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Calculations of nuclei are often carried out in finite model spaces. Thus, finite-size corrections enter, and
it is necessary to extrapolate the computed observables to infinite model spaces. In this work, we employ
extrapolation methods based on artificial neural networks for observables such as the ground-state energy and
the point-proton radius. We extrapolate results from no-core shell model and coupled-cluster calculations to
very large model spaces and estimate uncertainties. Training the network on different data typically yields
extrapolation results that cluster around distinct values. We show that a preprocessing of input data, and the
inclusion of correlations among the input data, reduces the problem of multiple solutions and yields more stable
extrapolated results and consistent uncertainty estimates. We perform extrapolations for ground-state energies
and radii in 4He, 6Li, and 16O, and compare the predictions from neural networks with results from infrared
extrapolations.
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I. INTRODUCTION

In nuclear physics, ab initio methods aim to solve the
nuclear many-body problem starting from Hamiltonians with
two- and three-nucleon forces using controlled approxima-
tions [1–9]. Most of these methods employ finite model
spaces, and this makes it necessary to account for finite-size
corrections or to extrapolate the results to infinite model
spaces. While light nuclei with large separation energies
require little or no extrapolations, finite-size effects are non-
negligible in weakly bound nuclei or heavy nuclei. Various
empirical extrapolation schemes [10–14] have been used.
More recently, rigorous extrapolation formulas were derived
based on an understanding of the infrared and ultraviolet
cutoffs of the harmonic oscillator basis [15–22]. These extrap-
olation formulas are akin to Lüschers formula [23] derived
for the lattice and its extension [24] to many-body systems.
Unlike the lattice, however, the harmonic oscillator basis
mixes ultraviolet and infrared cutoffs, and this complicates
extrapolations. Very recently, Negoita and coworkers [25,26]
employed artificial neural networks for extrapolations. They
trained a network on no-core shell model (NCSM) results
obtained in various model spaces, i.e., for various oscillator
spacings h̄ω and different numbers Nmax h̄ω of maximum ex-
citation energies. In practical calculations, Nmax ≈ 10 . . . 20 in
light nuclei. The neural network then predicted extrapolations
in very large model spaces of size Nmax ∼ 100. Impressively,
the neural network also predicted that the ground-state ener-
gies and radii cease to depend on the oscillator spacing as
Nmax increases. Negoita and coworkers employed about 100
neural networks, each differed by the initial set of parameters
(weights) from which the training started. The resulting dis-
tributions for observables occasionally exhibited a multimode
structure stemming from multiple distinct solutions the neural

networks arrived at. In this work, we want to address this
challenge and focus on the network robustness and avoidance
of multiple solutions.

In recent years, artificial neural networks have been used
for various extrapolations in nuclear physics [27–35], and
for the solution of the quantum many-body system [36].
Artificial neural networks use sets of nonlinear functions to
describe the complex relationships between input and output
variables. The universality of using artificial neural networks
to solve extrapolation problems is largely guaranteed, because
no particular analytical functions are needed. Artificial neural
networks are controlled by two hyperparameters, i.e., the
number of layers and the number of neurons for each layer.

There are still two major challenges when introducing
neural networks in extrapolations of results from ab initio
computations. First, unlike other applications in which large
amounts of training data can be acquired, the inputs provided
by the ab initio calculations are limited to small data sets.
The statistics is clearly not enough to support the network
training without overfitting. Secondly, randomness, caused by
the nature of basic network algorithms, is an intrinsic quality
of the neural network that conflicts with the high-precision
requirement for extrapolations.

In this work, we use an artificial neural network and ex-
trapolate observables computed with the NCSM and coupled-
cluster (CC) methods. In addition to standard techniques such
as regularization, we use interpolation of data to mitigate the
overfitting problem and also take into account the correlations
in the resulting data set. The random initialization of the net-
work parameters provides us with a “forest” of artificial neural
networks. This allows us to gain insights into uncertainties of
the extrapolated observables, under the precondition that the
distribution of extrapolation results has a single peak.
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We note here that the extrapolation problem we are con-
cerned with is special in the sense that a well-defined asymp-
totic value exists for the observable of interest (i.e., an energy
or a radius), that there is a simple pattern in the learning data,
and that the learning data is already close to this asymptotic
value. We will see below that this makes an artificial neural
network a useful tool for this kind of extrapolation. Needless
to say, for a general problem there is no tool to extrapolate:
We cannot extrapolate from available data to next week’s
stock market value or next month’s weather. We refer the
reader to the literature for attempts to use deep learning in
extrapolations [37], and for a counterexample [38].

