and RnT with their transverse parts bcT and bnT , respectively.

is a solution of the Schrödinger equation[
P2

2μ
+ hcn + VcT (RcT ) + VnT (RnT )

]
�(R, r) = Etot�(R, r),

(7)

where P and R are respectively the P-T relative momen-
tum and coordinate (see the coordinate system illustrated in
Fig. 1) and μ is the P-T reduced mass. This equation is
solved with the initial condition that the projectile is in its
ground state φn0l0J0M0 and is impinging on the target along
the beam direction, which we choose to be the Z axis, i.e.,
� (M0 )(R, r) −→

Z→−∞
exp(iKZ + · · · )φn0l0J0M0 (En0l0J0 , r). The to-

tal energy of the system is therefore fixed by the sum of the
projectile ground-state energy and the initial kinetic energy
Etot = En0l0J0 + h̄2K2

2μ
.

In this work, we solve this three-body Schrödinger equa-
tion within the eikonal model [16,25]. To solve the diver-
gence of the breakup matrix element due to the Coulomb
interaction, we use the Coulomb-corrected eikonal model
(CCE), presented in Refs. [26,27]. The expressions of the
stripping and the diffractive-breakup cross sections can be
found respectively in Refs. [14,28] and in Ref. [27].

III. RESULTS

A. Numerical inputs and two-body interactions

To conduct this sensitivity analysis, we consider the one-
neutron knockout of 11Be on a 12C target at 68 MeV/nucleon.
Within the single-particle model presented in Sec. II, we de-
scribe the 1/2+ ground state of the one-neutron halo nucleus
11Be as an inert 10Be core, assumed to be in its 0+ ground
state, to which an s-wave valence neutron is bound by 0.504
MeV. We follow Refs. [21,22] and we simulate the 10Be-n
interaction with a Halo-EFT potential built with Rcore

Rhalo
∼ 1/3

as expansion parameter. Accordingly, we consider for Vcn in
Eq. (1) purely contact interactions and their derivatives, which
we regulate by Gaussians to obtain numerically tractable
potentials. As in Refs. [21,22], we truncate this expansion at
the NLO and parametrize the potential per partial wave lJ in

TABLE I. Depths of the Halo-EFT potential (8) at NLO used to
simulate the 10Be-n interaction in the s1/2 and p1/2 partial waves.
The depths are fit to the experimental binding energy and the ANC
predicted by Calci et al. [23].

r0 V lJ
0 V lJ

2 EnlJ bnlJ

[fm] [MeV] [MeV] [MeV] [fm−1/2]

1.2 −50.375 −45 −0.504 0.786
1s1/2 2 −80.54 2.97 −0.504 0.786

1.2 86.03 −108.62 −0.504 0.829

0p1/2 1.2 −96.956 0 −0.184 0.129

the following way:

V lJ
cn (r) = V lJ

0 e
− r2

2r2
0 + V lJ

2 r2e
− r2

2r2
0 , (8)

where V lJ
0 and V lJ

2 are adjustable parameters, which can
be fit in each partial wave to reproduce experimental data
or predictions from microscopic models. The range of the
Gaussians r0 is an unfitted parameter, which can be varied to
estimate the sensitivity of our calculations to the short-range
physics of the projectile.

At NLO, the two adjustable parameters, V lJ
0 and V lJ

2 , have
to be constrained in the s and p waves. In the s1/2 and
p1/2 partial waves, we fit them to reproduce the experimental
binding energies of the 1/2+ (E1/2+ = −0.504 MeV) and
1/2− (E1/2− = −0.184 MeV) bound states of 11Be. These
bound states are described by the single-particle states 1s1/2
and 0p1/2, respectively, with unit spectroscopic factors. Halo-
EFT potentials are also adjusted to the ANC of these states
[see Eqs. (4) and (5)] predicted by the ab initio calculations of
Calci et al. [23]: b1s1/2 = Cs1/2 = 0.786 fm−1/2 and b0p1/2 =
Cp1/2 = 0.129 fm−1/2. We do not put any interaction in the
p3/2 wave since the p3/2 phase shift predicted by Calci et al.
is approximatively zero at low energy E .

