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Standard methods used for computing the dynamics of a quantum many-body system are the mean-field (MF)
approximations such as the time-dependent Hartree-Fock (TDHF) approach. Even though MF approaches are
quite successful, they suffer some well-known shortcomings, one of which is insufficient dissipation of collective
motion. The stochastic mean-field approach (SMF), where a set of MF trajectories with random initial conditions
are considered, is a good candidate to include dissipative effects beyond mean field. In this approach, the one-
body density matrix elements are treated initially as a set of stochastic Gaussian c numbers that are adjusted to
reproduce first and second moments of collective one-body observables. It is shown that the predictive power
of the SMF approach can be further improved by relaxing the Gaussian assumption for the initial probabilities.
More precisely, using Gaussian or uniform distributions for the matrix elements generally leads to overdamping
for long times, whereas distributions with smaller kurtosis lead to much better reproduction of the long time
evolution.
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I. INTRODUCTION

In many situations, the evolution of a quantum system
can be replaced by a set of classical evolutions with random
initial conditions optimized to reproduce at best the initial
quantum zero-point motion [1]. This quantum-to-classical
mapping is particularly suitable in the absence of interference
or tunneling and can be exact in some cases, like the free
wave expansion or the quantum harmonic oscillator. This idea
is employed in many fields of physics to describe the out-
of-equilibrium motion of complex systems, like in quantum
optics [2]. This also includes the possibility to describe many-
body interacting systems. An illustration in bosonic systems
is the truncated Wigner approximation (TWA) [3] (see also
[4]). For Fermi systems, as underlined in Ref. [5], such
mapping is more tricky due to the absence of natural classical
representation, in contrast to bosonic systems. Despite this
inherent difficulty for fermionic systems, one can mention
two attempts to map the complex many-body problem of
interacting systems as a set of “classical trajectories.” The
first one is the stochastic mean-field (SMF) approach [6,7],
where the stochastic one-body density matrices are treated as
classical objects evolving through the time-dependent mean-
field (TDMF) equation of motion. A second formulation was
made more recently in Ref. [5] based on the mapping between
fermionic and bosonic operators, leading to the fermionic
TWA (f-TWA). We actually realized recently that the equation
of motion obtained in the f-TWA often coincides with the
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TDMF evolution, and therefore these two approaches are
relatively close to each other. In recent decades, the SMF
approach has been successfully applied to model cases [8–10]
as well as realistic simulations of dynamical phenomena in
nuclear physics [11–18]. It has also been extended to de-
scribe superfluid systems in Ref. [19]. The SMF approach
and the f-TWA approach have also in common that they
both assume Gaussian probabilities for the initial fluctuations.
However, this assumption turns out to be guided more by
practical arguments than by first principles. In the present
work, we further explore the possibility of using an alternative
probability distribution for the initial conditions in the SMF
approach. We show that, while the second moment of a one-
body observable can be generally interpreted classically, the
fourth moment of a one-body observable is more problematic,
since it can lead to negative values for the fourth moments
of the stochastic matrix elements of one-body densities when
considering many-body Fermi systems. Such behavior cannot
be reproduced by a classical mapping. However, probability
distributions with smaller kurtosis compared to the Gaussian
distribution turn out to be more efficient to describe the time
evolution in the SMF approach. Such finding is illustrated on
a modified version of the Lipkin-Meshkov-Glick model [20].

One of the interesting aspects of the SMF approach is
that it provides a fully microscopic description of fluctuation
and dissipation. It also can be used to make connection with
the more phenomenological Langevin approach in collective
space where few relevant collective degrees of freedom are
preselected [6]. The Langevin technique has been successfully
applied to dissipative nuclear processes such as fission and/or
heavy-ion collisions [21–28]. Although we are still trying to

2469-9985/2019/100(5)/054603(13) 054603-1 ©2019 American Physical Society

https://orcid.org/0000-0003-3154-0213
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.100.054603&domain=pdf&date_stamp=2019-11-06
https://doi.org/10.1103/PhysRevC.100.054603


ULGEN, YILMAZ, AND LACROIX PHYSICAL REVIEW C 100, 054603 (2019)

quantify and/or improve the predictive power of the SMF
approach, in the long term it might provide a fully microscopic
framework for dissipative processes without needing assump-
tions inherent to more phenomenological approaches, like the
selection of collective degrees of freedom or the assumption
on the nature of the noise.

The paper is organized as follows. In Sec. II, the third
and fourth moments of the matrix elements of the stochastic
one-body densities are derived within the SMF approach and
it is shown that initial probability distribution functions with
small kurtosis can provide a better approximation to the fourth
central moment. In Sec. III, the SMF dynamics is applied
to a modified version of the Lipkin-Meshkov-Glick model.
Finally, the conclusions are given in Sec. IV.

II. STOCHASTIC MEAN-FIELD APPROACH

The Schrödinger equation of a many-body fermionic sys-
tem can be cast into a hierarchy of differential equations
for reduced densities (one-body, two-body, etc.) known as
BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hierar-
chy. The truncation of BBGKY equations at lowest order gives
the mean-field equation for the dynamics of one-body density,

ih̄
∂

∂t
ρ = [h[ρ], ρ], (1)

where h[ρ] is the mean-field Hamiltonian. In the mean-field
approximation, one-body density contains all the information
on the system, hence the many-body state is restricted to
be a Slater determinant during the dynamical evolution. MF
dynamics (or TDHF) is known to provide good approxima-
tion to one-body observables but severely underestimate their
quantum fluctuations. Beyond-mean-field approaches are nec-
essary to overcome these shortcomings and provide a more
accurate description of the dynamical evolution.