This paper is organized as follows. In the next section
we introduce the theoretical framework and artificial neural
networks and present a detailed account of how we construct,
train, and use neural networks. We then present and discuss
the extrapolation results for 4He, 6Li, and 16O. Finally, we
summarize our work.

II. THEORETICAL FRAMEWORK

A. Artificial neural network architecture

An artificial neural network is a computing system that
consists of a number of interconnected blocks which process
the input information and yield an output signal. Modeled
loosely after the human brain, the neural network is typically
organized by similar blocks called “layers,” and each layer
contains a certain number of parallel “neurons.” The numbers
of layers and neurons define the depth and the width of the
neural network, respectively.

Figure 1 shows the schematic structure of a simple feed-
forward neural network. The algorithm basically consists of
two parts. First, the input signal x is propagated to the output
layer y by a series of transformations. The whole network
can be seen as a complex function between the input and
output variables. In the simple case with one hidden layer, the
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FIG. 1. Schematic structure of a typical feed-forward neural
network.

function can be written as follows,

z j =
∑

i

xiwi j + b j, (1)

with σ as the activation function,

x′
j = σ (z j ), (2)

yk =
∑

j

x′
jw

′
jk + b′

k . (3)

Here, xi are the input variables, and yk are the output variables.
The weights w (w′) and bias b (b′) are free parameters of
the neural network. There exist a few choices one can make
for the activation function σ , such as the sigmoid, tanh, and
Rectified Linear units (ReLu). These are nonlinear functions
which enable the neural network to capture complex nonlin-
ear relationships between variables. For the extrapolation we
follow Ref. [26] and use a smooth activation function that
only acts on the hidden layer. Back-propagation is the second
part of the algorithm [39]. This is the central mechanism
that allows neural network methods to “learn.” The error
signals, often referred to as the “loss,” which measure the
deviation between the predicted output ypre and the training
target ytrue, are propagated backwards to all the parameters of
the network and allow the optimizer to update the network
status accordingly. Note that, in practice, the neural network
always processes the data in batches, which makes the input
(output) signals x (y) matrices and the network functions
become matrix operations.

To construct the artificial neural network aiming to solve
the extrapolation problem, we first need to determine its
topological structure. There are a lot of variants for neural
networks, such as recurrent neural network (RNN), long
short-term memory (LSTM), and convolutional neural net-
work (CNN), which are designed for various assignments.
One should choose the appropriate type of network according
to the organizational structure of the data set and the goal that
one wants to achieve. In the case of extrapolation, the data for
training is assigned to a structure consisting of three members,
namely h̄ω, Nmax, and the corresponding target observables,
i.e., the ground-state energy and the point-proton radius. On
the other hand, the main purpose of the neural network is
to provide reasonable predictions for the observables at any
values of h̄ω and Nmax. In this paper we use the feed-forward
neural network, which takes the h̄ω and Nmax as two inputs (x)
and the target observables as output (ytrue ). One could as well
apply the RNN structure to achieve the same goal. The only
difference between the two choices is that the data structure
needs to be reorganized in terms of sequential observable
values with increasing Nmax under the same h̄ω.

Once the basic structure is decided, the next task is to
control the complexity of the network. The network’s ability
to describe complex features is determined by the numbers of
hidden layers and neurons in each layer. In other words, the
depth and the width of the neural network control the upper
limit of the neural network description. Ideally, to lower the
loss of the training data set, adding more layers and neurons is
always helpful to increase its accuracy. However, as the neural
network becomes more complex it becomes harder to train.
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FIG. 2. Ground-state energies from NCSM computations of 4He
based on the NNLOopt potential (black data points). The green full
line and the red dashed line show two different neural network
solutions for learning the ground-state energy of 4He in finite model
spaces.

