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Effects of the γ-soft isomeric states on the giant monopole resonances
in even-even cadmium isotopes 110,112,114,116Cd
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The shape evolutions of the even-even cadmium isotopes 110–116Cd are investigated in this work. The giant
monopole resonances built on different shape isomeric states are studied using the quasiparticle random phase
approximation, which is implemented with a finite amplitude method. We find the local minima corresponding
to the prolate, oblate, and triaxial-deformed isomeric states in the even-even cadmium isotopes. Their responses
to external monopole perturbations are quite different. Larger deformation tends to make the energy of the giant
monopole resonance to shift lower. It is well known that the density functional models have some difficulties
in predicting the right positions of the monopole resonances in cadmium isotopes: the centroid energies always
seem too large compared to the experimental results. Our calculations show the giant monopole resonances built
on the γ soft isomeric states in the cadmium isotopes have centroid energies even lower than the experimental
measurements. Therefore, if the isomeric branching of these γ soft isomeric states turns out to be prominent,
isomer mixing may be a good explanation to the longstanding puzzle.
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I. INTRODUCTION

For the infinite nuclear matter, the incompressibility K∞
measures the stiffness of the equation of state (EoS), whose
empirical value is roughly 240 ± 20 MeV. It can be extrap-
olated by analyzing the finite nucleus modulus KA [1]. The
latter is closely related to the centroid energy of the giant
monopole resonance (GMR), or the breathing mode: Ec ∝√

KA [2]. Nowadays, models based on the self-consistent
mean field (SCMF) theory [3], or the nuclear density func-
tional theory (DFT) [4] are able to predict the GMR of a lot of
nuclei, such as 90Zr and 208Pb, with desirable precisions. How-
ever, they always meet serious challenges in tin or cadmium
isotopes [2,5–7]. The experimental results are significantly
lower that the theoretical predictions. Attempts were made to
understand the theoretical overestimations, such as focusing
on the role of the pairing interaction [8]. It is also interesting
to check whether nuclear structure effect will have an impact.

Like many other nuclear phenomena, the evolution of an
atomic nuclei’s shapes manifests a clear shell effect: a nucleus
tends to be spherical near the closed shells, and changes to
more deformed shape towards the open shells. This kind of
deformation is determined by the neutron/proton numbers,
and the evolutions of the excitation properties will be affected
by the deformation, such as stagnating the pygmy dipole
resonance [9] and splitting the monopole resonance [10,11].
On the other hand, for some nuclei there is a more interesting
feature that metastable states relating to particular deforma-
tions may emerge. The shape isomeric state, or the so-called
shape isomer [12], is at the local minima of the potential
energy surface (PES), which usually appears as a low-lying 0+
state [13–15]. Shape isomerism has been reported in several
research papers [16,17] and recently it is under intense discus-
sions [18–22]. They differ from the ground state not only in
energies and geometries, but also in physical configurations,

such as neutron/proton single particle levels, occupations of
each orbital, etc.; hence influence the excitation properties in
distinct ways. For example, the pygmy dipole resonance built
on the prolate shape isomeric state in 68Ni is about 1.5 MeV
higher than that on the ground spherical state [23].

Random phase approximation (RPA), or quasiparticle ran-
dom phase approximation (QRPA), treats the excitations of a
nuclear system as the coherent transitions between different
particle-hole or two-quasiparticle configurations [24], and is
particularly efficient to describe the small amplitude oscilla-
tions around an equilibrium position. Therefore it is widely
used in the studies of nuclear low-lying vibrations [25–28].
However, for axial and triaxial deformed systems, the con-
figuration space of (Q)RPA problem becomes huge and the
diagonalization of the (Q)RPA equation is critically time-
consuming. One applicable approach to solve a large scale
(Q)RPA problem is the finite amplitude method (FAM), which
was first proposed by Nakatsukasa et al. [29]. The compu-
tation resource costs (CPU times and memories) of FAM
increase almost linearly with the dimension of the configura-
tion space. Therefore, it shows dramatic advantages over the
conventional (Q)RPA scheme and becomes more and more
popular in recent years [30–32].

In this work, we will establish the FAM scheme under
the triaxial deformed condition, based on a covariant density
functional model. Then we will investigate the impact of the
shape isomeric state on the nuclear low-lying breathing mode.