In the SMF approach [6], the initial one-body density ρ(0)
is replaced by an ensemble of stochastic initial one-body
densities ρλ(0), where λ stands for event label. Each of these
densities evolves with its self-consistent mean-field equation,

ih̄
∂

∂t
ρλ = [h[ρλ], ρλ]. (2)

For each event λ, the “event” expectation value of a one-body
observable A is given by

〈A〉λ = Tr(ρλA), (3)

where “event” means one trajectory associated with a specific
distribution for the stochastic initial one-body densities. In
the SMF approach, the expectation values are obtained by
ensemble averages. Hence, the expectation value of the one-
body observable is defined as

〈A〉λ = Tr(ρλA)

=
∑

i j

ρλ
i jA ji, (4)

where the overline stands for ensemble averaging, explicitly
given by

ρλ
i j = lim

N→∞
1

N
N∑

λ=1

ρλ
i j . (5)

Here, N is the number of events in the ensemble. The quan-
tum variance of the one-body operator is defined by

σ
(2)
A = (〈A〉λ − 〈A〉λ)2

= [Tr(δρλ A)]2

=
∑
i jkl

δρλ
i jδρ

λ
kl A jiAlk, (6)

where δρλ = ρλ − ρλ.
In the SMF approach, the distribution of the stochastic

matrix elements, ρλ
i j (0), is chosen such that the initial mean

and variances of the observables are the same with those
obtained with the initial density ρ(0). If {|i〉} stands for the
natural basis which satisfies 〈i|ρ(0)| j〉 = niδi j , the mean and
variance of A are the expectation values given by

〈A(0)〉 =
∑

i

niAii, (7)

and

〈A2(0)〉 − 〈A(0)〉2 = 1

2

∑
i j

[ni(1 − n j ) + n j (1 − ni )]AjiAi j,

(8)
respectively. Comparing Eqs. (4) and (6) with Eqs. (7) and
(8), we see that the quantum averages match the ensemble
averages if we have

ρλ
i j (0) = niδi j, (9)

δρλ
i j (0)δρλ

kl (0) = δilδ jk
1
2 [ni(1 − n j ) + n j (1 − ni )]. (10)

In the original formulation of the SMF approach [6], the
stochastic matrix elements δρλ

i j (0) are assumed to be Gaussian
random numbers satisfying Eqs. (9) and (10).

Higher order moments of the stochastic
matrix elements of the one-body density

Here, we derive higher order moments for the stochastic
matrix elements and test the Gaussian assumption of the
original formulation of the SMF approach when the initial
state is a Slater determinant. For this purpose, similarly to
the second central moment Eq. (6), we define the expectation
value of the mth central moment of a one-body operator A as

σ
(m)
A = (〈A〉λ − 〈A〉λ)m

= [Tr(δρλ A)]m, (11)

where δρλ = ρλ − ρλ. Hence, the third and fourth central
moments can be written as

σ
(3)
A =

∑
i jklmn

δρλ
i jδρ

λ
klδρ

λ
mnAjiAlkAnm, (12)

σ
(4)
A =

∑
i jklmnpr

δρλ
i jδρ

λ
klδρ

λ
mnδρ

λ
prA jiAlkAnmAr p. (13)
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The corresponding quantum central moments, for an initial
Slater determinant, are given by (see the Appendix for details)

〈(�A)3〉 =
∑
i jk

�
(3)
i jk Ai jA jkAki, (14)

〈(�A)4〉 =
∑
i jkl

�
(4a)
i jkl Ai jA jkAklAli + 3

∑
i jkl

�
(4b)
i jkl Ai jA jiAklAlk,

(15)

where �A = A − 〈A〉 and

�
(3)
i jk = 1

3 [ni(1 − 3n j )(1 − n jnk ) + nk (1 − 3ni )(1 − nin j )

+ n j (1 − 3nk )(1 − nkni )], (16)

�
(4a)
i jkl = 1

4 [ni(1 − 4n j )(1 − 3nk )(1 − n jnknl )

+ nl (1 − 4ni )(1 − 3n j )(1 − nin jnk )

+ nk (1 − 4nl )(1 − 3ni )(1 − nl nin j )

+ n j (1 − 4nk )(1 − 3nl )(1 − nknl ni )], (17)

�
(4b)
i jkl = 1

8 {nink[(1 − 2nl )(1 − nln j ) + (1 − 2n j )(1 − n jnl )]

+ n jnk[(1 − 2nl )(1 − nlni ) + (1 − 2ni )(1 − ninl )]

+ ninl [(1 − 2nk )(1 − nkn j ) + (1 − 2n j )(1 − n jnk )]

+ n jnl [(1 − 2nk )(1 − nkni ) + (1 − 2ni )(1 − nink )]}.
(18)

Comparing Eqs. (12) and (13) with Eqs. (14) and (15), we see
that the quantum and ensemble averages coincide if we have

δρλ
i j (0)δρλ

kl (0)δρλ
mn(0) = δilδ jmδkn�

(3)
jik, (19)

δρλ
i j (0)δρλ

kl (0)δρλ
mn(0)δρλ

pr (0)

= δilδknδrmδ j p�
(4a)
jikr + δilδ jkδrmδpn3�

(4b)
jipr . (20)

By considering that all initial densities ρλ(0) in the en-
semble are Hermitian [in the following, we drop the labels
for brevity, i.e., δρi j ≡ δρλ

i j (0)], it immediately follows from

Eq. (10) that (δρii )2 = 0 which means that

δρii = 0 (21)

and hence the matrix elements ρii are not fluctuating. Further-
more, for i �= j, we have

r2
i j + s2

i j =
{ 1

2 if (i, j) = (p, h),

0 otherwise,
(22)

where we introduced the real and imaginary parts of the
matrix element dispersions, δρi j = ri j + i si j . Here, (i, j) =
(p, h) means that one of the states is a particle state and
the other a hole state. The variance cannot be negative and
hence, from Eq. (22), we have r2

i j = s2
i j = 0 for (i, j) = (p, p)

or (i, j) = (h, h) which means that these matrix elements
are zero. Note that the stochastic matrix elements satisfy the
equations r ji = ri j and s ji = −si j due to Hermiticity.