Given the same amount of training data, a deeper and wider
network requires more time to get converged results, and one
risks overfitting of the network’s parameters. In extreme cases,
for instance, when the network is so complex that it has many
more parameters than the number of input data, it can easily
get 100% of accuracy on the training set, but still perform
poorly on testing samples. Instead of learning the pattern, the
network simply memorizes the training data and exhibits no
predictive power.

Even though there is no exact answer for how to configure
the numbers of layers and neurons in the neural network, there
are still some guiding principles to follow. For a start, we con-
sider a network with one hidden layer. Based on the universal
approximation theorem [40–42] any continuous function can
be realized by a network with one hidden layer. Of course, a
deep neural network (with multiple hidden layers) will have
certain advantages over the shallow one (with few hidden
layers). For example, the deep neural network can reach the
same accuracy of a shallow one with many fewer parameters
[43–45]. However, to prevent problems such as vanishing
gradients and overfitting, the architecture of the deep neural
network needs careful construction including, but not limited
to initialization of the network parameters [46], design of
the activation function [47], using the proper optimizer [48],
and improving the training procedure [49]. For our task of
extrapolation, a deep neural network would be overkill. As
for the numbers of neurons, there are several empirical rules
[50] and techniques, such as pruning [51], that can be applied.
In the present work, we start with a simple structure and then
increase the numbers of neurons and layers until we arrive
at a sufficiently small loss for the training data set. For the
results shown below, we arrived at neural networks with a
single hidden layer, consisting of eight and 16 nodes for the
extrapolation of energies and radii, respectively.

Figure 2 shows some of the data we used in extrapolations
of the ground-state energy of 4He. The black points, taken

from Ref. [22], denote results from NCSM computations
based on the NNLOopt potential [52]. The ground-state en-
ergies are shown as a function of the oscillator frequency
and labeled by the number Nmax of employed oscillator
excitations.

Figure 2 also shows that the data exhibit a simple pattern,
namely U-shaped curves that get wider and move closer to-
gether as Nmax increases (see also Fig. 8 for another example.)
To capture this behavior with an artificial neural network,
we choose a sigmoid as the activation function, i.e., σ (x) =
(1 + e−x )−1. It is then clear that asymptotic values of large
Nmax either map to zero or to one in the activation function,
and this explains why—by design—an asymptotically flat
function results in the extrapolation. Indeed, using a ReLu
function as the activation function [i.e., σ (x) = max (0, x)]
leads to noisy extrapolation results.

B. Data interpolation and correlated loss

Despite the fact that we can easily design a neural net-
work that gives satisfactory accuracy on training data, a good
performance on making predictions is not guaranteed for the
extrapolation problem. More often than not the loss of the
testing data will be much larger than the loss of the training
data, which is a clear sign of overfitting. Overfitting is a major
issue for neural network applications, which is usually caused
by the conflict between having insufficient information from
a limited data set, and the network flexibility to approximate
complex nonlinear functions. This is exactly the case for the
ab initio extrapolation task at hand. The ab initio calculations
are restricted to a not-too-large value of Nmax, and for a given
Nmax only a few oscillator spacings h̄ω are available. In the
case of 4He, for instance, we only have 144 data points from
NCSM calculations, and this is is inadequate for training
even a very simple neural network, thus overfitting seems
inevitable.

There are a few strategies that can be introduced to avoid
overfitting in neural networks, including regularizations [53],
dropout [54], and early stopping [55]. Such methods can be
used together or separately to increase the network robustness
and reduce generalization errors. The price to pay is that one
will have to deal with more hyperparameters and determine
the best combination of them. In addition to these methods,
one of the best ways to reduce overfitting is to enlarge the data
set. In our case, however, the commonly used practice of data
augmentation [56] and addition of random noise to the data
set will not be helpful, because extrapolation is a quantitative
problem that requires high accuracy and input data with a
clear physical foundation.