II. SOLVING QRPA PROBLEM WITH THE FINITE
AMPLITUDE METHOD

A. General frameworks of the finite amplitude method

The state of a nuclear system |ψ〉 can be determined
uniquely by the single particle operator ρ̂. It is improved by
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Valatin et al. [33] to the generalized density R̂, in order to
deal with the pairing correlations in superfluid systems. In the
space expanded by a set of single particle basis (c, c†), for
example the harmonic oscillator (H.O.) basis, the super matrix
of the generalized density operator is

R̂ =
(

ρ κ

−κ∗ 1 − ρ∗

)
, (1)

where κ is the pairing tensor, whose matrix elements in the
particle basis are defined by κi j ≡ 〈c jci〉. The energy of the
nuclear system ε can be expressed as a functional of R̂, or
equivalently, of ρ̂ and κ̂ . The quasiparticle Hamiltonian is
derived from the variation of the energy density functional,
with respect to the generalized density operator,

Ĥ = δε[R̂]

δR̂
=

(
h �

−�∗ −h∗

)
. (2)

The diagonalization of the generalized quasiparticle Hamilto-
nian Ĥ leads to the so-called Hartree-Bogoliubov equation:

W
(

h − λ �

−�∗ −h∗ + λ

)
W† =

(
E 0
0 −E

)
, (3)

where λ is the chemical potential accounting for the particle
number conservation [24]. From Eq. (3) one can get the
quasiparticle spectrum E as well as the transformation matrix

W =
(

U V ∗
V U ∗

)
. (4)

The transformation between the single particle space and the
quasiparticle space is unitary and defines the quasiparticle
creation and annihilation operators as(

β

β†

)
= W†

(
c
c†

)
. (5)

Generally, a single particle operator Ô can be expressed in the
quasiparticle space as

Ô = 1

2

∑
μν

{
O20

μνA†
μν + O02

μνAμν + O11
μνBμν + H.c.

}
, (6)

where Aμν = β̂†
μβ̂†

ν and Bμν = β̂†
μβ̂ν are two quasiparticle

operators. The matrix elements of a one-body variable Ô
can be easily transformed from the quasiparticle basis to the
harmonic oscillator basis as

ÔH.O. = WÔqpW†, (7)

and vice versa.
When the nuclear system is perturbed by an external field

F (t ) = Fe−iωt + H.c., (8)

the generalized density operator R changes according to
the time dependent relativistic Hartree-Bogoliubov (TDRHB)
equation [11]

iṘ(t ) = [H(t ) + F (t ),R(t )]. (9)

As long as the external perturbation is weak, it only
drives the density operator and Hamiltonian to oscillate

harmonically,

R(t ) = R0 + δR(ω)e−iωt + H.c.,

H(t ) = H0 + δH (ω)e−iωt + H.c. (10)

The generalized density R is a projection operator, which
means R2 = R. Therefore, in the quasiparticle space where
H0 and R0 are diagonalized, the variation of the generalized
density reads

δR(ω) =
∑
μν

{Xμν (ω)A†
μν + Yμν (ω)Aμν}, (11)

while the terms relating to Bμν and its conjugation vanish.
To be specific, according to Eq. (7), the transition density δR
transforms as(

δρ δκ

−δκ∗ −δρ∗

)
= W

(
0 X
Y 0

)
W†. (12)

Meanwhile, the variation of Hamiltonian δH transforms as(
δH11 δH20

−δH02 −δH11∗

)
= W†

(
δh δ�

−δ�∗ −δh∗

)
W . (13)

Inserting the above equations into Eq. (9), we can get the
linear response equation:

(Eμ + Eν − ω)Xμν (ω) + δH20
μν (ω) = −F 20

μν ,

(Eμ + Eν + ω)Yμν (ω) + δH02
μν (ω) = −F 02

μν . (14)

The linear response equation takes a simple form in the
quasiparticle space, while the variation of Hamiltonian and
pairing potential are more convenient to calculate in the
oscillator basis. In the spirit of FAM, the variation of the
single particle Hamiltonian is calculated via the numerical
differentiation,

δh = 1

η
(h[ρ0 + ηδρ] − h[ρ0]), (15)

so are the variations of the pairing potential

δ� = 1

η
(�[κ0 + ηδκ] − �[κ0]),

δ�∗ = 1

η
(�∗[κ∗

0 + ηδκ∗] − �∗[κ∗
0 ]). (16)

η is a small real number introduced to induce a numerical dif-
ference [11,29], which is independent to the physical results.
A major convenience of FAM is that one can take advantages
of the procedures h[ρ̂] and �[κ̂] of the ground state DFT
solver when calculating the corresponding numerical varia-
tions. For instance, in this work the calculation is performed
based on the relativistic self-consistent mean-field program
package DIRHB [34].

For a given ω, the FAM starts with an initial guess of X 0, Y 0

(e.g., 0 or the results from an adjacent ω), the iterations pro-
ceed as follows: (i) use Eq. (12) to get the transition densities
δρ, δκ , and δκ∗ from X i and Y i; (ii) calculate the variations
of the single particle Hamiltonian δh through Eq. (15) and the
pairing potentials δ�, δ�∗ through Eq. (16); (iii) transform
to quasiparticle space as Eq. (13) to get δH02 and δH20;
(iv) update the transition density X i+1 and Y i+1 according to
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Eq. (14); (v) repeat steps (i) to (iv) with the updated X and
Y until the series X 0, X 1, X 2, . . . , X n and Y 0,Y 1,Y 2, . . . ,Y n

converge.
The strength function then can be obtained from the for-

ward and backward transition densities X and Y , which reads

dB(F ; ω)

dω
= − 1

π
Im

∑
μν

{
F 20∗

μν Xμν (ω) + F 02∗
μν Yμν (ω)

