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Effects of quantum statistics near the critical point of nuclear matter
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Effects of quantum statistics for nuclear matter equation of state are analyzed in terms of the recently proposed
quantum van der Waals model. The system pressure is expanded over a small parameter δ ∝ n(mT )−3/2[g(1 −
bn)]−1, where n and T are, respectively, the particle number density and temperature, m and g the particle mass
and degeneracy factor. The parameter b corresponds to the van der Waals excluded volume. The corrections
due to quantum statistics for the critical point values of Tc, nc, and the critical pressure Pc are found within the
linear and quadratic orders over δ. These approximate analytical results appear to be in a good agreement with
exact numerical calculations in the quantum van der Waals model for interacting Fermi particles: the symmetric
nuclear matter (g = 4) and the pure neutron matter (g = 2). They can be also applied to the system of interacting
Bose particles like the matter composed of α nuclei.
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I. INTRODUCTION

A study of nuclear matter, an interacting system of protons
and neutrons, has a long history; see, e.g., Refs. [1–11]. Real-
istic versions of the nuclear matter equation of state includes
both the attractive and repulsive forces between protons and
neutrons. A theoretical description of the thermodynamical
behavior of this matter leads to the liquid-gas first-order phase
transition, which ends at the critical point. Such a behavior
is rather similar to that in the atomic gases and liquids.
Experimentally, a presence of the liquid-gas phase transition
in nuclear matter was reported and then analyzed in numerous
papers (see, e.g., Refs. [12–17]).

In the present paper the recently proposed van der Waals
equation of state with the quantum statistics [18] is used
to describe the properties of nuclear matter. The aim of
our consideration is to investigate the role and size of the
effects of quantum statistics. Particularly, we investigate a
dependence of the critical point parameters on the particle
mass m, degeneracy factor g, and the van der Waals param-
eters a and b, which describe particle interactions for the
systems of interacting nucleons and α particles. Our analytical
results are new and were not considered in the textbooks and
previous publications. Our consideration will be restricted to
small temperatures, T ∼< 30 MeV, and not too large particle
densities. Within these restrictions, the number of nucleons
becomes a conserved number, and the chemical potential
of this system regulates the number density of nucleons.
An extension to the fully relativistic hadron resonances gas
formulation with van der Waals interactions between baryons
and between antibaryons was considered in Ref. [19]. An
application of this extended model to net baryon number
fluctuations in relativistic nucleus-nucleus collisions was de-
veloped in Ref. [20]. We do not include the Coulomb forces
and make no differentiation between protons and neutrons

(both these particles are named as nucleons). In addition,
under these restrictions the nonrelativistic treatment becomes
very accurate and is adopted in our studies.

The paper is organized as the following. In Sec. II we recall
some results of the ideal Bose and Fermi gases. In Sec. III the
quantum statistics effects near the critical point are studied for
the symmetric nuclear matter. These results are then extended
to the pure neutron matter and pure α matter. Section IV
summarizes the paper.

II. IDEAL QUANTUM GASES

The pressure P(T, μ) plays the role of the thermodynam-
ical potential in the grand canonical ensemble (GCE) where
temperature T and chemical potential μ are independent vari-
ables. The particle number density n(T, μ), entropy density
s(T, μ), and energy density ε(T, μ) are given as

n =
(

∂P

∂μ

)
T

, s =
(

∂P

∂T

)
μ

, ε = T s + μn − P. (1)

In the thermodynamic limit V → ∞ considered in the present
paper all intensive thermodynamical functions—P, n, s, and
ε—depend on T and μ, rather than on the system volume V ,
see Ref. [21] for detailed discussions of finite-size effects in
the ideal Bose gas. We start with the GCE expressions for the
pressure Pid (T, μ) and particle number density nid (T, μ) for
the ideal nonrelativistic quantum gas [22,23],

Pid = g

3

∫
dp

(2π h̄)3

p2

m

[
exp

(
p2

2mT
− μ

T

)
− θ

]−1

, (2)

nid = g
∫

dp
(2π h̄)3

[
exp

(
p2

2mT
− μ

T

)
− θ

]−1

, (3)
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where m and g are, respectively, the particle mass and degener-
acy factor. The value of θ = −1 corresponds to the Fermi gas,
θ = 1 to the Bose gas, and θ = 0 is the Boltzmann (classical)
approximation when effects of the quantum statistics are
neglected.1