To enlarge the data set, we note that the ab initio cal-
culations for a given Nmax should give a continuous smooth
curve for the target observable values as a function of h̄ω.
The limited input data is merely restricted by the computation
cost but not by the method itself. Thus, performing interpo-
lation on existing data is an economical way to obtain more
information. In this work, we employ a quadratic spline for
interpolation in h̄ω at fixed Nmax. This procedure increases
the robustness of the neural network even with the basic
single-hidden-layer architecture and avoids overfitting.
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As a large portion of the training data is generated by
interpolation, the standard “χ2” loss function (valid for in-
dependent data) might not be appropriate. As the generation
of n points via interpolation yields n correlated samples, we
introduce the correlated loss function,

L =
n∑

i=1

n∑

j=1

Wi jRiR j . (4)

Here Wi j are the elements of a correlation matrix, and Ri(Rj )
are the residuals of the ypre and the target ytrue. In this work,
we will either consider the absence of correlations (i.e., Wi j =
δi j) or include correlations as described in what follows.
The elements Wi j form a block matrix, because only points
interpolated at fixed Nmax are correlated by the spline. For
fixed Nmax the block matrix is taken to be tridiagonal with
all nonzero matrix elements equal to one. This indicates that
the correlation is only between neighboring data points. We
note that the loss function (4) is usually not a built-in function
for much of the mainstream neural network development
environments. Thus, we employ a customized loss function,
and the position i or j of each data point is needed as an
additional input for the network to generate the correlation
matrix with elements Wi j .

Training a neural network starts with a random initializa-
tion of the network parameters (weights and biases). During
training the loss function is minimized using the training data
set as input. It is clear that the random starting points will
lead to different trained networks, because optimizers can
generally not find the global minimum of the loss function.
The existence of many local minima with an acceptable loss
will thus lead to different network predictions.

Inspired by the random forest algorithm [57], in which the
decision forest always gives better performance than a single
decision tree, we introduce multiple neural networks with
the same structure but with different initialized parameters
to address the uncertainty problem. The outputs of all the
networks are being integrated to obtain a range of predictions
and uncertainty estimates. This approach is going to help us
to reveal some insights into neural networks, and guide us in
selecting favorable neural network solution.

Figure 3 demonstrates the impact of including correlations
into the loss function. The left panels shows the predictions of
100 neural networks for the ground-state energy of 4He. The
input data consist of NCSM data for model spaces with a max-
imum value of Nmax as indicated, and the correlation matrix
W of Eq. (4) is taken to be diagonal, i.e., no correlations are
included. The displayed ground-state energies are the neural
network predictions for Nmax = 100, and there is virtually
no hw dependence. The shown distribution function results
from kernel density estimations (KDE), i.e., by replacing the
delta function corresponding to each individual data point
with a Gaussian. The distribution becomes narrower as the
input data include increasing values of Nmax. We note that the
distributions are bi-modal.

The inclusion of correlations, shown in the right panel of
Fig. 3, somewhat reduces the importance of the smaller peak.
The main peaks, which include most of the network results,
exhibit a smaller average loss and therefore are believed to

FIG. 3. Distributions of multiple neural network trained with
different max(Nmax) data sets for ground-state energy of 4He using
χ 2 loss function (left panel) and correlated loss (right panel).

be the better solution. Their central values are likely to be the
best predictions for these networks. However, for uncorrelated
and correlated loss functions, the second peak does not appear
by accident and cannot be neglected. Its persistence against
different optimizers and hyperparameter adjustments shows
that it is a stable local minimum and not too narrow. From
this point of view, both peaks can be treated as the solutions
of the multiple neural networks. As the maximum Nmax of
the input data is increased, the two peaks are getting closer
to each other but remain distinguishable. Thus, a significant
uncertainty remains.

C. Multiple neural network and data preprocessing

We want to understand the bi-modal structure of the dis-
tribution functions. For this purpose, we focus on the corre-
lated loss function. Figure 4 presents results from 100 neural
networks for the correlated loss versus the 4He ground-state
energy Eg.s.. Each cross in Fig. 4 represents one fully trained
neural network and has already reached convergence (i.e., the
loss shift is within a required accuracy). As before, the shown
distribution function results from KDE. Each individual data
point (crosses) and contour lines are also shown. The top and
right panels show the integrated distributions for the ground-
state energy and the loss, respectively.