}
. (17)

B. Covariant nuclear density functional model with
density-dependent meson-nucleon couplings

In the following, we will introduce the density functional
that is used in our calculation briefly. In this work, the
density functional ε ph accounting for the long range corre-
lations between nucleons is constructed with the relativistic
density-dependent meson-exchange model. The parameter set
used is DD-ME2 [35]. The interactions between nucleons are
described by the following Lagrangian:

Lint = −gσ ψ̄ψσ − gωψ̄γ μψωμ

− gρψ̄ 	τγ μψ · 	ρμ − eψ̄γ μ 1 − τ3

2
ψAμ. (18)

The effective nuclear forces are transmitted by the σ , ω,
	ρμ mesons and the photon, with the corresponding coupling
strengths gi(ρ)(i = σ, ω, ρ) and e. The Hamiltonian density
is a component of the energy-momentum tensor,

H = T 00 = ∂L
∂ q̇i

q̇i − L, (19)

where qi represents the nucleon, mesons, and electromagnetic
fields. The equations of motion of mesons can be obtained
from Euler-Lagrangian equation, which turns out to be(

∂ν∂ν + m2
σ

)
σ = −gσ ψ̄ψ,(

∂ν∂ν + m2
ω

)
ωμ = gωψ̄γ μψ,(

∂ν∂ν + m2
ρ

)
	ρμ = gρψ̄ 	τγ μψ,

∂ν∂νAμ = eψ̄γ μ 1 − τ3

2
ψ. (20)

Taking the expectation values of Eq. (20) leads to( − � + m2
m

)
φm = ∓gmρm, (21)

where m = σ, ω, ρ, A; mm denotes meson mass mσ , mω, mρ ,
and equals zero for the photon. φm represents the expectation
value of each meson field or electromagnetic field. The densi-
ties ρm are

ρs = 〈ψ̄ψ〉, ρv = 〈ψ̄γ 0ψ〉,

ρvt = 〈ψ̄τ3γ
0ψ〉, ρc =

〈
ψ̄γ 0 1 − τ3

2
ψ

〉
. (22)

In the no-sea approximation [36] which means omitting an-
tiparticle terms in the nucleon field, Eq. (22) can be expressed
as functionals of the density operator

ρs = Tr[γ 0ρ], ρv = Tr[ρ],

ρvt = Tr[τ3ρ], ρc = Tr

[
1 − τ3

2
ρ

]
. (23)

Then the meson fields and the electromagnetic field can be
solved from Eq. (21), and can be eliminated from the energy
density functional

ε ph[ρ, φ] =
〈∫

Hd3r
〉

= Tr[(−iα∇ + βm)ρ] + 1

2

∫
d3rgmφmρm. (24)

The single particle Hamiltonian is derived by variation of the
energy density functional with respect to the single particle
density

ĥ = δε ph

δρ
= −iα∇ + βM∗ + V, (25)

where the effective nucleon mass and the vector potential are

M∗ = m + gσ σ,

V = gωω + gρτ3ρ + 1 − τ3

2
A + �R

0 . (26)

The last term �R
0 in the vector potential is the rearrangement

term [34], which comes from the density dependence of the
coupling constants. The paring potential is a functional of the
pairing tensor

�̂ = 1
2 Tr[V ppκ]. (27)

The pairing interaction V pp is treated with a finite range
separable force [37]

V pp(r1, r2, r′
1, r′

2) = −Gδ(R − R′)P(r)P(r′). (28)

C. Validation of the numerical implementation

In conventional (Q)RPA calculations which diagonalize
the (Q)RPA equation directly [9,38], the strength function is
usually calculated by folding the transition probability Bν of
each state ων :

dB(F, ω)

dω
= 1

π

∑
ν

Bν

�/2

(ω − ων )2 + (�/2)2
. (29)

In finite amplitude method no eigenstates are actually calcu-
lated. To avoid the singularity of Eq. (14) when calculating
X and Y in the vicinity of ω = Eμ + Eν , an imaginary factor
iγ is added into ω. This is equivalent to smear the strength
distribution with a Lorentz function as Eq. (29), with a width
� = 2γ [11,39]. The parameter η which induces a numerical
difference is chosen as 10−6, and will be used here and in all
the following calculations. The Broyden mixing method [40]
is used to accelerate the iteration procedures. The iteration
stops when the relative residual of two sequential vectors
(X,Y ) is less than 10−8, which typically requires about 50 it-
erations. However, at some ω near the peaks, several hundreds
of iterations may be needed.

When a nuclear system is solved within RHB models, the
particle number conservation, which is a symmetry of the
Hamiltonian, is broken. Therefore, a zero energy Goldstone
boson is generated as a result of the spontaneous symmetry
breaking. The spurious state corresponding to the particle
number operator N̂ will be obtained by fully self-consistent
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FIG. 1. Validation of the numerical implementation in the exam-
ple nucleus 20Ne: Decoupling of the spurious state. The strength in
the no pairing case is divided by 10.