To test the influence of the 1s1/2 ground state on our
reaction calculations, we generate various s1/2 Halo-EFT
potentials. We consider two Gaussian ranges r0 = 1.2 and 2.0
fm. Then, since the ab initio calculations predict a spectro-
scopic factor S1s1/2 = 0.9 for the 1s1/2 configuration [23], we
also fit the potentials to reproduce a wave function with the
same ANC when its norm is reduced to

√
0.9, i.e., b1s1/2 =

0.829 fm−1/2[=0.786/
√

0.9 fm−1/2; see Eq. (5)]. The param-
eters V s1/2

0 and V s1/2
2 obtained from these different fits are

displayed in Table I alongside the resulting eigenenergies and
SPANCs. The 1s1/2 wave functions generated from these
potentials are plotted in Fig. 2(a).

Similarly, in the p1/2 partial wave, we have considered
the same two ranges for the Gaussian potential. However,
since our calculations are insensitive to the choice of r0 in
this partial wave, we limit the results we display in this article
to those obtained solely with r0 = 1.2 fm, whose low-energy
constants are in the last line of Table I.

The P-T nuclear interactions are simulated by Woods-
Saxon optical potential

V (R) = −VR fWS(R, RR, aR) − iWI fWS(R, RI , aI )

+ i4aDWD
d

dR
fWS(R, RD, aD), (9)
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FIG. 2. (a) Radial wave functions of the 1s1/2 ground state of 11Be, obtained with potentials reproducing b1s1/2 = 0.786 fm−1/2 with a
range r0 = 1.2 fm (red line) and with r0 = 2 fm (green line), reproducing b1s1/2 = 0.829 fm−1/2 (blue lines) and rescaled with 0.786

0.829 (brown
line). (b) Parallel-momentum distribution of 10Be resulting from the diffractive breakup (dashed lines) and the stripping (dotted lines) of 11Be
on 12C at 68 MeV/nucleon. The colors used in the cross sections correspond to those of the ground-state wave functions of panel (a).

where

fWS(R, RX , aX ) = 1

1 + e
R−RX

aX

. (10)

For the 10Be-12C interaction, we use the parameters of
Ref. [29], which are consistent with data for the 10Be-12C
elastic scattering at 59 MeV/nucleon. The Coulomb inter-
action is simulated by a potential generated by a uniformly
charged sphere of radius RC = 1.2(101/3 + 121/3) fm. The
n-12C interaction is modeled by the potential developed in
Ref. [30], fit to elastic-scattering data of a nucleon off a
nucleus with A � 13 at energies between 65 and 75 MeV.1

For both potentials, we neglect any energy dependence. The
parameters of the two optical potentials used in this study are
listed in Table II.

For all the computations, we use the following model
space: the 10Be-n continuum is described up to the c-n orbital
angular momentum lmax = 10 and a mesh in impact parameter
up to 100 fm, with a step of 0.25 fm up to 30 fm and
of 2 fm beyond. All the parallel-momentum distributions of
the diffractive breakup are integrated up to kmax = 1.5 fm−1,
which corresponds to Emax = 51.3 MeV. In this paper, these
distributions are centered at the projectile center-of-mass par-
allel momentum. The total breakup cross sections are obtained
by integrating the energy distribution. The total uncertainties
made on these computations are of the order of 0.6%.

B. Sensitivity to the ground-state wave function

As detailed in Sec. III A, we have generated different
10Be-n potentials leading to various 1s1/2 ground-state wave
functions. The corresponding ground-state wave functions are

1We obtain similar results with other realistic n-12C potentials given
in Refs. [31,32].

plotted in Fig. 2(a). One can see that the two wave functions
obtained with different ranges (r0 = 1.2 fm in red line and
r0 = 2 fm in green line) differ slightly below 6 fm but ex-
hibit identical asymptotics. The ground-state wave function
reproducing a larger SPANC (blue line) has larger asymptotics
and a very different short-range behavior. To determine if
the breakup process is sensitive only to the asymptotics, we
normalize this new wave function to the spectroscopic factor
0.9 predicted by Calci et al. [23]. By construction, this new
wave function (brown line) exhibits the same asymptotics as
the previous ones while being very different below r ≈ 4 fm.