We understand the double-peak structure as follows. The
cluster of networks under the dominant peak predict a U
shape for the curves Eg.s.(h̄ω, Nmax) at fixed Nmax. However,
they deviate in “higher-order” terms that define the precise
shape. The smaller cluster of networks under the small peak
predict curves Eg.s.(h̄ω, Nmax) that increase monotonically as a
function of h̄ω. They have a higher loss. This interpretation is
based on the results shown in Fig. 2. Here, the black squares
are the input data of ground-state energies for given h̄ω and
Nmax. The green full lines show predictions from the first
cluster of networks under the dominant peak of Fig. 4. In
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FIG. 4. Multiple neural network predictions for extrapolat-
ing ground-state energy of 4He with NCSM calculated data set
max(Nmax) = 20 as input. Kernel density estimations for Eg.s. and
loss are also given along side. The calculation contains 100 indepen-
dent random initialized neural network.

contrast, the red dashed lines are predictions from the second
cluster of networks under the smaller peak in Fig. 4. It is
evident that the networks of cluster 1 learned the pattern of
all data while those of cluster 2 failed to predict the trend of
the data points at smaller h̄ω. How did the neural networks
of cluster 2 make this mistake?

Inspection showed that the imbalanced data set is the root
of the problem. Our data set includes many points at relatively
large h̄ω values (as we used such ultraviolet converged points
for infrared extrapolations in Ref. [22]), and the correspond-
ing ground-state energies are also much above the variational
minimum and the infinite-space result. In contrast, the data set
contains a smaller number of data points at relatively small
values of h̄ω, and the corresponding ground-state energies are
much closer to the infinite-space result. Thus, the failure to
correctly learn about these “minority” data points yields a
relatively small increase of the loss function. With random
parameter initialization, once the network reaches a local
minimum, the imbalanced data set will, to a large extent,
prevent the optimizer from pulling the network out of it.
Furthermore, with the imbalanced training data, the effort of
emphasizing the minority data directly conflicts with the idea
of reducing overfitting. Some of the common neural network
strategies, such as adding a regularization term, will make
things worse. In contrast, removing data points at too large
values of h̄ω from the training data set, or a stronger weighting
of data closer to the variational minimum (at fixed Nmax) in
the loss function, reduces the number of trained networks that
would fall into cluster 2.

In the ab initio calculation, when the h̄ω of the harmonic
oscillator basis is too large or too small [i.e., it deviates from

FIG. 5. Distributions of multiple neural network for ground-state
energy of 4He, with the origin data sets (left panel) and with the
preprocessed data sets (right panel).

the “optimal” value h̄ω ≈ h̄2�/(mR), where � and R are
the scales set by the cutoff of the potential and the radius
of the computed nucleus [58]], the convergence with respect
to the increasing Nmax is slow, because the employed basis
is not efficient to capture ultraviolet and infrared aspects of
the problem. The data points that we are most interested
in are close to the variational minimum at fixed Nmax. To
overcome the problem of the imbalanced data set, we apply
Gaussian weights on the input data, using the values of the
minima for the centroids and a standard deviation of about
8.5 MeV. The networks are trained using these weights and
a correlated loss function. Figure 5 shows the comparison
of multiple neural network results with and without sample
weights. We note that the two panels have different ranges for
the y axis to better display the distribution of the ground-state
energy. Training with the original data sets (left panel) yields
the bi-modal distribution. Introducing balanced data sets via
Gaussian weights (right panel) suppresses the second peak
and leaves us with one solution for the extrapolation problem.
At the same time, this improves the precision of the predicted
observable and thus yields a smaller uncertainty for the neural
network extrapolation.

We note here that the increased weighting of points close
to the variational minima is akin to employing a prior in
Bayesian statistics. Such techniques could also be used for
a quantification of uncertainties [35,59–61]. In this work, we
limit ourselves to uncertainty estimates.

III. RESULTS AND DISCUSSIONS

We now present the results of the neural networks’ pre-
dictions for ground-state energies and radii, and compare
with other extrapolation methods. We start with the nucleus
4He. The networks are trained separately for the ground-state
energy and radius. The data sets are generated by NCSM
calculations using the NNLOopt nucleon-nucleon interaction.
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FIG. 6. Extrapolated results for 4He ground-state energy (upper
panel) and point-proton radius (lower panel) with NCSM data sets
from max(Nmax) = 10 to max(Nmax) = 20 employing neural network
(squares) and IR (circles) extrapolation. Error bars represent the
uncertainties of the extrapolations that are from changes in the initial
point in the training process.