In order to deduce the properties required for δρ to fulfill
the moments Eqs. (19) and (20), we need to analyze the

possible values of the � terms. In general, from Eqs. (16)–
(18), the � terms can assume the following nonzero values:

�
(3)
pph = �

(3)
php = �

(3)
hpp = − 1

3 ,

�
(3)
phh = �

(3)
hph = �

(3)
hhp = + 1

3 ,

�
(4a)
ppph = �

(4a)
pphp = �

(4a)
phpp = �

(4a)
hppp = + 1

4 ,

�
(4a)
hhhp = �

(4a)
hhph = �

(4a)
hphh = �

(4a)
phhh = + 1

4 ,

�
(4a)
pphh = �

(4a)
hhpp = �

(4a)
hpph = �

(4a)
phhp = − 1

2 ,

�
(4a)
phph = �

(4a)
hphp = −1,

�
(4b)
phph = �

(4b)
hphp = �

(4b)
hpph = �

(4b)
phhp = + 1

4 , (23)

where p stands for a particle and h stands for a hole state. The
nonzero terms of Eq. (19) are given by

δρi jδρkiδρ jk = �
(3)
jik . (24)

Similarly, the nonzero terms of the first and second terms of
Eq. (20), by taking into account the Kronecker delta functions,
read as

δρi jδρkiδρrkδρ jr = �
(4a)
jikr (25)

and

δρi jδρ jiδρr pδρpr = 3�
(4b)
jipr, (26)

respectively.
The form of the last three equations suggests that these

equations can be satisfied if one considers that the stochastic
matrix elements are correlated with each other. However,
averages that contain terms with the same indices δρ j j in
Eqs. (24) and (25) lead to, for instance, δρi jδρ jiδρ j j = �

(3)
ji j

and δρi jδρiiδρ jiδρ j j = �
(4a)
jii j , where left-hand side of these

equations is zero due to Eq. (21) and the right-hand side
of the equations is nonzero as seen from Eq. (23). Hence,
Eqs. (24) and (25) cannot be satisfied completely even with
correlated matrix elements. The reason for such a discrepancy
is related to the fact that probability distributions cannot sim-
ulate quantum mechanical systems. In conclusion, probability
distributions can only approximately match higher quantum
mechanical moments. Here, we explore probability distribu-
tions that can at best approximate the third and fourth quantum
mechanical moments.

In this study, we investigate the consequences of the simple
case of uncorrelated matrix elements. Hence, we assume that
each stochastic matrix element is statistically independent of
the others as well as that the real and imaginary parts of a
matrix element are also statistically independent. Then, for
simplicity, we set δρi jδρ jiδρi j = r3

i j + is3
i j = 0 for the third

central moments, which means

r3
i j = s3

i j = 0. (27)

This is in accordance with the original formulation of the
SMF approach since the third central moment of a mean-zero
Gaussian random number is zero. Note that Eq. (24) does
not provide any restrictions for the δρi jδρ jiδρi j moments.
However, a condition for the fourth central moments can be
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obtained by assuming uncorrelated matrix elements. It is seen
from Eqs. (25) and (26) that one has

δρi jδρ jiδρi jδρ ji = �
(4a)
ji ji + 3�

(4b)
ji ji , (28)

which leads to the result,

r4
i j + s4

i j + 2 r2
i j s2

i j =
{− 1

4 if (i, j) = (p, h),

0 otherwise,
(29)

where Eq. (23) was used.
No probability distribution can have a negative second

and/or fourth central moment. Hence, the left-hand side of
Eq. (29) can never be negative. However, the distributions
that we want to obtain are quantum mechanical in nature.
Actually the noncommutativity of operators within quantum
mechanics is the main reason for inadequacy of probabil-
ity distributions to simulate the quantum systems. In the
phase-space formulation of quantum mechanics, we already
know such behaviors coming from the Wigner distribution
which can assume negative values and therefore is called a
quasiprobability distribution [29]. It is important to note that
positive-definite phase-space distributions such as the Husimi
distribution exist; however, they are still quasiprobability dis-
tributions since the averages are taken by the Weyl symbol of
the operators rather than the operators themselves [10].

Based on the discussion above, since a probability distri-
bution cannot lead to a negative fourth central moment, we
anticipate that an efficient approximation would be to consider
a distribution which minimizes the left-hand side of Eq. (29)
while satisfying Eq. (22). Equation (22) sets a condition on
the sum of the variances and hence it does not impose any
conditions on the weights to the variances of the real and
imaginary parts. In order to investigate the dependence to the
weights, we define a parameter χ = r2

i j . From Eq. (22), we

have s2
i j = 1/2 − χ , where 0 � χ � 1/2. Substituting these

results into the left-hand side of Eq. (29) we obtain the
function

F (χ, γ ) = 2(γ − 1)χ2 − (γ − 1)χ + γ

4
, (30)

where we used the kurtosis of the distribution, which is
defined as

γ = r4
i j(

r2
i j

)2 . (31)

The kurtosis is an invariant form of the fourth central
moment that only depends on the distribution and does not de-
pend on the particular values of the variance. Figure 1 shows
the plot of the function (30) versus the weight parameter
χ for the kurtosis values 3 and 1.8, which are the kurtoses
of the Gaussian and the uniform distributions, respectively.
The kurtosis value of 1 corresponds to the minimum possible
value. The probability distribution function with the minimum
kurtosis is the so-called two-point distribution function, which
can take only two values, σ and −σ , with equal probabilities
[30]. This probability function can be written as

P2p(x) = 1
2δ(x + σ ) + 1

2δ(x − σ ), (32)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.25 0.5

F
( χ

,γ
)

χ

γ = 3.0

γ = 1.8

γ = 1.0

FIG. 1. The plot of the function (30) versus the parameter χ for
three different kurtoses γ : γ = 3, γ = 1.8, and γ = 1 correspond to
the Gaussian, uniform, and two-point distributions, respectively.

where δ(x) is the Dirac delta function and σ is the standard
deviation of x. It is seen from Fig. 1 that the function F
decreases as the kurtosis γ decreases. We show below that the
SMF dynamics with a small kurtosis probability distribution
provides a better approximation to the exact dynamics than the
SMF dynamics with a large kurtosis distribution. In particular,
for the three distributions we considered here, the two-point
distribution provides the best approximation and the Gaussian
distribution provides the worst approximation. The choice of
the weight parameter χ also has an impact on the values
of the function F , as seen from Fig. 1. The equal weight
case, χ = r2

i j = s2
i j = 1/4, provides the minimal value of F

for a fixed value of the kurtosis γ except for the two-point
distribution which is constant. Hence, the case with equal
weights for the variances of the real and imaginary parts of the
stochastic matrix elements is anticipated to provide a better
approximation than any unequal weights case.