FAM calculations. Actually, the decoupling of the spurious
state is a stringent test for the numerical implementation,
which requires a self-consistent treatment of both the ground
state and the excitation state. In covariant density functional
calculations, it is essential to include the anti-particle states as
well [25]. Benefiting from the efficiency of the FAM scheme,
the whole configuration involving the antiparticle states can
be easily taken into account. Indeed, except for NF (number
of oscillator shells [34], which controls the dimension of
the basis space, is set to 20 in our FAM calculations, that
makes the most results converge), no further truncations on
the two-quasiparticle configuration space are introduced in
our self-consistent calculations.

To validate the numerical implementation, we use the nu-
cleus 20Ne as an example. The strength function of the particle
number operator N̂ are calculated with a spacing 0.1 MeV,
as illustrated with the solid and dashed lines in Fig. 1. When
the pairing interaction is omitted in the FAM calculation (yet
still included in the RHB calculation), the peak of the strength
function locates at about 1.6 MeV. In contrast, if the pairing
interaction is properly treated, the self-consistency will be
fulfilled. We find that the calculation data can be well fitted by
the following function [with a residual sum of squares (RSS)
about 5.27 × 10−6]:

f (ω) = 0.01834

(ω + 0.0624)2 + 0.24992
, (30)

which describes a Lorentzian function centering at ω0 =
−0.0624 MeV and with a width � = 0.499 MeV. This means
the strength of the particle number operator is almost ex-
hausted by the single state locating at the nearly vanishing
energy, i.e., the spurious state. Therefore, the particle-number-
rotation symmetry broken by the RHB treatment is restored
by the FAM calculation. As the spurious state has been well
separated, the other physical excitation states will not be
contaminated. This is crucial to get the correct results in the
giant resonance area.

III. RESULTS AND DISCUSSIONS

A. Shape isomeric states in even-even Cd isotopes

In spherical nuclei, the single particle levels belonging
to the same angular momentum j are degenerate. When the
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FIG. 2. Potential energy surfaces of the Cd isotopes, the contours
are drawn with spacings of 0.2 MeV. In the PESs, the squares �
represent the local minima and the crosses × represent the ground
states.

nuclei are deformed, they will split into (2 j + 1)/2 orbitals,
retaining twofold degeneracy as a result of Kramers’ theo-
rem [41]. The deformation affects the way the single particle
levels split, as well as the occupation of each orbital. As a
result, the physical observable of a nucleus, such as the energy,
will change accordingly. The mean-field state is the lowest
order approximation to the eigenstate of the total many-
body Hamiltonian. Based on it, we calculated the potential
energy surface (PES), which is a function of the deformation
parameters. The deformation of a nucleus can be described
by the Hill-Wheeler coordinates β and γ [24,42], which are
used in the DFT solver DIRHB [34]. In the case of γ = 0, it
describes a prolate shape which is like a lemon; in the case of
γ = 60, it describes an oblate shape which is like an orange.
The other value of γ describes a triaxial deformed shape, or
a γ soft shape, whose any intersecting line perpendicular to
its reflection axis is an ellipse. In our work, the energy of
a nucleus is calculated in a finite-size grid (31 × 31 points),
i.e., β from 0 to 0.6 with a spacing of 0.02 and γ from
0◦ to 60◦ with a spacing of 2◦. The results are drawn in
Fig. 2 with contours spaced by 0.2 MeV, in which the ground
states and all the isomeric states are also indicated by the
cross and square markers. Except for the nucleus 116Cd which
is spherical, other cadmium isotopes are all prolate in their
ground states. As we can learn from the PESs, when the
nucleus is stretched to a prolate shape with β larger than
0.4, or is squeezed to an oblate shape with β larger than 0.3,
the energy will increase rapidly and monotonously. In the
area where a physical deformation is possible, several local
minima exist in all the Cd isotopes, which we call the shape
isomeric states. Some of them are prolate, some are oblate,
and in each Cd isotope there is a γ -soft state. The presence
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TABLE I. Local minima of the PESs in the Cd isotopes, calcu-
lated using the relativistic density functional DD-ME2. In the second
column is the first local minimum of each nucleus, i.e., the ground
state (g.s.). The energy of each local minima with respect to g.s. (in
MeV) is listed after its deformation coordinates (β, γ ).

Nucl. g.s. 2nd 3rd

110Cd (0.16, 0◦) (0.24, 60◦) 2.37 (0.36, 16◦) 2.60
112Cd (0.14, 0◦) (0.22, 60◦) 1.06 (0.36, 16◦) 1.12
114Cd (0.12, 0◦) (0.22, 60◦) 0.06 (0.36, 14◦) 0.40
116Cd (β = 0) (0.24, 60◦) 0.007 (0.34, 24◦) 1.44

of the shape isomers in Cd isotopes is also predicted by the
previous theoretical investigation [19].