Because the four-nucleon bound state of 4He is already well
converged with the maximum model space that NCSM calcu-
lation can reach, it is a good case to perform a benchmark
and study the performance of the neural network extrap-
olations. The networks are trained with different data sets
which contain the NCSM results from Nmax = 4 to the given
max(Nmax). For 4He, six data sets with max(Nmax) = 10 to
max(Nmax) = 20 are given, providing the neural network with
a sequence of mounting information. The extrapolation result
for the single neural network is given by the prediction of
Nmax = 100 when the observable value is virtually constant in
the interval 10MeV < h̄ω < 60MeV. With each data set, the
multiple neural network (containing 100 networks) is trained
with randomly initialized network values. The distribution
of the multiple neural network results is then fitted by the
Gaussian function. Finally, the recommended values of the
multiple neural networks are set to be the mean value μ and
the uncertainties are defined as the standard deviation σ of the
Gaussian.

Figure 6 shows the predictions and corresponding un-
certainties for the neural network approach compared with
the values obtained from the infrared (IR) extrapolations of
Ref. [22]. The error bars reflect the variations that are from
changes in the initial point in the training process. As we
can see, the uncertainty of the neural network predictions
decreases with increasing max(Nmax). This indicates that the
network is learning the pattern as the data set is enlarged. The
neural networks reach convergence after max(Nmax) = 16 and
their predictions agree with the IR extrapolations for both the

FIG. 7. Extrapolated results for 6Li ground-state energy (upper
panel) and point-proton radius (lower panel) with NCSM data sets
from max(Nmax) = 12 to max(Nmax) = 22 employing neural network
(squares) and IR (circles) extrapolation. Error bars represent the
uncertainties of the extrapolations that are from changes in the initial
point in the training process.

ground-state energy and point-proton radius. We note that the
two extrapolation methods exhibit different behaviors while
reaching identical converged values.

6Li is a more challenging task for both ab init io calcu-
lations and extrapolations. This is a weakly bound nucleus
where a weakly bound deuteron orbits the 4He core. Thus,
the radius is relatively large, and the calculated observables
converge slowly as the model space increases. This nucleus
is a good challenge for extrapolation methods. The results
for neural network extrapolations are shown in Fig. 7. For
the ground-state energy, the neural network gives Eg.s. =
−30.743 ± 0.061MeV with the largest data set max(Nmax) =
22 and the results start to converge when max(Nmax) reaches
16. As a long-range operator the radius converges even slower
than the energy, which makes it more difficult for the ex-
trapolation method to obtain a reliable prediction. With the
largest data set, the neural network extrapolated result is
rp = 2.471 ± 0.028 fm and the predictions start to converge
at max(Nmax) = 20. The error bars reflect the variations that
are from changes in the initial point in the training process.

So far, we have only studied the uncertainties from the
random starting point when training the network. To study
the robustness of the trained neural networks, we proceed as
follows. Once a network is trained, i.e., once its weights and
biases w are determined, we take a random vector (with com-
ponents drawn at random from a Gaussian distribution with
zero mean) �w in the space of weights and biases and adjust
its length such that the loss function fulfills L(w + �w) =
cL(w), with c = 2 or c = 10. These values are motivated
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TABLE I. Uncertainty analysis of NN extrapolated results for 6Li
with weights w + �w. The random vector �w of weights and biases
is adjusted to double the loss function, i.e., L(w + �w) = 2L(w).
The quantities σEg.s. and σr are the standard deviation of the new
predictions for ground-state energy (in MeV) and point-proton radius
(in fm), respectively. max(�Eg.s. ) (in MeV) and max(�r) (in fm)
show the maximal deviation between the new predictions and the
origin results. |�w|/|w| are the ratio between norms of the weight
deviation and the origin weights.

max(Nmax)

12 14 16 18 20 22

σEg.s. 0.013 0.010 0.009 0.008 0.009 0.006
max(�Eg.s. ) 0.068 0.049 0.037 0.031 0.032 0.024
|�w|/|w| 0.0009 0.0008 0.0008 0.0008 0.0008 0.0008
σr 0.0034 0.0038 0.0042 0.0049 0.0054 0.0061
max(�r) 0.0152 0.0176 0.0200 0.0212 0.0233 0.0269
|�w|/|w| 0.0050 0.0043 0.0037 0.0042 0.0043 0.0030

as follows. For a chi-square distribution with uncorrelated
degrees of freedom, c = 2 would map out the region of one
standard deviation. However, our networks are not that simple
and network parameters are correlated. For this reason we also
consider the case c = 10. We note that this approach yields
uncertainty estimates but not quantified uncertainties. We then
use the new network parameters w + �w to predict the ob-
servable of interest. Taking 100 random vectors �w for each
single network, we compute the variance in the observable of
interest, and also record the maximum deviation. The results
are shown in Tables I and II for c = 2 and c = 10, respec-
tively. We see that the network is approximately parabolic at
its optimal training point (as variances and maximal devia-
tions increase by about a factor