The corresponding parallel-momentum distributions of
10Be for the diffractive breakup (dashed lines) and stripping
(dotted lines) of 11Be on 12C at 68 MeV/nucleon are plotted in
Fig. 2(b). The two cross sections obtained with the potentials
fit with r0 = 1.2 fm and r0 = 2 fm (red and green lines,
respectively) superimpose perfectly for both the stripping
and the diffractive processes. This confirms the results of
Refs. [33–35] which show that these observables are not
sensitive to changes in the ground-state wave function at small
distance r. When the reaction is computed with the ground-
state wave function fit to the larger SPANC (blue lines), we
observe an increase of about 10% in both cross sections.
After scaling that initial wave function to the 0.9 spectroscopic
factor predicted by Calci et al. [23], we obtain cross sections
nearly identical to the previous ones (brown lines). We can
therefore conclude that, as the exclusive breakup [35], the
inclusive breakup of one-neutron halo nuclei is purely periph-
eral, in the sense that it is sensitive only to the tail of the initial
ground-state wave function. This is reminiscent of the result
of Hansen obtained by using a simple geometric model, where
the stripping cross sections are shown to be proportional
to the square of the SPANC [33], and to the confirmation
of this result within an eikonal framework [34]. While all
three calculations provide identical stripping cross sections,
we observe a tiny difference in the diffractive part. Further
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TABLE II. Parameters of the Woods-Saxon optical potential (9) and (10) used to simulate the 10Be-12C and n-12C interactions.

VR [MeV] RR [fm] aR [fm] WI [MeV] RI [fm] aI [fm] WD [MeV] RD [fm] aD [fm] Ref.

10Be-12C 123.0 3.33 0.8 65.0 3.47 0.8 [29]
n-12C 31.5 2.65 0.65 5.25 2.65 0.65 7.66 3.24 0.178 [30]

analyses have shown that this comes from the contributions
at high 10Be-n relative energies (E > 30 MeV), where the
process starts to be slightly more sensitive to the projectile
radial wave function at small distances, viz. r < 4 fm.

This analysis confirms that the knockout process is a
peripheral reaction. Therefore, information about the internal
part of the wave function cannot be reliably inferred from
such measurements. This is in particular true for the norm
of the overlap wave function, i.e., the spectroscopic factor.
Since calculations performed with two wave functions that
exhibit different norms but the same ANC provide nearly
identical results, it is not clear how accurate the spectroscopic
factors extracted from knockout measurements are. However,
what is clear from this analysis is that the parallel-momentum
distributions for both diffractive breakup and stripping are
sensitive to the asymptotics of the ground-state wave function.
It suggests that these observables would be good candidates
to accurately extract the ANC of the wave function of halo
nuclei, as done in Ref. [36]. To confirm this, we analyze
in the next sections the sensitivity of these observables to
other features of the projectile description, viz. the presence
of an excited subthreshold bound state (Sec. III C) and the
description of the projectile continuum (Sec. III D).

C. Influence of excited subthreshold states

We now investigate how the presence of the 1/2− excited
state in the 11Be description affects knockout observables.
Due to the form of the stripping cross section, which depends
only on the ground state [14,28], we restrict this study to the
sole diffractive breakup. As previously explained, we describe
this 1/2− bound state as a 0p1/2 single-particle state, using
the Halo-EFT 10Be-n potential (8) with the parameters listed
in the last line of Table I. The presence of that subthresh-
old state significantly affects the low-energy continuum in
the p1/2 partial wave [21,37,38], which itself impacts the
calculation of breakup cross sections at low energy [21,37].
We therefore expect to see some influence of that state in the
diffractive component of the parallel-momentum distribution
of the 10Be core following the breakup of 11Be. To investigate
this in detail, we consider two 10Be-n interactions in that
partial wave. In addition to the V p1/2

cn potential described in
Sec. III A, we consider no interaction at all, hence without
considering the 1/2− excited state of 11Be and describing the
10Be-n motion in the p1/2 continuum by mere plane waves.