III. APPLICATIONS

In this section, we apply the SMF approach with the
two-point distribution as well as the Gaussian and uniform
distributions on an exactly solvable model and show that
indeed the SMF dynamics with the two-point distribution
for the matrix elements gives a better agreement with the
exact dynamics than the SMF dynamics with the uniform or
Gaussian distributions.

A. A modified Lipkin-Meshkov-Glick model

We consider a modified Lipkin-Meshkov-Glick model
(mLMG) that was introduced in Ref. [20]. It has a pairing
Hamiltonian structure and the single particle energies are
stochastically distributed over the levels allowing for a de-
scription of dissipation. The Hamiltonian of this model reads

H = T + V (33)
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FIG. 2. Schematic illustration of the mLMG model. Two tran-
sitions are indicated: one within the same level (green arrows) and
another between the two levels (yellow arrows).

with

T =
∑

α

sαεα

2
a†

αaα, (34)

V = v0S+S−, (35)

where α = (sα, mα ), sα ∈ {−1,+1}, mα ∈ {− j,− j +
1, . . . , j − 1, j}, S+ = ∑

α>0 a†
αa†

α , and S− = S†
+. Here,

α = (sα,−mα ) and α > 0 means mα > 0. v0 is the interaction
strength and εα/2 are the single-particle energies which are
random numbers with some variance σ 2

ε . The mean values
of the single-particle energies in the upper level sα = 1 and
in the lower level sα = −1 are �/2 and −�/2, respectively.
In order to avoid any ambiguity, we should state that the
stochastic single-particle energies are only set once and these
values are used for the dynamics. Figure 2 shows a schematic
illustration of the mLMG model. Two transitions are indicated
on the figure. Note that, contrary to the original LMG model
[31], there are transitions within the same level, which is due
to the fact that the single-particle energies are different.

B. Exact, mean-field, and stochastic mean-field dynamics

The exact dynamics, for an initial state |
(0)〉, is formally
given by

|
(t )〉 = e−iHt/h̄|
(0)〉. (36)

In practice, there are several numerical methods to solve
this equation of motion. We use the iterated Crank-Nicolson
method for computing the exact dynamics [32].

The mean-field equation of motion (or TDHF equation)
can be derived by using the Ehrenfest theorem,

ih̄
dραβ

dt
= ih̄

d〈a†
β aα〉
dt

= 〈[a†
β aα, H]〉, (37)

where the expectation value is taken with respect to a Slater
determinant. By using Eq. (33), the last equation gives

ih̄
dραβ

dt
= 1

2
(sαεα − sβεβ )ραβ + v0

∑
γ>0

(ργαργβ − ραγ ρβγ )

− v0

∑
γ>0

(ργαργβ − ραγ ρβγ ). (38)

The SMF equation is directly obtained from Eq. (38) by
replacing all one-body densities with the stochastic ones, ρ →
ρλ.

There are two different single-particle bases that are used
in this study. One of the bases is the fixed basis of the
model, which consists of the single-particle states associ-
ated with the creation and annihilation operators a†

α , aα ap-
pearing in the Hamiltonian Eq. (33). We use the labels α,
β, etc. for the fixed basis. The other basis is the natural
basis which is obtained by diagonalizing the initial one-
body density and we use the labels i, j, etc. for the states
in this basis. The states in the fixed basis do not change
over time, whereas the states in the natural basis change
over time. Note that the MF equation (38) is written in the
fixed basis, whereas the properties of the matrix elements of
the initial stochastic one-body densities in the SMF approach
are derived in the natural basis in Sec. II. We solve the SMF
equations of motion in the fixed basis. Hence, for each event
we sample an initial stochastic one-body density in the natural
basis, we write it in the fixed basis, and then evolve it with the
SMF equation which is just the MF equation.

C. The initial state

We consider the half-filled case for which there are N
particles for 2N single-particle states with initial states of the
form

|
(0)〉 = eiμD|�(η)〉, (39)

where μ is a real parameter and |�(η)〉 is a Slater determinant
given by

|�(η)〉 = (a†
α1

)n(η)
α1 (a†

α2
)n(η)

α2 · · · (a†
α2N

)n(η)
α2N |0〉. (40)

Here, n(η)
α are occupation numbers with values 0 or 1 corre-

sponding to the single-particle states indicated in Fig. 2. The
dipole operator D reads

D =
∑
mα

(a†
+1,mα

a−1,mα
+ a†

−1,mα
a+1,mα

). (41)

Since D is a one-body operator the initial state |
(0)〉 is also
a Slater determinant due to the Thouless theorem [33]. The
effect of the exponential term in Eq. (39) is to introduce some
excitation by an instant dipole boost [20].

We consider two different initial states for N = 6 particles.
The first state corresponds to the ground state, |�(0)〉, with
all the particles in the lower level (sα = −1) excited by the
dipole boost in Eq. (39) with μ = 0.8. The second state is
found by applying again the dipole boost with μ = 0.8 to the
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state |�(η)〉 for which

(sα, mα ) =
{(

+1, ±1

2

)
,

(
−1, ±1

2

)
,

(
+1, ±3

2

)}
(42)

single-particle states are occupied (see Fig. 2). The first and
second states are denoted by |
(0)〉1 and |
(0)〉2, respec-
tively.

Note that the schematic model in Fig. 2 is shown
for 10 particles in 20 states. Here, we consider 6 par-
ticles in 12 states, therefore mα can take the values
{−5/2,−3/2,−1/2, 1/2, 3/2, 5/2}.