Equations (2) and (3) can be expressed in terms of the
power series over fugacity z ≡ exp(μ/T ) for z � 1:

P(T, z) ≡ gT

θ�3
Li5/2(θz) = gT

θ�3

∞∑
k=1

(θz)k

k5/2
, (4)

n(T, z) ≡ g

θ�3
Li3/2(θz) = g

θ�3

∞∑
k=1

(θz)k

k3/2
, (5)

where

� ≡ h̄

√
2π

mT
(6)

is the de Broglie heat wavelength [23], and Liν is the polylog-
arithmic function [24,25]. The values of μ > 0, i.e., z > 1,
are forbidden in the ideal Bose gas. The point μ = 0 cor-
responds to an onset of the Bose-Einstein condensation in
the system of bosons. For fermions, any values of μ are
possible, i.e., integrals (2) and (3) exist for θ = −1 at all
real values of μ. However, the power series (4) and (5) are
convergent at z � 1 only. For the Fermi statistics at z > 1, the
integral representation of the corresponding polylogarithmic
function can be used. Particularly, at z → ∞ one can use the
asymptotic Sommerfeld expansion of the Liν (−z) functions
over 1/ln2|z| [26].

Figure 1 shows lines of the constant values of fugacity z in
the n-T plane for the ideal Fermi gases [Fig. 1(a) and 1(b)],
and Bose gas [Fig. 1(c)], see Eq. (5). Figure 1(a) corresponds
to the isospin symmetric ideal nucleon gas (i.e., an equal
number of protons and neutrons). We take m ∼= 938 MeV
neglecting a small difference between proton and neutron
masses. The degeneracy factor is then g = 4, which takes into
account two spin and two isospin states of nucleon. The ideal
neutron gas with g = 2 is presented in Fig. 1(b), and the ideal
Bose gas of α nuclei (g = 1 and m ∼= 3727 MeV) is shown in
Fig. 1(c).

At z � 1, only one term k = 1 is enough in Eqs. (4) and
(5), which leads to the classical ideal gas relation

P = n T . (7)

Note that the result (7) follows automatically from Eqs. (2)
and (3) at θ = 0. As seen from Fig. 1, the classical Boltzmann
approximation at z � 1 is valid for large T and/or small n

1The units with Boltzmann constant κB = 1 are used. We keep the
Plank constant in the formulas to illustrate the effects of quantum
statistics, but put h̄ = h/2π = 1 in all numerical calculations. For
simplicity, we omitted here and below the subscript id for the ideal
gas everywhere where it will not lead to a misunderstanding.
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FIG. 1. Lines of the fixed fugacities z = z(n, T ) are shown for
the ideal Fermi gas of nucleons (a) and neutrons (b), and the ideal
Bose gas of α particles (c). Dashed red lines correspond to s = 0
for the entropy density (8) of the classical ideal gas. A blue line in
(c) shows the largest value of z = 1 in the ideal Bose gas. This is the
line of the Bose-Einstein condensation, and the Bose condensate of
α particles exists below this line.

region of the n-T plane. In fact, at very small n, one observes
z < 1 at small T too. However, the classical ideal gas equation
(7) becomes wrong at small T and/or large n. The entropy
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density of the classical ideal gas reads

s =
(

∂P

∂T

)
μ

= n

(
5

2
− μ

T

)
, (8)

and it becomes negative at μ/T > 5/2. The particle number
density in the classical ideal gas at μ/T = 5/2 equals to

n = g

h̄3

(
mT

2π

)3/2

exp

(
5

2

)
. (9)

The relation (9) is shown by a dashed red line in Fig. 1. Under
this line, the entropy density of the classical ideal gas becomes
negative. This happens at small T and/or large n and means a
contradiction with the third law of thermodynamics. Quantum
statistics solves this problem: Eqs. (2) and (3) guarantee s � 0
at all T and n, and s = 0 at T = 0.