Figure 3(a) shows the radial wave functions for the p1/2
waves in the continuum at E = 0.3 MeV. The distorted wave
obtained with the Halo-EFT potential is shown as a dashed
green line, while the plane wave is displayed as a solid
magenta line. The presence of the 1/2− bound state affects
the distorted waves in two ways. It induces a node at r ∼
6.5 fm and it produces a nonzero phase shift. For comparison,

the radial wave function u1s1/2 of the 11Be ground state is
displayed as well (solid red line).

The cross section for the diffractive breakup of 11Be on 12C
at 68 MeV/nucleon is displayed in Fig. 3(b) as a function of
the 10Be-n relative energy E and in Fig. 3(c) as a function
of the 10Be parallel momentum. Figure 3(b) shows also the
contribution of the p1/2 partial wave separately (lower set
of curves). The major effect of the presence of the 1/2−
bound state in the description of the projectile is a reduction
of the p1/2 diffractive breakup, mostly at low energies in the
continuum [see Fig. 3(b)]. This also leads to a drop, albeit less
significant, of the parallel-momentum distribution by about
4.4% [see Fig. 3(c)]. Interestingly, only the p1/2 contribution
is affected by the presence of the 1/2− state. This reduction is
quantified by the cross sections provided in Table III. When
we shift from the description of 11Be that includes both bound
states (first column) to that where there is no interaction in the
p1/2 partial wave (second column), the inelastic cross section
σinel is practically entirely transferred to the breakup channel
σ total

bu and, more precisely, to its sole p1/2 contribution σ
p1/2

bu .
This decrease in the cross section can be qualitatively

explained by looking at the overlap of the radial wave function
in the p1/2 continuum and the 1s1/2 ground state, which both
appear in the matrix element for the breakup [see Eq. (A2) of
the Appendix]. Both the node at r ∼ 6.5 fm and the phase shift
introduced by the p1/2 interaction affect the breakup matrix
element. To discriminate the impact of the node from that of
the phase shift, we have applied two different approaches: The
first is to remove the 1/2− state from the description of 11Be
using phase-equivalent transformations of the V p1/2

cn potential
through supersymmetry [39–41]. These transformations con-
serve the phase shifts while eliminating the bound state, and
hence the first node in the radial wave functions describing the
p1/2 continuum. The second approach is to use plane waves
to describe the p1/2 continuum, that we orthogonalize to the
0p1/2 wave function obtained from the V p1/2

cn of Table I. This
generates a node at small distances in the continuum wave
functions while keeping a nil phase shift. These two tests, not
presented here to keep the analysis concise, have shown that
both the node and the phase shift contribute to that reduction.

The same study performed within the dynamical eikonal
approximation (DEA) [42], where the adiabatic approxima-
tion is not considered, leads to identical results. Moreover,
our conclusion remains unchanged when the excited bound
state is in the d wave, as would be the case for a 15C projec-
tile, another well-known one-neutron halo nucleus. Therefore,
such reactions at intermediate energies, where the dynami-
cal effects are small, conserve the probability flux within a
partial wave, simply shifting that flux from the inelastic to
the breakup channels. This effect has already been observed
by Moro et al. in their theoretical analysis of the Coulomb-
breakup measurement of 11Be performed at RIKEN [8].
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FIG. 3. Influence of the presence of a subthreshold bound state
in the projectile spectrum on breakup observables for 11Be on 12C
at 68 MeV/nucleon. (a) Radial wave functions for different c-n
interactions in the p1/2 waves at E = 0.3 MeV in the 10Be-n
continuum and of the 1s1/2 ground state. Diffractive-breakup cross
section as a function of (b) the 10Be-n relative energy E (total and
p1/2 contribution) and of (c) the parallel-momentum of 10Be.

TABLE III. Total diffractive breakup and inelastic cross sections
of the collision 11Be with 12C at 68 MeV/nucleon. They are obtained
from computations considering both the 1/2+ ground state and the
1/2− excited state (1s1/2 + 0p1/2) and when we set V p1/2

cn = 0
(1s1/2 + p1/2 plane wave).