D. Results

In the following computations, the units of energy will be
written in terms of the level spacing � and the time units in
terms of �−1. The single-particle energies are chosen as

ε(+1,±5/2)/2 = 0.225 �, ε(−1,±5/2)/2 = −0.222 �,

ε(+1,±3/2)/2 = 0.697 �, ε(−1,±3/2)/2 = −0.593 �,

ε(+1,±1/2)/2 = 0.578 �, ε(−1,±1/2)/2 = −0.685 �. (43)

The mean of the single-particle energies in the upper level
ε(+1,mα )/2 and in the lower level ε(−1,mα )/2 are �/2 and
−�/2, respectively. The standard deviation of the εα/2 values
in each level is σε = 0.2 �. All the SMF results are obtained
by considering N = 106 events.

We follow the dynamics of the dipole operator D and the
fermionic one-body entropy given by

S = −Tr[ρ ln ρ + (1 − ρ) ln(1 − ρ)], (44)

where ρ is the one-body density operator. The one-body en-
tropy is a measure of departure from an uncorrelated (Slater)
state and a measure of thermalization [20]. For a Slater state,
the entropy gets the value S = 0. Hence, during the MF
dynamics the entropy remains zero. The maximum value of
the entropy for the half-filled case is obtained when all single
particle states are half-filled, leading to the value

S = 2N ln 2. (45)

In the SMF approach, the one-body entropy is computed by
the expression

S = −Tr[ρλ ln ρλ + (1 − ρλ) ln(1 − ρλ)]. (46)

Figure 3 shows the expectation value of the dipole operator
D, given by Eq. (41), and the one-body entropy S, given
by Eq. (44), per particle versus time for the weak coupling
v0 = 0.05 �. The initial state is |
(0)〉1 which is explained
in Sec. III C. In Fig. 3(a), it is observed that MF evolution
starts to deviate from the exact one at around t = 6 �−1,
whereas in Fig. 3(b) the SMF evolutions start to deviate later
at around t = 20 �−1. Comparing the three SMF dynamics
with the exact one in Fig. 3(b), we see that the SMF approach
with the two-point distribution is much better than the other
two distributions at all times. A similar behavior is seen for
the one-body entropy S in Fig. 3(c). The SMF evolution
of the entropy with the two-point distribution follows the
exact solution very closely, whereas SMF solutions with the
Gaussian and uniform initial distributions are underestimating
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exact
SMF (G)
SMF (U)
SMF (T)

FIG. 3. Comparison of the dynamical evolutions of the expecta-
tion value of the dipole operator D is illustrated for the exact (black
line) and MF solutions (orange line with circles) (a), and for the exact
and SMF solutions with Gaussian (G) (red line with boxes), uniform
(U) (green line with triangles), and two-point (T) distributions (blue
line with diamonds) (b). The dynamics of the one-body entropy
per particle S/N for the exact and SMF solutions with the same
three distributions is indicated in the lower panel (c). The interaction
strength is v0 = 0.05 � and the initial state is |
(0)〉1.

the exact entropy until t = 30 �−1. After that time, the exact
entropy decreases, which is followed by the SMF solution
with two-point distribution, whereas the solutions with the
Gaussian and uniform distributions continue to increase and
approach the maximum value 2 ln 2 = 1.38. The solution with
the uniform distribution has a small decrease from t = 40 �−1

to t = 70 �−1, hence it is slightly better than the solution with
the Gaussian distribution. Note that as the kurtosis, Eq. (31),
of the distribution decreases the SMF dynamics becomes
better. The best approximation is attained for the two-point
distribution, Eq. (32), with the minimum kurtosis value of
1. We clearly see in Fig. 3 that the use of the two-point
distribution strongly increases the timescale over which the
SMF approach is predictive.

Figure 4 is the same as Fig. 3 except that the long time
dynamics is shown. In Fig. 4(a), the exact solution exhibits
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FIG. 4. Same as Fig. 3 for long time evolution.

oscillations with decreasing amplitude for long times; on
the other hand the MF solution has beating-like oscillations
with almost constant amplitude. This result and the fact that
the one-body entropy in MF approximation remains zero at
all times clearly show the well-known shortcoming of MF
dynamics, that is the underestimation of dissipation and hence
thermalization in quantum many-body systems. In Fig. 4(b),
the SMF solution with two-point distribution follows the
amplitudes of the oscillation of the exact dynamics for a
longer time than the SMF solutions with Gaussian and uni-
form distributions, which become almost completely damped
around t = 50 �−1. Figure 4(c) shows the similar behavior for
the entropy S. The SMF solutions with Gaussian and uniform
distributions attain the maximum entropy value around t =
50 �−1, whereas the SMF solution with two-point distribution
is in better agreement with the exact entropy for longer times.

The dynamics in the strong coupling case, v0 = 0.5 �, is
indicated in Fig. 5. It is seen that the MF solution of 〈D〉
deviates from the exact one at t = 0.7 �−1 and SMF solutions
start to deviate later at around t = 2 �−1. In Figs. 5(a) and
5(b), the difference between the SMF results with the three
distributions is almost negligible. However, when the plots at
t = 2.1 �−1 are zoomed in, as seen from the inset figures,
the SMF solution with the two-point distribution turns out
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FIG. 5. Comparison of the dynamical evolutions of the expec-
tation value of the dipole operator D is illustrated for the exact
(black line) and MF solutions (orange line with circles) and for
SMF solutions with Gaussian (G) (red line with boxes), uniform
(U) (green line with trangles), and two-point (T) distributions (blue
line with diamonds) (a). The dynamics of the one-body entropy
per particle S/N for the exact and SMF solutions with the same
three distributions is indicated in the lower panel (b). The interaction
strength is v0 = 0.5 � and the initial state is |
(0)〉1.

to be the best approximation to the exact solution and the
SMF solution with the Gaussian distribution is the worst
approximation. It is known that the validity time of MF as well
as beyond-MF approximations decreases in inverse proportion
to the coupling strength, �tval ∝ v−1

0 , [9,34]. Here, we observe
the same behavior by comparing Figs. 3 and 5. Furthermore,
as the coupling strength increases the difference between SMF
evolutions with different initial distributions decreases.