Inverting the zk power series in Eq. (5), one finds the power
expansion of z over the parameter ε (see, e.g., Ref. [27]),

ε ≡ − θn�3

4
√

2 g
≡ −θ

h̄3 π3/2n

2 g (mT )3/2
. (10)

This expansion is inserted then to Eq. (4). At small |ε| < 1
the expansion of the pressure over the powers of ε is rapidly
convergent, and a few first terms give already a good ap-
proximation of the quantum statistics effects. Taking the three
terms, k = 1, 2, and 3, in Eqs. (4) and (5), one obtains a
classical gas result (7) plus the corrections due to the effects
of quantum statistics:

P(T, n) = nT [1 + ε − c2ε
2 + O(ε3)], (11)

where c2 = 4[16/(9
√

3) − 1] ∼= 0.106. For brevity, we call
the linear and quadratic ε terms in Eq. (11) as the first- and
second-order quantum corrections.

Equation (11) demonstrates explicitly a deviation of the
quantum ideal gas pressure from the classical ideal gas value
(7): the Fermi statistics leads to an increasing of the classical
pressure, while the Bose statistics to its decreasing. This is
often interpreted [23] as the effective Fermi repulsion and
Bose attraction between quantum particles.

III. QUANTUM VAN DER WAALS MODEL

Recently, the van der Waals (vdW) equation of state was
extended by taking into account the effects of quantum statis-
tics in Ref. [18]. The pressure function of the quantum vdW
(QvdW) model can be presented as [18]

P(T, n) = Pid[T, nid (T, μ∗)] − an2, (12)

nid (T, μ∗) = n

1 − bn
, (13)

where Pid and nid are respectively given by Eqs. (2) and (3),
and μ∗ is the solution of the transcendental equation

μ∗ = μ − bP(T, μ) − abn2 + 2an,

see more details in Ref. [18]. Notice that for Bose particles,
the restriction μ∗ � 0 (or μ∗ � m for the relativistic chemical
potential) should be satisfied. These restrictions correspond
to those μ � 0 (or μ � m in relativistic case) in the ideal
Bose gas. The constants a > 0 and b > 0 are responsible

for, respectively, attractive and repulsive interactions between
particles. The QvdW model given by Eqs. (12) and (13)
satisfies the following conditions:

(i) In the Boltzmann approximation, i.e., at θ = 0 in
Eqs. (2) and (3), the QvdW model (12) and (13) is reduced
to the classical vdW model [23]

P = nT

1 − nb
− an2. (14)

Note that the classical vdW model (14) is further reduced to
the ideal classical gas (7) at a = 0 and b = 0.

(ii) At a = 0 and b = 0 the QvdW model (12) and (13) is
transformed to the quantum ideal gas Eqs. (2) and (3).

(iii) The QvdW model (12) and (13), in contrast to its clas-
sical version (14), satisfies the third law of thermodynamics
by having a non-negative entropy with s = 0 at T = 0.

We fix the model parameters a and b using the ground-
state properties of the symmetric nuclear matter (see, e.g.,
Ref. [28]): at T = 0 and n = n0 = 0.16 fm−3, one requires
P = 0 and the binding energy per nucleon ε(T = 0, n =
n0)/n0 = −16 MeV. With the steplike Fermi momentum dis-
tribution for nucleons the analytical expressions for the ther-
modynamical quantities at T = 0 are obtained. One then finds
from the above requirements:2

a = 329.8 MeV fm3, b = 3.35 fm3. (15)

These values are very close to those found in Ref. [18]. Small
differences appear because of the nonrelativistic formulation
used in the present studies.

In what follows, the first and second quantum correction
of the QvdW model will be considered. This is analogous
to that in Eq. (11) for the ideal quantum gas. Expanding
Pid[T, nid (T, μ∗)] in Eq. (12) over the small parameter δ (with
θ = −1 for fermions and θ = 1 for bosons),

δ = ε

1 − bn
= −θ

h̄3 π3/2n

2 g (1 − bn)(mT )3/2
, (16)

one obtains

P(T, n) = nT

1 − bn
[1 + δ − c2δ

2 + O(δ3)] − a n2, (17)

where c2 is the same small number coefficient as in Eq. (11).
We proved that at small |δ| the expansion of the pressure over
powers of δ becomes rapidly convergent to the exact results,
and a few first terms give already a good approximation. Our
Eq. (17), in contrast to Eq. (11) discussed in Refs. [23,27],
takes into account the particle interaction effects. A new point
of our consideration is the analytical estimates of the effects
of quantum statistics in a system of interacting fermions and
bosons. Similarly to the ideal gases, the quantum correction
in Eq. (17) increases with the particle number density n and
decreases with the system temperature T , particle mass m, and
degeneracy factor g. A new feature of the quantum effects
in the system of particle with the vdW interactions is the
additional factor (1 − bn)−1 in the quantum correction δ, i.e.,

2The multicomponent QvdW model with different a and b param-
eters for protons and neutrons was discussed in Refs. [29,32].
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the quantum statistics effects becomes stronger due to the
repulsive interactions between particles.