1s1/2 + 0p1/2 1s1/2 + p1/2 plane wave

σ total
bu [mb] 122.8 126.1

σ
p1/2

bu [mb] 10.2 13.5
σinel [mb] 3.6 0

σ total
bu + σinel [mb] 126.4 126.1

Including the 1/2− bound excited state in the description of
11Be reduces the E1 strength to the continuum by an amount
that is equal to the E1 strength for Coulomb excitation from
the 1/2+ ground state to the 1/2− excited state [43].

Theoretically, this transfer from the breakup to the inelastic
channel is a consequence of the Hermiticity of the 10Be-n
Hamiltonian. Since the radial wave functions of the bound
states unlJ and of the continuum ulJ (E ) form an orthogonal
basis in the subvectorial space defined by the partial wave
lJM, we can write the following closure relation:

∑
n

|unlJ〉〈unlJ | + 2

π

μcn

h̄2k

∫
dE |ulJ (E )〉〈ulJ (E )| = 1lJM,

(11)
where the sum runs over all the bound states in the partial
wave lJM. By inserting this relation into the total diffractive-
breakup cross section, we show in the Appendix that, within
the adiabatic approximation, the quantity σ lJM

sum (A6) depends
only on the ground-state wave function and the P-T interac-
tions. Accordingly, the sum of the total breakup and inelastic
cross sections should be independent from the choice of V p1/2

cn

(see the last line of Table III). The small differences are due to
numerical errors.

In conclusion, the presence of an excited state changes
non-negligibly the shape and magnitude of the c-n relative
energy distribution for the diffractive breakup. The parallel-
momentum distributions of the remaining core are affected
to a smaller extent, i.e., less than 5% reduction of the peak
amplitude. This reduction of the cross section is caused
by both the node at short distance in the continuum wave
functions and the nonzero phase shift introduced by the
interaction. The amplitude loss in the diffractive breakup
goes to the inelastic-scattering channel, as already seen in
Coulomb-breakup calculations by Moro et al. [43]. We have
shown that this feature can be explained by the conservation
of probability flux shared between the inelastic and breakup
channels.

D. Sensitivity to the projectile’s continuum

In this last part, we investigate how resonances in the
10Be-n continuum influence knockout observables. As in the
previous section, we study only the diffractive breakup be-
cause at the usual eikonal approximation the stripping cross
section does not depend on the description of the continuum
of the projectile [14,28]. To do so, in addition to the plane
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FIG. 4. Influence of a d5/2 resonance on breakup observables for 11Be on 12C at 68 MeV/nucleon. (a) d5/2 contribution to the energy
distribution and (b) breakup cross section as a function of the parallel momentum of the remaining 10Be. The solid magenta lines correspond
to the case where we consider no interaction in the d5/2 wave in the 10Be-n continuum, the dashed and dotted lines correspond to cases in
which a resonance is adjusted in the d5/2 continuum at 1.27 MeV (actual 5/2+ state of 11Be) and 3 MeV, respectively. The colors vary with
the width of these resonances.

waves used so far to describe the d5/2 continuum, we include
a single-particle resonance in that partial wave at Ed5/2 =
1.27 MeV with a width of 	d5/2 = 98 keV, close to the exper-
imental values of the physical 5/2+ resonance E expt

5/2+ = 1.274

MeV and 	
expt
5/2+ = 100 keV. This approach goes beyond the

NLO of the Halo-EFT expansion, since we put an interaction
in the d wave. To study in detail the impact of the continuum,
we also consider resonances at the same energy with other
widths, i.e., 	d5/2 = 51 keV and 	d5/2 = 162 keV, and at a
higher energy Ed5/2 = 3 MeV with various widths 	d5/2 =
451 keV, 	d5/2 = 876 keV, and 	d5/2 = 1487 keV. To model
these resonances, we vary the depths of the Gaussian potential
(8) in the sole d5/2 partial wave.