√
5 as we go from c = 2 to

c = 10. For energies and radii, the networks are robust. For
c = 2 and c = 10, the network parameters |�w|/|w| change
by about 1/1000 and 1%, respectively. Allowing for a twofold
increase of the loss function, the uncertainty from the training
of the network does not exceed the uncertainties from the
random initial starting points. However, allowing weights and
biases to change such that the loss function is increased by
a factor of 10, yields larger uncertainties. In this case, the
maximum uncertainties from the neural network (when added
to the error bars shown in Fig. 7), would lead the error bars
from the neural network extrapolation to overlap with those

TABLE II. Same as as Table I but for random vectors �w of
weights and biases that yield a 10-fold increase of the loss function.

max(Nmax)

12 14 16 18 20 22

σEg.s. 0.037 0.025 0.023 0.020 0.035 0.016
max(�Eg.s. ) 0.183 0.121 0.098 0.084 0.153 0.066
|�w|/|w| 0.0025 0.0023 0.0021 0.0021 0.0023 0.0021
σr 0.0093 0.0093 0.0115 0.0139 0.0154 0.0165
max(�r) 0.0415 0.0393 0.0525 0.0635 0.0684 0.0723
|�w|/|w| 0.0122 0.0096 0.0105 0.0105 0.0114 0.0090

FIG. 8. Neural network predictions (upper panel) based on the
CCSD(T) data set with max(Nmax) = 12 and multiple neural network
extrapolated results (lower panel) with data sets form max(Nmax) = 6
to max(Nmax) = 12.

from the IR extrapolation. We note finally that the single-layer
neural networks we employ are not resilient with regard to
dropout. Removing a single node after training of the network
on average changes the predictions for energies and radii by
almost 20%.

To illustrate the universality of neural network extrapo-
lation, we apply the multiple neural network approach on
the ground-state energy of 16O, computed with the coupled-
cluster method [22]. The upper panel of Fig. 8 shows
the neural network performance with the largest data sets
[max(Nmax) = 12]. As we can see in the lower panel of
the figure, the neural network extrapolation results start to
converge at max(Nmax) = 8. Note that, by then, the neural
network is trained with only three sets of Nmax data and is
still able to capture the correct pattern. This is because of the
quick convergence of the coupled-cluster method itself and
the relatively flat curve around the minimum of the energy
as a function of h̄ω, which are both favorable for the neural
network extrapolation approach.

IV. SUMMARY

In this paper, we presented a neural network extrapolation
method to estimate the ground-state energies and point-proton
radii from NCSM and the coupled-cluster calculations. To
counter the overfitting problem which is caused by the limited
set of ab init io results, we enlarged the data set by interpo-
lating between different data points, and used a loss function
that accounts for the correlations between the data points.
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Because of the random nature of the neural network algo-
rithm, we employed multiple neural network approaches to
obtain recommended results and uncertainties of the extrap-
olations. We applied balanced sample weights as data pre-
processing to eliminate the influences of the persistent local
minima, and to obtain a more pronounced single solution for
the multiple neural network predictions.

We presented neural-network-extrapolated energies and
radii of 4He, 6Li for NCSM and compared them with IR ex-
trapolated results from Ref. [22]. The neural network extrap-
olations gave reliable predictions for both observables with
reasonable uncertainties. The extrapolations for the ground-
state energy of 16O from coupled-cluster calculations also
yielded accurate results. The strong pattern learning ability
of the neural network allowed us to apply the same network
architecture for NCSM and CC extrapolation without em-

ploying any particular functions. In conclusion, the neural
networks studied in this work are useful tools for extrapolating
results from ab initio calculations performed in finite model
spaces.
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