Although the appearances of the local minima in the Cd
isotopes show some similarities, there are also prominent
differences. In fact, there is one additional prolate (β = 0.32)
isomeric state in 116Cd. However, the energy trap around it
is too shallow (the depth of the energy barrier is less than
0.04 MeV). This means the state will be delicate and collapse
easily, hence is omitted in our calculations. In 114Cd, the
prolate ground state lies in a flat valley in the PES, which
implies the nucleus may be able to deform nearly freely along
its axis in the vicinity of β ≈ 0.12. The energy trap at the
γ -soft isomeric state is deep (over 1 MeV) in 112Cd and 114Cd,
while in 110Cd it is not. The specific values of each shape
isomeric state, namely, the deformation coordinates and the
energies with respect to the ground state, are summarized in
Table I. The energy of some isomeric states are very close
to that of the ground state. For example, the second isomeric
state in 116Cd is 0.007 MeV with respect to its ground state,
the second isomeric state in 114Cd is about 0.06 MeV. The
energy of the triaxial deformed isomeric state in 114Cd is also
small, about 0.40 MeV. In contrast, the isomeric states in
110Cd are relatively higher in energy: the oblate and the γ -soft
state are 2.37 MeV and 2.60 MeV, respectively.

The prolate or oblate shapes are all rotation ellipsoids;
in contrast, a triaxial-deformed sphere is further squeezed
perpendicular to the rotating axis. It will contribute different
content to collective motions, e.g., new rotating patterns.
When a nucleus is perturbed, the γ -soft deformations may
lead to different responses and it is interesting to focus on its
impact on the monopole resonance.

B. Giant monopole resonance built on the shape isomeric state

The resonances built on the shape isomers can be approxi-
mated by the small vibrations in the vicinity of corresponding
isomeric states. The giant resonance, which represents the
collective motion of the whole nucleus, depends closely on
the neutron/proton single particle levels. In general, different
deformation always means changes of the single particle lev-
els. Therefore, the excitations caused by the coherent interac-
tions between different particle-hole pairs or two-quasiparticle
pairs, will show distinct characters as the geometry of a
nucleus changes. In Fig. 3, we compare the theoretical results
with the experimental measurements [2], the formers are cal-
culated with an energy spacing of 0.2 MeV. The experimental
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FIG. 3. The strength functions of GMR in the Cd isotopes. The
solid lines represent the strength functions corresponding to the
ground states, and dashed lines, dotted lines represent the results built
on the second, and third isomeric states, respectively. The shapes of
each isomeric state are also represented: S for spherical, P for prolate,
O for oblate, and T for triaxial-deformed.

distributions are smoother and wider than the theoretical ones,
since the equivalent smear width we used here is 2.0 MeV.
In order to achieve a better coincidence between theoretical
and experimental results, a larger smear width seems to be
necessary [31]. It is easy to see that the whole structure of
the monopole resonance shifts to lower energy as the nucleus
mass increases. An overall feature in all the isotopes is that the
distribution of GMR strength becomes more fragmented when
the deformation is larger, especially for the γ -soft deformed
states. We notice that in some well-deformed nuclei, a low
energy monopole mode appears as a result of the coupling
between GMR and the K = 0 component of giant quadrupole
resonance (GQR) [43–46]. However, the two-peak structure
does not clearly manifest in the experimental data of Cd
isotopes, or in our calculations, although the distributions of
GMR are indeed broadened.

The peak position of a resonance structure can be mea-
sured quantitatively via the centroid energy, which is defined
as Ecen ≡ m1/m0. The ith energy weighted moment can be
calculated through the distribution of the strength function,

mi =
∫

dB

dω
ωidω. (31)

In our calculations, the integrals are carried out over the
energy region 5–40 MeV. The values of the centroid energies
are listed in Table II. The theoretical predictions, i.e., the
centroid energies of the GMRs built on the ground states,
are more systematically overestimated than the experimen-
tal measurements are (about 0.8 MeV). The overestimations
seem to be inevitable and are also reproduced by different
DFT models [2], such as FSUGold [47] and NL3 [48]. Indeed,
it has confused the nuclear theorist for a long time: why the
well calibrated DFT models fail in predicting the right posi-
tions of the GMRs in Cd isotopes? Considering the triumphs
that the DFT models have achieved in the applications both in
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TABLE II. Centroid energies (in MeV) of the GMRs built on
various isomeric states in the Cd isotopes. The second column
contains the experimental results.

Nucl. expt. g.s. 2nd 3rd

110Cd 15.94 ± 0.07 16.85 16.43 15.68
112Cd 15.80 ± 0.05 16.54 16.36 15.52
114Cd 15.61 ± 0.08 16.46 16.23 15.53
116Cd 15.44 ± 0.06 16.20 15.96 15.18

nuclear matter and in a variety of finite nuclei, it is worthy to
look for some nuclear structure effect to soften the GMRs in
Cd isotopes.