In Fig. 4(a), we display the d5/2 contribution to
the diffractive-breakup cross section for 11Be on 12C at
68 MeV/nucleon as a function of the 10Be-n relative energy.
In addition to the different d5/2 partial-wave descriptions
mentioned above, we also display the results obtained by
using plane waves in the d5/2 continuum (solid magenta
lines). As expected from the results of Refs. [8,44], the
presence of a resonance in the d continuum leads to a large
peak in that contribution to the breakup energy distribution
[see Fig. 4(a)]. The peak is centered on the resonance en-
ergy and its width is close to that of the resonance. The
various V d5/2

cn considered in this study thus lead to very
different energy distributions. However, each peak is followed
by a depletion area resulting from destructive interferences
caused by the phase shifts going over π/2. The range of this
area is proportional to the peak width: sharper resonances
have a steeper drop and tend more rapidly to the plane-
wave computation after the resonance. When this distribu-
tion is integrated, these two effects compensate one another.

Following Eq. (A6) of the Appendix, the integrated breakup
cross section, listed in Table IV, is conserved, even within a
partial wave. The small difference in the total breakup cross
section, including the resonance at Ed5/2 = 1.27 MeV and
with 	d5/2 = 51 keV, is due to uncertainties in the integration
of the energy distribution, which is more tricky for such sharp
variations.

The corresponding parallel-momentum distributions of the
remaining 10Be are displayed in Fig. 4(b). Because they are
obtained through the integration over the (transverse) momen-
tum, they exhibit nearly no sensitivity to the choice of the
interaction in the d5/2 partial wave. These observables are
therefore quite insensitive to the description of the continuum:
the presence (or absence) of a resonance does not influence
this inclusive observable. This is an interesting result since it
means that, contrary to energy distributions, where resonances
have a significant impact, a precise description of the contin-
uum is not needed for an accurate computation of the parallel-
momentum distributions. Basically, using simple plane waves
to describe the continuum is enough, but to the possible
presence of a subthreshold bound state (see Sec. III C). This
strongly reduces the uncertainty related to the description
of the continuum that appears in energy distributions for
diffractive breakup [37,45].

This conclusion is not specific for one partial wave, we
have observed similar results when resonances are included
within p and f waves. We have also conducted the same
analysis within the DEA and the conclusions are identical,
showing that the dynamics of the projectile does not affect this
finding. This independence from the continuum description
shows that this observable is ideal to extract accurate informa-
tion pertaining to the asymptotics of the initial ground state of
the projectile, such as its ANC (see Sec. III B).
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TABLE IV. Integrated breakup cross sections of the collision 11Be with 12C at 68 MeV/nucleon. They are obtained when we model both
the 1/2+ ground state and the 1/2− excited state, with plane waves in d5/2 and with resonances at Ed5/2 = 1.27 MeV and at Ed5/2 = 3 MeV
with different widths 	d5/2.

Res. Ed5/2 = 1.27 MeV Res. Ed5/2 = 3 MeV

d5/2 Plane Wave 	d5/2 = 51 keV 	d5/2 = 98 keV 	d5/2 = 162 keV 	d5/2 = 451 keV 	d5/2 = 876 keV 	d5/2 = 1487 keV

σ total
bu [mb] 122.8 122.1 122.6 122.8 122.8 122.8 122.6

σ
d5/2
bu [mb] 19.0 18.3 18.8 19.0 19.0 19.0 18.8

IV. CONCLUSIONS

Information about one-neutron halo nuclei cannot be ob-
tained with direct spectroscopic techniques but are inferred
from indirect methods, such as reactions. Inclusive breakup
reactions are of particular interest since they have much
higher statistics than exclusive measurements. To reliably
extract structure information, one needs to know precisely
the sensitivity of the reaction observables to the projectile
description. In this work, we investigate how the ground-state
wave function, the presence of subthreshold excited states
and resonances in the core-neutron continuum influence the
parallel-momentum distribution of the remaining core after
the collision. We also study the influence of these structure
features on the relative core-neutron energy distribution after
the diffractive breakup of one-neutron halo nuclei. We per-
form this analysis for the one-neutron knockout of 11Be on
12C at 68 MeV/nucleon.

By using a Halo-EFT description of 11Be [20,21], we
generate ground-state wave functions with very different in-
ner parts but similar large-distance behavior. We show that
the parallel-momentum distributions of both the diffractive
breakup and stripping are sensitive only to the asymptotics
of the ground-state wave function. This confirms the con-
clusions of Refs. [33,34] for knockout and of Ref. [35]
for diffractive breakup: the inclusive breakup observables
cannot be used to probe the ground-state wave function
below 4 fm. In particular, the norm of the overlap wave
function, i.e., the spectroscopic factor, cannot be determined
reliably from such observables. However, information about
the tail of the wave function, viz. the ANC, can be safely
extracted.