In Fig. 6, we investigate the dependence of the SMF
dynamics on the parameter χ that controls the weights of the
real and imaginary parts of the stochastic matrix elements
of the one-body densities ρλ. Three cases are considered:
the first one corresponds to the equal weights case, labeled
as R + I, for which χ = r2

i j = s2
i j = 1/4; the second one

corresponds to full weight to the real parts, labeled as R,
for which χ = r2

i j = 1/2 and s2
i j = 0; and the third case is

the opposite, full weight to the imaginary parts, labeled as I,
for which s2

i j = 1/2 and χ = r2
i j = 0. It is clearly seen that

the equal weight case gives the best dynamics with all three
distributions. When the imaginary matrix elements are set to
zero, case R, the SMF entropy is overestimating the exact
one and when the real matrix elements are set to zero, case
I, the SMF entropy is underestimating the exact entropy. As
discussed in Sec. II, the quality of the SMF approximation
increases when the function F , given by Eq. (30), assumes
smaller values. In Figs. 6(a) and 6(b), the SMF solutions with
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FIG. 6. SMF evolutions of the entropy per particle S/N are
plotted for different weights of the variances to the real ri j and
imaginary si j parts of the stochastic density matrix elements. The
SMF solutions are obtained with the Gaussian (a), uniform (b), and
two-point (c) distributions. The exact solutions are indicated by black
lines. The SMF evolutions with two-point distribution are shown for
the equal weight case, r2

i j = s2
i j = 1/4, which is labeled as R + I

(blue line with diamonds); the full weight to the real parts, r2
i j = 1/2

and s2
i j = 0, which is labeled as R (red line with boxes); and the

full weight to the imaginary parts, s2
i j = 1/2 and r2

i j = 0, which is
labeled as I (green line with triangles). The interaction strength is
v0 = 0.05 � and the initial state is |
(0)〉1.

the Gaussian and uniform distributions are consistent with this
result. However, the weight parameter χ should not affect the
quality of the SMF evolution with the two-point distribution
since F is constant for this distribution, as seen from Fig. 1.
In Fig. 6(c), it is observed that the equal weight case is still
much better than unequal weight cases. This can be explained
by observing the distributions of real and imaginary parts of
the stochastic matrix elements. As an illustration, in Fig. 7,
we show the distributions of the real rαβ and imaginary sαβ

parts of a matrix element ρλ
αβ of the stochastic one-body

densities ρλ at the times t = 0, t = 2 �−1, and t = 4 �−1. In
this figure, the single-particle states are arbitrarily chosen as
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FIG. 7. Distributions of the real rαβ (the subfigures on the left)
and imaginary sαβ parts (the subfigures on the right) of the matrix
elements ρλ

αβ of the stochastic one-body densities ρλ at the times t =
0 (upper subfigures), t = 2 �−1 (middle subfigures), and t = 4 �−1

(lower subfigures). The single particle states are α = (+1,+1/2)
and β = (−1,+3/2). The initial distribution of the matrix elements
is the two-point distribution. The same cases as in Fig. 6 namely
R + I (blue solid line), R (red dotted line), and I (green dashed line)
are indicated. The interaction strength is v0 = 0.05 � and the initial
state is |
(0)〉1.

α = (+1,+1/2) and β = (−1,+3/2). The initial distribution
of the matrix elements is the two-point distribution. The same
cases as in Fig. 6, namely R + I, R, and I, are indicated.
It is observed that when the imaginary (real) parts of the
matrix elements are set to zero, case R (I), the real (imaginary)
parts in the figure assume three values with equal probability
whereas, the imaginary (real) parts are zero at the initial
time t = 0. After a very short time interval, at t = 2 �−1,
both the real and imaginary parts develop similar three-peak
structures. However, after the same amount of time, at t =
4 �−1, opposite distribution structures for the R and I cases
are observed with respect to the distributions at time t =
0. At time t = 4 �−1, the real (imaginary) parts develop a
narrow distribution around the value zero compared to the
imaginary (real) parts that have a wide three-peak distribution
for the case R (I). The case R + I exhibits almost symmetrical
distributions for the real and imaginary parts at all times.
These results clearly show how the dynamical correlations
between the real and imaginary parts of the matrix elements
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FIG. 8. Distribution of the “event” expectation values of the
dipole operator D in the ensemble are compared for the Gaussian
(G) (red dotted line), uniform (U) (green dashed line), and two-point
(T) distributions (blue solid line) at the times t = 0 (a), t = 2 �−1

(b), t = 4 �−1 (c). The interaction strength is v0 = 0.05 � and the
initial state is |
(0)〉1.

build up in time. In particular, the real and imaginary parts are
balancing each other for the equal weight case R + I, whereas
the distributions are changing between narrow single-peak
around zero and a wide three-peak distribution for the unequal
weights cases R and I. In Fig. 6, it is seen that the entropies
for the cases R and I start to deviate from the exact and R + I
case solutions at very short times such as t = 2 �−1 for all
the distributions. At this time, even the MF solution agrees
well with the exact solution as seen from Fig. 3(a). Based on
these observations and the fact that the correlations between
the real and imaginary parts of the matrix elements of the
one-body density are governed by the MF equation, we think
that the quality of the SMF approach for different weights
cases, such as the cases R and I, is unrelated to the choice
of the initial distributions in the SMF approach. Hence, the
equal weight case R + I should always be considered as a
better approximation over unequal cases due to dynamical
correlations, governed by the MF equation, between the real
and imaginary parts of the matrix elements.
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FIG. 9. Same as Fig. 8 except that the system consists of N = 12
particles in 24 single particle states. The distributions of 〈D〉λ are
compared at the times t = 0 (a), t = 0.6 �−1 (b), t = 1.2 �−1 (c).