The vdW model, both in its classical form (14) and in
its QvdW extension (12) and (13), describes the first-order
liquid-gas phase transition. The critical point (CP) of this
transition satisfies the following equations:(

∂P

∂n

)
T

= 0,

(
∂2P

∂n2

)
T

= 0. (18)

Using Eq. (17) in the first approximation in δ, one derives
from Eq. (18) the system of two equations for the CP param-
eters nc and Tc at the same first order:

T

2an(1 − nb)2 [1 + 2δ] = 1, (19)

bT

a(1 − nb)3

[
1 + (1 + 2nb)

b n
δ

]
= 1. (20)

Solving the system (19) and (20), one finds in the same first-
order approximation over δ:

T (1)
c

∼= T (0)
c (1 − 2δ0) ∼= 19.0 MeV,

n(1)
c

∼= n(0)
c (1 − 2δ0) ∼= 0.065 fm−3. (21)

In Eq. (21),

T (0)
c = 8a

27b
∼= 29.2 MeV,

n(0)
c = 1

3b
∼= 0.100 fm−3, (22)

P(0)
c = a

27b2
∼= 1.09 MeV fm−3

are the CP parameters of the classical vdW model, i.e., they
are found from Eq. (18) for the equation (14). The parameter
δ0 in Eq. (21) is given by Eq. (16) calculated at the CP (22),
i.e., at n = n(0)

c and T = T (0)
c . Substituting Eq. (21) for the

critical temperature T (1)
c and density n(1)

c into Eq. (17) at the
same first order, for the CP pressure Pc one obtains

P(1)
c

∼= 0.48 MeV fm−3. (23)

The numerical calculations within the full QvdW model
(12) and (13) give

Tc
∼= 19.7 MeV,

nc
∼= 0.072 fm−3, (24)

Pc
∼= 0.52 MeV fm−3.

These our results (24) appear to be essentially the same as
those obtained in Ref. [18].

A summary of the results for the CP parameters is pre-
sented in Table I. A difference of the results for the classical
vdW model (22) and QvdW model (24) demonstrates a role
of the effects of Fermi statistics at the CP of the symmetric
nuclear matter. The size of these effects appears to be rather
significant. On the other hand, it is remarkable that the first-
order correction (21) and (23) reproduce these effects of
quantum statistics with a high accuracy. The second-order
correction in the expansion (17) leads to an improvement of
the CP parameters, T (2)

c = 19.7 MeV, n(2)
c = 0.072 fm−3 and

TABLE I. Results for the CP parameters of the symmetric nu-
clear matter (g = 4, m = 938 MeV).

First-order correction QvdW
Critical points Eq. (22) Eqs. (21) and (23) Eq. (24)

Tc (MeV) 29.2 19.0 19.7
nc (fm−3) 0.100 0.065 0.072
Pc (MeV fm−3) 1.09 0.48 0.52

P(2)
c = 0.53 MeV fm−3, which become closer to the numerical

results (24) of the full QvdW model. The contribution of
the second order in δ is much smaller than the first-order
correction in Eq. (21), that shows a fast convergence in δ by
a few first terms. Therefore, high-order corrections due to the
quantum statistics effects can be neglected.

The vdW model gives an example of the equation of
state for the system of interacting nucleons in terms of the
model parameters a and b. Many other examples were recently
considered in Ref. [30]. All models investigated in that paper
have rather different high-order virial-expansion coefficients.
However, if the parameters of these different models are fixed
by a requirement to reproduce properties of the nuclear ground
state, the obtained values of Tc and nc appear to be quite
similar. For example, different Tc values come to the narrow
region Tc = 18 ± 2 MeV for the symmetric nuclear matter.
The effects of Fermi statistics leads to much stronger changes
of the Tc values: about 10 MeV in the nucleon matter and
20 MeV in the neutron matter. Note that our consideration
made for the QvdW model can be straightforwardly extended
to other types of interparticle interaction.