The presence of an excited subthreshold state, such as the
1/2− excited state in 11Be, reduces the breakup cross section.
We have demonstrated that at the adiabatic approximation this
reduction in the breakup amplitude is transferred to the inelas-
tic channel, viz. to the excitation of the projectile towards that
subthreshold state (see Appendix).

We have also shown that the presence of a resonance in the
continuum has a negligible impact on the parallel-momentum
distribution for inclusive breakup reactions. Therefore, in
the theoretical analyses of these distributions, an accurate
description of the core-neutron continuum is not needed. This
strongly reduces the uncertainty related to the projectile model
in the study of such reactions. These inclusive observables
are ideal to extract structure information pertaining to the
asymptotics of the ground-state wave function, such as the
ANC [36].

A direct application of this work is to reanalyze existing
experimental data on 11Be and 15C [10,11,13] and to see if
the ANC that can be inferred from these data is in agreement
with the ab initio calculations of Calci et al. [23]. Hopefully,
this would confirm similar analyses performed recently for
diffractive breakup [21,22] and transfer [46,47]. In the future,
we plan to extend this idea to two-neutron halo nuclei by using
the eikonal framework for three-body projectiles [17,18].
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APPENDIX: RELATION BETWEEN THE BREAKUP AND
INELASTIC CROSS SECTIONS

In the usual eikonal model, i.e., relying on the adiabatic ap-
proximation, the energy-distribution of the diffractive breakup
reads [27,48]

dσbu

dE
= 4μcn

h̄2k

1

2J0 + 1

∑
M0

∑
lJM

∫
bdb

∣∣S(M0 )
klJM (b)

∣∣2
, (A1)

where b is the transverse coordinate of R (see Fig. 1). The
breakup amplitude S(M0 )

klJM is defined from the radial part of the
three-body wave function ψ

(M0 )
lJM in the lJM wave at Z → ∞

and the radial continuum wave functions ulJ (E ) [27,48]:

S(M0 )
klJM (b) = ei(σl +δlJ −lπ/2)

∫ ∞

0
drulJ (E , r)ψ (M0 )

lJM (b, r), (A2)

where σl is the Coulomb phase shift. The contribution to the
diffractive-breakup cross section of each partial wave σ lJM

bu is
simply obtained by integrating the corresponding contribution
to the energy distribution (A1):

σ lJM
bu = 1

2J0 + 1

∑
M0

∫
dE

4μcn

h̄2k

∫
bdb

∣∣S(M0 )
klJM (b)

∣∣2
. (A3)

From the definition of the breakup amplitude (A2) and the
closure relation (11), we can write the breakup contribution of
a partial wave which does not include the initial ground state,
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i.e., lJM 
= l0J0M0, as

σ lJM
bu = 1

2J0 + 1

∑
M0

∫
db

∫
dr

∣∣ψ (M0 )
lJM (b, r)

∣∣2 −
∑

n

σ nlJM
inel ,

(A4)

where

σ nlJM
inel = 1

2J0 + 1

∑
M0

∫
db

∣∣∣∣
∫

drunlJ (r)ψ (M0 )
lJM (b, r)

∣∣∣∣
2

(A5)

is the contribution of the bound state nlJM to the inelastic-
scattering cross sections. The first term of Eq. (A4) does
not depend on the description of the continuum, nor on the

presence of excited states, therefore the sum

σ lJM
sum = σ lJM

bu +
∑

n

σ nlJM
inel (A6)

is sensitive only to the ground-state wave function and the
optical potentials. This relation explains the transfer within
each partial wave of the flux from the breakup to the inelastic-
scattering channel when an additional bound state is included
(see Sec. III C). It also predicts the complete independence
of the integrated cross sections from the description of the
continuum, observed in Sec. III D. Note that this relation is
valid only if the adiabatic approximation holds.
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