From the data, it is interesting to notice that, in each isotope
the GMR built on the higher isomeric state is always of
smaller centroid energy. The centroids corresponding to the
ground states in different Cd isotopes lie almost around a line.
The same pattern also holds both in the oblate case and in the
γ -soft case. In Fig. 4 we draw these lines with different colors
and styles, which are generated via linear least square fits. The
red solid line represents the result corresponding to the ground
states, most of which are prolate deformed. Meanwhile, the
green dotted line and the blue dashed line represent the results
relating to oblate and triaxial deformations. Comparing with
the experimental values, the systematical overestimations can
be confirmed in the oblate case (about 0.5 MeV), while
underestimations can be found in the γ -soft case (within
0.2 MeV). The results show that deformation is a mecha-
nism to draw the resonance structure towards lower energy.
Therefore, if the shape isomer mixing occurs when a cadmium
isotope is vibrated, the strength function will consist of the
contributions from every isomeric state, namely,

dB̄( f̂ , ω)

dω
=

∑
θ

C2
θ

∑
ν

|〈ν; θ | f̂ |0; θ〉|2δ(ω − ωθ
ν

)
. (32)

|ν; θ〉 represents a state that is excited by the perturbation field
f̂ from a shape isomer |0; θ〉, the energy of the excited state
is ωθ

ν . The isomer branching ratio Cθ is the probability that
a nucleus is at its isomeric state θ , where θ denotes each
possible deformation (spherical, prolate, oblate, or γ -soft).
The branching ratio depends on many factors, e.g., the energy
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FIG. 4. The GMR centroid energies of the Cd isotopes with dif-
ferent deformations, compared with the experimental measurements.
The value corresponding to spherical, prolate, oblate, and γ -soft state
is depicted with black ◦, red �, green �, and blue ♦, respectively.
Experimental results are denoted by the error bars.

of the shape isomer as well as the energy trap around it. Since
the underestimation in the γ -soft case is smaller than the
overestimations in the ground state case and oblate deformed
case, its branching ratio must be very large, in order to reduce
the centroid energies sufficiently. We hope the large branching
ratio of the γ -soft isomeric state will be identified in future
measurements.

When a cadmium isotope is perturbed by an exter-
nal monopole field (like being bombarded by α particle
beams [2]), the shape isomeric states will be easily produced
due to their low energies. Usually, the lifetime of a shape iso-
mer is very long, e.g., the shape isomer of 68Ni has a lifetime
about hundreds of nanoseconds [14,49]. Therefore, once the
shape isomeric states are produced, the nuclei will maintain
the deformed shapes until being scattered by consecutive
incident particles. Isomers with prolate, oblate, and γ -soft
deformations respond to the external perturbations differently,
and the contribution of each kind of isomeric state to the
whole strength distribution depends on its branching ratio. If
the branching ratios of the γ -soft isomeric states are promi-
nent, the giant monopole resonance will be drawn towards low
energy. Therefore, a better agreement between the theoretical
predictions and the experimental measurements is likely to be
achieved.

IV. CONCLUSIONS

In this work we investigated the isoscalar giant monopole
resonances in the even-even Cd isotopes. The linear response
equation of the nucleus is solved using the finite amplitude
method. Generally, the centroid energies decrease with the
mass number A. The larger deformation makes the strength
function of the giant monopole resonance more fragmented.
The deformation plays an important role in determining how
the nucleus respond to external monopole perturbations. The
monopole resonances built on the isomeric states show dis-
tinct patterns, which are closely related to their deformations.
There is a clear tendency that the triaxial deformation will
make the centroid of the GMR lower. The shape isomer
mixing, which means some γ -soft isomeric states contribute
to the GMR strength when a nucleus is excited, may be helpful
to explain why the centroid energies of the breathing mode in
cadmium isotopes are so low.
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APPENDIX: MATRIX ELEMENTS OF THE MONOPOLE
OPERATOR IN THE TRIAXIAL-DEFORMED BASIS

In the triaxial deformed case, the wave functions of the
single nucleon states are expanded with a three-dimensional
harmonic oscillator basis,

�α (r; ms) = φnx (x)φny (y)φnz (z)χms . (A1)
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In each direction (μ ≡ x, y, z) involves a Hermite polynomial,

φnμ
(μ) = (

√
π2nn!bμ)−1/2Hnμ

(ζμ)e−ζ 2
μ/2, (A2)

where the corresponding oscillator length bμ and the scaled
dimensionless variable ζμ are

bμ = √
h̄/mωμ, ζμ = μ/bμ. (A3)

The spin factor is chosen to make the triaxial harmonic oscil-
lator basis to be an eigenfunction of the x-simplicity operator
Ŝx = P̂e−iπJx [34]. The positive and negative eigenvalue states
are related by the time-reversal operator:

|nxnynz; +〉 = |nxnynz〉 iny

√
2

[|↑〉 − (−1)nx |↓〉],

|nxnynz; −〉 = T̂ |nxnynz; +〉. (A4)