The vdW model does not take into account very accurately
the hard-sphere repulsion effects at high particle number
density. On the other hand, near the CP, one finds nc

∼= 1/3b,
where b = 4v0 is four times larger than the hard-core particle
volume v0. Thus, nc is about ten times smaller than the
hard-packing limit. At these conditions, the excluded volume
procedure used in the vdW equation of state is justified.

As stated in the paper, our analysis can be applied be-
yond the vdW model. In fact, similar estimates of the quan-
tum statistic effects can be straightforwardly done also for
the mean-field models. Concerning these models see, e.g.,
Ref. [31] and references therein.

The CP parameters of the classical vdW model (22) depend
on the interaction parameters a and b, and they are not sensi-
tive to the values of particle mass m and degeneracy factor g.
The effects of quantum statistics change this conclusion. The
parameter δ given by Eq. (16) is proportional to m−3/2g−1, i.e.,
the effects of quantum statistics become smaller for heavier

TABLE II. Results for the CP parameters for the neutron matter
(g = 2, m = 938 MeV).

Critical points Eq. (22) First-order correction QvdW

Tc (MeV) 29.2 8.7 10.8
nc (fm−3) 0.100 0.030 0.051
Pc (MeV fm−3) 1.09 0.13 0.20
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FIG. 2. Lines of the constant values of the parameter δ [Eq. (16)]
in the T -n plane for the (a) symmetric nuclear matter, (b) neutron
matter, and (c) |δ| for α matter. The boundaries of the liquid-gas
mixed phase regions are shown in (a) and (b) by solid blue lines.
The red close dots, blue squares, and asterisks in (a)–(c) show the CP
parameters in the, respectively, QvdW model within the first-order
correction, the full QvdW model, and classical vdW model.

particles (e.g., for the light nuclei admixture in the nuclear
matter) or for large values of degeneracy factor g. Particularly,
for g 
 1 the quantum statistics effects become negligible,

TABLE III. Results for the CP parameters for the α particle
matter (g = 1, m = 3727 MeV).

Critical points Eq. (22) First-order correction QvdW

Tc (MeV) 10.14 11.17 11.20
nc (fm−3) 0.0117 0.0129 0.0130
Pc (MeV fm−3) 0.0443 0.0538 0.0540

and the QvdW model (12), (13) is reduced at T > 0 to the
classical vdW model (14). These results are in agreement with
the numerical calculations in the recent paper [32].

The effects of quantum statistics become larger in the
neutron matter within the QvdW model with the same a and
b parameters, but g = 2 instead of g = 4 for the symmetric
nuclear matter. This leads to essentially larger effects of the
quantum statistics and stronger changes of the CP parameters.
These results are summarized3 in Table II.

In Fig. 2 the expansion parameter δ entered to Eq. (17) is
shown in the n-T plane in the QvdW model for the symmetric
nuclear matter [Fig. 2(a)] and pure neutron matter [Fig. 2(b)],
and the parameter −δ for the pure α matter [Fig. 2(c)]. For
the symmetric nuclear matter in Fig. 2(a) the values of δ in
a vicinity of the CP is rather small, δ ≈ 0.2. This explains a
good accuracy of the first-order corrections of the quantum
statistics effects.

For the neutron matter shown in Fig. 2(b) the parameter of
the quantum correction is δ ≈ 0.5 near the CP. The correction
due to the quantum statistics becomes indeed larger than that
for the symmetric nuclear matter. This also explains why
an agreement of the first-order quantum results for the CP
parameters with their exact QvdW numerical values is worse
than in the case of symmetric nuclear matter. The second-
order correction in Eq. (17) leads to the critical values T (2)

c =
10.6 MeV, n(2)

c = 0.052 fm−3, and P(2)
c = 0.20 MeV fm−3.

This improves significantly an agreement with results of the
full QvdW model calculations presented in Table II.