Figure 8 shows the distribution of the “event” expectation
value, defined by Eq. (3), of the collective observable D for
the three probability distributions at three different times.
The distributions of 〈D〉λ are continuous and Gaussian for
the initial Gaussian and uniform distributions at all times.
However, for the initial two-point distribution, the resulting
distribution of 〈D〉λ is discrete. This result is directly re-
lated to the fact that the two-point distribution is discrete.
It is seen that in a very short time interval 4 �−1 the result
with the two-point distribution becomes also Gaussian since
the correlations between the stochastic matrix elements of
the one-body density, governed by the stochastic version of
the mean-field equation (38), build up very fast. Figure 9 is the
same as Fig. 8 except that we consider a system with N = 12
particles in 24 single-particle states. Here, it is observed that
the number of discrete peaks increases linearly with particle
number and also that the time interval after which a Gaussian
distribution is obtained is even shorter than that for N = 6
particles. The behaviors here are closely related to the central
limit theorem, which states that the sum of many independent
random variables tends toward a Gaussian distribution. Note
that Figs. 8 and 9 show how fast the discrete initial distribution
of 〈D〉λ transforms to a Gaussian distribution and hence how
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FIG. 10. Same as Fig. 3 except that the initial state is |
(0)〉2.

fast the correlations between the matrix elements of the one-
body density build up. If the dynamical evolution of the distri-
bution of 〈D〉λ in Fig. 8 or 9 is followed for longer times (not
shown for brevity), it is observed that the Gaussian shape is
preserved; however, centroids and widths of the distributions
of 〈D〉λ for the two-point, Gaussian, and uniform distribu-
tions deviate from each other since the corresponding SMF
means and variances of D deviate from each other as well.

Similar results are reached for the SMF evolutions with dif-
ferent initial states. Here, we also demonstrate a result with a
different initial state |
(0)〉2, which is explained in Sec. III C.
The corresponding solutions are illustrated in Figs. 10 and 11.
Note that these figures are the same as Figs. 3 and 4 except
that the initial state is different. The MF evolution with this
initial state results in a sinusoidal oscillation with constant
amplitude for the dipole moment 〈D〉, and the exact evolution
demonstrates a beating oscillation with almost equal ampli-
tudes for the beatings, as seen in Figs. 10(a) and 11(a). We see
that taking a different initial state leads to the same conclusion
that the SMF evolution with the two-point distribution leads to
a better agreement with the exact evolution compared to the
SMF evolution with the Gaussian or uniform distributions. In
Figs. 10(c) and 11(c) the system does not reach the maximum
entropy value 2 ln 2 due to the symmetry of the initial state.
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FIG. 11. Same as Fig. 10 for long time evolution.

This is also in accordance with observation of the beating
oscillations of the exact evolution. SMF evolution with the
two-point distribution is able to reproduce the beatings with
decreasing amplitudes in time, whereas SMF evolutions with
Gaussian and uniform distributions get damped in a very short
time.

IV. CONCLUSIONS

In the SMF approach, expectation values of observables
are obtained by statistically averaging over an ensemble of
stochastic one-body densities. It is through matching these
expectation values to the corresponding quantum expectation
values of collective observables at initial time that provides
information about the properties of the initial distribution of
the matrix elements of the stochastic one-body densities. In
the original formulation of the SMF approach, the match-
ing of the expectation values is performed for the quantum
means and variances of collective observables, which pro-
vides relations for the means and (co)variances (first and
second moments) of the stochastic one-body density ma-
trix elements that are then assumed to be Gaussian random
numbers [6]. In the present work, we have investigated the
properties of the stochastic one-body densities within the
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SMF approach by considering higher order moments. An
expression for the fourth central moments of the matrix el-
ements is derived which suggests that a probability distri-
bution with minimal kurtosis for the initial density matrix
elements provides the best approximation to the exact dy-
namics when the stochastic matrix elements are assumed to
be statistically independent random numbers. The distribution
with minimal kurtosis is the so-called two-point distribution,
which can take only two values and hence is discrete. The
SMF approach with the two-point distribution as well as the
Gaussian and uniform distributions are applied to an exactly
solvable model that is inspired by the Lipkin-Meshkov-Glick
model that is familiar from nuclear physics [20]. It is shown
that indeed the two-point distribution is the best approxi-
mation for the matrix elements of the stochastic one-body
densities in the weak as well as strong coupling strengths.
However, in the strong coupling case, the difference among
the SMF evolutions with different distributions is almost
negligible.

MF dynamics in its various forms such as TDHF and den-
sity functional theory is widely used in many fields of physics.
However, MF dynamics is known to contain some drawbacks.
Quantum correlations in collective observables are mostly
missing, hampering the use of the MF dynamics for long
time evolutions. Furthermore, the dissipation of the collective
motion is severely underestimated. The SMF approach cures
these drawbacks to some extent by taking into account the
initial quantum fluctuations. It can be shown by following
Ref. [35] that the SMF approach is equivalent to solving a
BBGKY-like hierarchy of equations describing the coupling
between the different moments of the one-body density. As
a consequence, the kth moment is coupled to the (k + 1)th
moment. The dissipation in one-body space emerges from
the coupling with the second moment that is also coupled to
higher order moments. This situation is rather similar to the
case with the standard BBGKY hierarchy of equations. The
equations of motion of the different moments are independent
of the assumption for the initial probability. However, obvi-
ously, the quality of the result itself is anticipated to depend on
how accurately not only the second moments but also higher
order moments of the collective observables are described by
the initial probability. This is actually what we show here:
that a better account of moments higher than the second
moment improves the SMF evolution. Hence, it is observed
that the long time correlations are much better reproduced
with the two-point distribution than the Gaussian or uniform
distributions, which result in overdamping and hence faster
thermalization.