The matrix element of the giant monopole operator r2 be-
tween two three-dimensional oscillator eigenfunctions can be
calculated as

〈n′
xn′

yn′
z|r2|nxnynz〉 = 〈n′

xn′
yn′

z|x2+y2 + z2|nxnynz〉
= δn′

x,nx δn′
y,ny〈n′

z|z2|nz〉+δn′
y,nyδn′

z,nz 〈n′
x|x2|nx〉

+ δn′
z,nzδn′

x,nx 〈n′
y|y2|ny〉. (A5)

By noticing the following integral property of two Hermite
polynomials:

1√
π

∫ ∞

−∞
Hm(z)Hn(z)z2e−z2

dz

=
(

2nm!δm,n+2 + 2mn!δm,n−2 + 2nn!
2n + 1

2
δm,n

)
. (A6)

The matrix element in each direction (μ = x, y, z) can be
easily carried out

〈n′
μ|μ2|nμ〉 = b2

μ

(
1

2

√
n′

μ(n′
μ − 1)δn′

μ,nμ+2

+ 1

2

√
nμ(nμ − 1)δn′

μ,nμ−2 + 2nμ + 1

2
δn′

μ,nμ

)
.

(A7)

In addition, the spin parts of the wave functions (A4) will con-
tribute a factor (−1)(ny−n′

y )/2. The Bogoliubov transformation
of the operator f = r2 leads to

F 20
μν = (U † f V ∗ − V † f U ∗)μν,

F 02
μν = (U T f V − V T f U )μν. (A8)
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S. Ujeniuc, and C. A. Ur, Phys. Rev. Lett. 118, 162502
(2017).

[16] M. Girod, J. P. Delaroche, D. Gogny, and J. F. Berger,
Phys. Rev. Lett. 62, 2452 (1989).

[17] B. Crider, C. Prokop, S. Liddick, M. Al-Shudifat, A.
Ayangeakaa, M. Carpenter, J. Carroll, J. Chen, C. Chiara, H.
David, A. Dombos, S. Go, R. Grzywacz, J. Harker, R. Janssens,
N. Larson, T. Lauritsen, R. Lewis, S. Quinn, F. Recchia, A.
Spyrou, S. Suchyta, W. Walters, and S. Zhu, Phys. Lett. B 763,
108 (2016).

054605-7

https://doi.org/10.1016/0370-1573(80)90001-0
https://doi.org/10.1016/0370-1573(80)90001-0
https://doi.org/10.1016/0370-1573(80)90001-0
https://doi.org/10.1016/0370-1573(80)90001-0
https://doi.org/10.1016/j.physletb.2012.10.056
https://doi.org/10.1016/j.physletb.2012.10.056
https://doi.org/10.1016/j.physletb.2012.10.056
https://doi.org/10.1016/j.physletb.2012.10.056
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.88.045004
https://doi.org/10.1103/RevModPhys.88.045004
https://doi.org/10.1103/RevModPhys.88.045004
https://doi.org/10.1103/RevModPhys.88.045004
https://doi.org/10.1016/j.nuclphysa.2007.01.046
https://doi.org/10.1016/j.nuclphysa.2007.01.046
https://doi.org/10.1016/j.nuclphysa.2007.01.046
https://doi.org/10.1016/j.nuclphysa.2007.01.046
https://doi.org/10.1103/PhysRevC.76.031301
https://doi.org/10.1103/PhysRevC.76.031301
https://doi.org/10.1103/PhysRevC.76.031301
https://doi.org/10.1103/PhysRevC.76.031301
https://doi.org/10.1103/PhysRevLett.99.162503
https://doi.org/10.1103/PhysRevLett.99.162503
https://doi.org/10.1103/PhysRevLett.99.162503
https://doi.org/10.1103/PhysRevLett.99.162503
https://doi.org/10.1103/PhysRevC.86.054313
https://doi.org/10.1103/PhysRevC.86.054313
https://doi.org/10.1103/PhysRevC.86.054313
https://doi.org/10.1103/PhysRevC.86.054313
https://doi.org/10.1088/1674-1137/42/1/014101
https://doi.org/10.1088/1674-1137/42/1/014101
https://doi.org/10.1088/1674-1137/42/1/014101
https://doi.org/10.1088/1674-1137/42/1/014101
https://doi.org/10.1103/PhysRevC.88.034309
https://doi.org/10.1103/PhysRevC.88.034309
https://doi.org/10.1103/PhysRevC.88.034309
https://doi.org/10.1103/PhysRevC.88.034309
https://doi.org/10.1103/PhysRevC.88.044327
https://doi.org/10.1103/PhysRevC.88.044327
https://doi.org/10.1103/PhysRevC.88.044327
https://doi.org/10.1103/PhysRevC.88.044327
https://doi.org/10.1038/19911
https://doi.org/10.1038/19911
https://doi.org/10.1038/19911
https://doi.org/10.1038/19911
https://doi.org/10.1103/PhysRevC.95.061303
https://doi.org/10.1103/PhysRevC.95.061303
https://doi.org/10.1103/PhysRevC.95.061303
https://doi.org/10.1103/PhysRevC.95.061303
https://doi.org/10.1103/PhysRevC.94.054324
https://doi.org/10.1103/PhysRevC.94.054324
https://doi.org/10.1103/PhysRevC.94.054324
https://doi.org/10.1103/PhysRevC.94.054324
https://doi.org/10.1103/PhysRevLett.118.162502
https://doi.org/10.1103/PhysRevLett.118.162502
https://doi.org/10.1103/PhysRevLett.118.162502
https://doi.org/10.1103/PhysRevLett.118.162502
https://doi.org/10.1103/PhysRevLett.62.2452
https://doi.org/10.1103/PhysRevLett.62.2452
https://doi.org/10.1103/PhysRevLett.62.2452
https://doi.org/10.1103/PhysRevLett.62.2452
https://doi.org/10.1016/j.physletb.2016.10.020
https://doi.org/10.1016/j.physletb.2016.10.020
https://doi.org/10.1016/j.physletb.2016.10.020
https://doi.org/10.1016/j.physletb.2016.10.020