The calculations for interacting α particles within the
QvdW model are shown in Fig. 2(c) and Table III. For
illustrative purposes we take the vdW parameters a =
976.7 MeV fm3 and b = 28.55 fm3 for interacting α particles,
obtained from the critical point values Tc and nc estimated in
Ref. [33]. One finds a rather small value |δ | ≈ 0.05 for the
α matter in a vicinity of the CP, δ < 0 [see Fig. 2(c)]. Note
that the Bose and Fermi statistics lead to the same absolute
values of the first order quantum correction (16), but with
the different signs. Thus, the quantum Bose effects change
the critical temperature Tc and density nc into the opposite
direction, i.e., Tc and nc are moved to larger values due to the
Bose effects in comparison with their classical vdW values.
As seen from Fig. 2(c) and Table III, there is about a 10%
increase of the T (0)

c and n(0)
c values due to the Bose statistics

correction.

3The properties of the pure neutron matter appear to be very
sensitive to the values of the vdW parameters a and b for neutrons.
This is discussed in Ref. [32].
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At small T and/or large n, the parameter δ ∝ n(1 −
bn)−1T −3/2 becomes large. In this region of the phase dia-
gram, the QvdW model should be treated within the full quan-
tum statistical formulation (12) and (13). In the n-T region
with δ > 1 shown in Figs. 2(a) and 2(b) by the dashed lines
the first-order quantum approximation loses their meaning.

The mixed gas-liquid phases of the symmetric nuclear
matter and pure neutron matter correspond to the n-T regions
under the blue solid lines presented in Figs. 2(a) and 2(b),
respectively. The physical states inside the mixed phase cor-
respond to the equilibrium of the gas and liquid components
with equal values of T , μ, and P. However, these components
have different particle number densities, ngas < nliq. They
become very different, ngas � nliq, at small temperatures. In
this case, the effects of quantum statistics are small for the gas
component (δ � 1) but are rather large (δ ∼> 1) for the liquid
one. For the Bose α particle system large quantum effects
mean a possibility of the Bose-Einstein condensation. Thus,
both effects—the first-order phase transition and a formation
of the Bose condensate—should be treated simultaneously
(see, e.g., Ref. [33]). These questions are, however, outside
of the scope of the present paper.

Rough estimates give |δ0| � 1 in most cases of the CP for
different atomic gases [34] and, thus, small effects of quantum
statistics. This happens, despite of much smaller values of
the atomic critical temperature TA � Tc in comparison with
the nuclear matter Tc values. The small effects of quantum
statistics in the atomic systems in their gas and liquid states
is a consequence of very small atomic densities as compared
to the nuclear ones, nA � nc. One exception from these argu-
ments is the atomic system of He-4. The experimental value
for its CP parameters [34,35], Tc(He) ∼= 5.2 K0 and nc(He) ∼=
1022 cm−3, lead to the estimate δ0(He) ≈ −0.1. Therefore,
our consideration within the first-order quantum correction
over δ looks rather suitable to the analysis of the quantum
statistics effects near the CP of this atomic system.

IV. SUMMARY

The QvdW equation of state has been used to study the
quantum statistics effects in a vicinity of the critical point of

nuclear matter. To obtain the analytical expressions, the first-
order quantum statistics correction over the small parameter δ

is considered. An explicit dependence on the system param-
eters is demonstrated. Particularly, the CP position depends
on the particle mass m and degeneracy factor g. Such a
dependence is absent within the classical vdW model. The
quantum corrections to the CP parameters of the symmetric
nuclear matter appear to be quite significant. For example,
the value of T (0)

c = 29.2 MeV in the classical vdW model
decreases to the value T (1)

c = 19.0 MeV. On the other hand,
this approximate analytical result within the first-order quan-
tum correction is already close to the numerical value of
Tc = 19.7 MeV obtained by the numerical calculations within
the full QvdW model. The quantum correction of the CP
parameters becomes even larger for the pure neutron matter. In
this case, the classical value of T (0)

c = 29.2 MeV decreases to
T (1)

c = 8.7 MeV, which is still close to the numerical value of
the full QvdW model value Tc = 10.8 MeV, and the second-
order corrections improves this agreement.

Our consideration is straightforwardly extended to the
system of interacting bosons. The quantum corrections have
different signs for fermions and bosons. An example of the
pure α matter has been considered. The CP temperature
T (0)

c = 11.2 MeV for the classical vdW model of α particles
increases by about of 10% to T (1)

c = 12.3 MeV for α matter
within the first-order approximation in the QvdW model.
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