The discrete form of the two-point distribution results in
a discrete initial distributions of the collective observables
with the tips of the discrete values having a Gaussian shape.
Due to correlations between the matrix elements supplied
by the self-consistent SMF equation, the distribution of the
collective observables reaches a Gaussian distribution very
fast, which is in accordance with the central limit theorem.
The discrete nature of the physical observables and the matrix
elements of the initial stochastic one-body densities opens up
the possibility to perform SMF dynamics with small numbers
of events.
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APPENDIX: QUANTUM MOMENTS OF A
ONE-BODY OPERATOR

Let us consider that a many-body system is described by
a Slater determinant and that the corresponding one-body
density is ρ. In terms of the natural basis {|i〉}, which satisfies
〈i|ρ| j〉 = niδi j where the occupation numbers ni can take
values 0 or 1, a one-body operator can be written as A =∑

i j Ai ja
†
i a j . The first moment is the expectation value given

by

〈A〉 = Tr(ρA)

=
∑

i

niAii. (A1)

The second moment is obtained as

〈A2〉 = Tr1
(
ρ1A2

1

) + Tr12(ρ12A1A2)

=
∑

i j

ni(1 − n j )Ai jA ji +
∑

i j

nin jAiiA j j, (A2)

where ρ12 = ρ1ρ2(1 − P12). Hence, the second central
moment is given by

〈(A − 〈A〉)2〉 = 〈A2〉 − 〈A〉2

=
∑

i j

ni(1 − n j )AjiAi j

= 1

2

∑
i j

[ni(1 − n j ) + n j (1 − ni )]AjiAi j . (A3)

The third moment of A reads

〈A3〉 = Tr1
(
ρ1A3

1

) + 2Tr12
(
ρ12A2

1A2
) + Tr12

(
ρ12A1A2

2

)
+ Tr123(ρ123A1A2A3)

=
∑
i jk

niAi jA jkAki + 2
∑
i jk

nin j (AikAkiA j j − AjkAkiAi j )

+
∑
i jk

nin j (AiiA jkAk j − AjiAikAk j )

+
∑
i jk

nin jnk (AiiA j jAkk − AiiA jkAk j

− Ai jA jiAkk − AikA j jAki + Ai jA jkAki + AjiAk jAik )

=
∑
i jk

niAi jA jkAki + 3
∑
i jk

nin j (AikAkiA j j − AjkAkiAi j )

+
∑
i jk

nin jnk (AiiA j jAkk − 3AiiA jkAk j + 2Ai jA jkAki ),

(A4)
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where ρ123 = ρ1ρ2ρ3(1 − P12)(1 − P13 − P23). The third cen-
tral moment of A reads

〈(A − 〈A〉)3〉 = 〈A3〉 − 3〈A2〉〈A〉 + 2〈A〉3

=
∑
i jk

ni(1 − 3n j + 2n jnk )Ai jA jkAki

=
∑
i jk

ni(1 − 3n j )(1 − n jnk )Ai jA jkAki

=
∑
i jk

�i jk Ai jA jkAki, (A5)

where we used the fact that n2
i = ni for a Slater determinant

and �i jk is the symmetrized version of the term ni(1 −
3n j )(1 − n jnk ) given by

�
(3)
i jk = 1

3 [ni(1 − 3n j )(1 − n jnk ) + nk (1 − 3ni )(1 − nin j )

+ n j (1 − 3nk )(1 − nkni )]. (A6)

The fourth moment of A reads

〈A4〉 = Tr1
(
ρ1A4

1

) + Tr12
[
ρ12

(
4A3

1A2 + 3A2
1A2

2

)]
+ 6Tr123

(
ρ123A2

1A2A3
) + Tr1234(ρ1234A1A2A3A4)

=
∑
i jkl

niAi jA jkAkl Ali

+ 4
∑
i jkl

nin j (AikAklAliA j j − AjkAklAliAi j )

+ 3
∑
i jkl

nin j (AikAkiA jl Al j − AjkAkiAilAl j )

+ 6
∑
i jkl

nin jnk (Ail AliA j jAkk − Ail AliA jkAk j

− Akl AliA j jAik − AjlAliAi jAkk + 2Ai jA jkAklAli )

+
∑
i jkl

nin jnknl (AiiA j jAkkAll − 6Ai jA jiAkkAll

+ 8Ai jA jkAkiAll + 3Ai jA jiAklAlk − 6Ai jA jkAkl Ali ),

(A7)

where ρ1234 = ρ1ρ2ρ3ρ4(1 − P12)(1 − P13 − P23)(1 − P14 −
P24 − P34). The fourth central moment of A reads

〈(A − 〈A〉)4〉
= 〈A4〉 − 4〈A3〉〈A〉 + 6〈A2〉〈A〉2 − 3〈A〉4

=
∑
i jkl

ni(1 − 4n j − 3nk + 12n jnk − 6n jnknl )Ai jA jkAkl Ali

+ 3
∑
i jkl

nink (1 − 2nl + nln j )Ai jA jiAkl Alk

=
∑
i jkl

ni(1 − 4n j )(1 − 3nk )(1 − n jnknl )Ai jA jkAklAli

+ 3
∑
i jkl

nink (1 − 2nl )(1 − nln j )Ai jA jiAkl Alk (A8)

=
∑
i jkl

�
(4a)
i jkl Ai jA jkAklAli + 3

∑
i jkl

�
(4b)
i jkl Ai jA jiAklAlk, (A9)

where the symmetrized terms are

�
(4a)
i jkl = 1

4 [ni(1 − 4n j )(1 − 3nk )(1 − n jnknl )

+ nl (1 − 4ni )(1 − 3n j )(1 − nin jnk )

+ nk (1 − 4nl )(1 − 3ni )(1 − nlnin j )

+ n j (1 − 4nk )(1 − 3nl )(1 − nknl ni )], (A10)

�
(4b)
i jkl = 1

8 {nink[(1 − 2nl )(1 − nln j ) + (1 − 2n j )(1 − n jnl )]

+ n jnk[(1 − 2nl )(1 − nlni ) + (1 − 2ni )(1 − ninl )]

+ ninl [(1 − 2nk )(1 − nkn j ) + (1 − 2n j )(1 − n jnk )]

+ n jnl [(1 − 2nk )(1 − nkni ) + (1 − 2ni )(1 − nink )]}.
(A11)

Note that the symmetrized terms �
(4a)
i jkl and �

(4b)
i jkl are obtained

by realizing, from Eq. (A8), the following equalities:

Ai jA jkAkl Ali = AliAi jA jkAkl

= Akl AliAi jA jk

= AjkAklAliAi j (A12)

and

Ai jA jiAkl Alk = AklAlkAi jA ji

= AjiAi jAklAlk

= AklAlkA jiAi j

= Ai jA jiAlkAkl

= AlkAkl Ai jA ji

= AjiAi jAlkAkl

= AlkAkl A jiAi j . (A13)
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