XUWEI SUN, JING CHEN, AND DINGHUI LU PHYSICAL REVIEW C 100, 054605 (2019)

[18] S. Cruz, P. Bender, R. Krücken, K. Wimmer, F. Ames, C.
Andreoiu, R. Austin, C. Bancroft, R. Braid, T. Bruhn, W.
Catford, A. Cheeseman, A. Chester, D. Cross, C. Diget, T.
Drake, A. Garnsworthy, G. Hackman, R. Kanungo, A. Knapton,
W. Korten, K. Kuhn, J. Lassen, R. Laxdal, M. Marchetto, A.
Matta, D. Miller, M. Moukaddam, N. Orr, N. Sachmpazidi,
A. Sanetullaev, C. Svensson, N. Terpstra, C. Unsworth, and P.
Voss, Phys. Lett. B 786, 94 (2018).

[19] P. Möller, A. J. Sierk, R. Bengtsson, H. Sagawa, and T.
Ichikawa, Phys. Rev. Lett. 103, 212501 (2009).

[20] F. Recchia, C. J. Chiara, R. V. F. Janssens, D. Weisshaar, A.
Gade, W. B. Walters, M. Albers, M. Alcorta, V. M. Bader,
T. Baugher, D. Bazin, J. S. Berryman, P. F. Bertone, B. A.
Brown, C. M. Campbell, M. P. Carpenter, J. Chen, H. L.
Crawford, H. M. David, D. T. Doherty, C. R. Hoffman, F. G.
Kondev, A. Korichi, C. Langer, N. Larson, T. Lauritsen, S. N.
Liddick, E. Lunderberg, A. O. Macchiavelli, S. Noji, C. Prokop,
A. M. Rogers, D. Seweryniak, S. R. Stroberg, S. Suchyta, S.
Williams, K. Wimmer, and S. Zhu, Phys. Rev. C 88, 041302(R)
(2013).

[21] S. Suchyta, S. N. Liddick, Y. Tsunoda, T. Otsuka, M. B.
Bennett, A. Chemey, M. Honma, N. Larson, C. J. Prokop,
S. J. Quinn, N. Shimizu, A. Simon, A. Spyrou, V. Tripathi,
Y. Utsuno, and J. M. VonMoss, Phys. Rev. C 89, 021301(R)
(2014).

[22] Y. Tsunoda, T. Otsuka, N. Shimizu, M. Honma, and Y. Utsuno,
Phys. Rev. C 89, 031301(R) (2014).

[23] X. Sun, J. Chen, and D. Lu, Phys. Rev. C 98, 024607
(2018).

[24] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer, Berlin, 2004).

[25] D. Vretenar, N. Paar, T. Marketin, and P. Ring, J. Phys. G: Nucl.
Part. Phys. 35, 014039 (2008).

[26] K. Yoshida and N. V. Giai, Phys. Rev. C 78, 064316 (2008).
[27] Y. Niu, N. Paar, D. Vretenar, and J. Meng, Phys. Lett. B 681,

315 (2009).
[28] X. Sun, J. Chen, and D. Lu, Phys. Rev. C 99, 054604 (2019).
[29] T. Nakatsukasa, T. Inakura, and K. Yabana, Phys. Rev. C 76,

024318 (2007).
[30] M. Kortelainen, N. Hinohara, and W. Nazarewicz, Phys. Rev. C

92, 051302(R) (2015).
[31] X. Sun and D. Lu, Phys. Rev. C 96, 024614 (2017).

[32] K. Washiyama and T. Nakatsukasa, Phys. Rev. C 96, 041304(R)
(2017).

[33] J. G. Valatin, Phys. Rev. 122, 1012 (1961).
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