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Nucleon momentum distributions in asymmetric nuclear matter
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Nucleon momentum distributions at various densities and isospin asymmetries for nuclear matter are
investigated systematically within the extended Brueckner-Hartree-Fock approach. The shapes of the normalized
momentum distributions varying with k/kF are practically identical, while the density- and isospin-dependent
magnitude of the distribution is directly related to the depletion of the Fermi sea. Based on these properties, a
parametrized formula is proposed with the parameters calibrated to the calculated result.
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I. INTRODUCTION

To determine reliably the structure and properties of nu-
clear matter is one of the central issues in nuclear physics and
nuclear astrophysics [1–4]. One of the most important prop-
erties of nuclear matter is the neutron and proton momentum
distributions which can shed light on the correlations between
nucleons [5–8]. In an ideal infinite noninteracting Fermi sys-
tems at zero temperature, the momentum distribution is the
step function, i.e., n(k) = θ (kF − k), and the Fermi sea is fully
occupied. Once the interactions are turned on, the correlations
induced by the interactions among fermions lead to the occu-
pation of states with momenta k > kF (the high-momentum
distribution) and the depletion of the Fermi sea [9–11]. In
addition, the depletion can be directly obtained from the
momentum distribution. As for the nuclear matter, due to the
hard core and the tensor component of the NN interaction,
the depletion of the Fermi sea is quite significant [12,13]. It
measures the dynamical NN correlation strength induced by
the NN interaction [7], and is believed to be an indicator for
testing the validity of physical picture of independent particle
motion in the mean-field approach or standard shell model
[14,15] in a nuclear many-body system. The knowledge of the
momentum distribution in nuclear matter may provide useful
information to gain insight into the depletion of the deeply
bound state inside finite nuclei and then to understand the
structure beyond mean-field theory of finite nuclei. It may
also help in the study of the effects of short-range correlations
(SRCs) on the observables in heavy-ion reactions [16,17].

Experimentally, the high-momentum distribution and the
NN correlations were unambiguously identified in a series
of experiments, such as (e, e′ p) [18] and (e, e′NN ) [19,20].
Especially, the two-nucleon knockout experiment shows that
nucleons can form short-range correlated pairs with large
relative momenta and small center-of-mass momenta [21].
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The number of neutron-proton (np) correlated pairs was found
to be about 18 times that of proton-proton (pp) correlated pairs
[22–24] which suggests that the tensor correlations due to the
strong tensor components of the NN interaction, in addition
to SRCs, play also an important role in the high-momentum
distributions [25]. In Ref. [8], the authors attempted to distin-
guish the dominant regions of tensor correlations and SRCs
via comparing the momentum distributions of nuclear matter
with the deuteron. They found that SRCs tend to dominate the
high-momentum distributions above 3 fm−1, while the tensor
correlation is of interest in the region of k ≈ 2–2.8 fm−1.
However, both in the theoretical calculations and experiments,
the effects of these two correlations on the momentum distri-
bution are hard to distinguished strictly.

In theoretical calculations, the NN correlations in nuclear
matter have often been studied in combination with the nu-
cleon momentum distribution. Various theoretical methods
have been employed to study these distributions, such as
the correlated basis functions [26,27], quantum Monte Carlo
method [28], the self-consistent Green’s function (SCGF)
[8,29–32], the in-medium T-matrix method [33,34], and the
extended Brueckner-Hartree-Fock (EBHF) method [5,35–38].
In Ref. [32], the temperature, density, and isospin dependence
of the depletion of the Fermi sea is clarified in the framework
of SCGF. The momentum distribution at large momentum has
been discussed as well which shows an exponential damping
tendency. In Ref. [38], the authors have calculated the nucleon
momentum distribution and quasiparticle strength in symmet-
ric nuclear matter within the EBHF approach. Parametrized
three-section expression of the momentum distribution fit to
the microscopic calculation has also been provided. Unfortu-
nately, the parametrization is density independent and merely
valid for the symmetric case. In the present paper, we shall
extend the parametrized expression of the momentum distri-
bution to asymmetric nuclear matter and simplify the form of
the expression of the momentum distribution. Moreover, the
density and isospin dependence of the depletion of the Fermi
sea is discussed as well within the EBHF approach. In order to
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obtain a more realistic momentum distribution expression, the
calculated momentum distribution within the EBHF approach
includes the three-body force (TBF) effects.

This paper is organized as follows. In the next section,
we give a brief review of the adopted theoretical approaches
including the EBHF theory and spectral function. The formula
of the momentum distribution is derived in Sec. III. In Sec. IV,
we employ the obtained formula to study the SRC effects
on heavy-ion reactions. And finally, a summary is given in
Sec. V.

II. THEORETICAL APPROACHES

The present calculations for asymmetric nuclear matter are
based on the EBHF approach, for which one can refer to
Ref. [39] for details. The extension of the BHF scheme to
include microscopic TBF can be found in Refs. [40,41]. After
several self-consistent iterations, the effective interaction ma-
trix G in the Brueckner-Bethe-Goldstone (BBG) theory can
be obtained. This G matrix, which includes all the ladder dia-
grams of the NN interaction, embodies the tensor correlations
and the SRCs. Using the G matrix, the mass operator M(k, ω)
can be calculated.

A. Mass operator within the extended
Brueckner-Hartree-Fock approach

Generally, the nucleon momentum distribution needs the
exact knowledge of the mass operator. In practice, it is impos-
sible to calculate the mass operator exactly. In an actual calcu-
lation, one can only evaluate some approximations to the mass
operator. Within the framework of the BBG theory, the mass
operator can be expanded in a perturbation series according to
the number of hole lines. To the lowest-order approximation,
i.e., the BHF approximation, the mass operator is written as

M1(k, ω) =
∑

k′
θ (kF − k′)〈kk′|G[ω + ε(k′)]|kk′〉A, (1)

where ω is the starting energy and ε(k) represents the single-
particle spectrum in the BHF approximation, i.e., ε(k) =
k2/2m + ReM1[k, ε(k)]. The step function θ (kF − k) is the
Fermi distribution at zero temperature. The subscript A de-
notes antisymmetrization of the matrix elements.

The quantity M1(k, ω) only has a right-hand cut which is
mainly responsible for the depletion under the Fermi surface
[11,12]. Therefore, the calculation of the momentum distribu-
tion requires at least the first- and second-order approxima-
tions of the mass operator. The second order in the hole-line
expansion of the mass operator, which might be answerable
for the high-momentum distributions above the Fermi surface
[11], is given by [39]

M2(k, ω) = 1

2

∑
k′k1k2

θ (k′ − kF )θ (kF − k1)θ (kF − k2)

× |〈kk′|G[ε(k1) + ε(k2)]|k1k2〉A|2
ω + ε(k′) − ε(k1) − ε(k2) − i0

, (2)

where the step function θ (k′ − kF ) guarantees the integral
over k′ above the Fermi surface. In the present paper, we cal-

culate the mass operator to the second-order approximation,
i.e., M(k, ω) ∼= M1(k, ω) + M2(k, ω).

B. Spectral function and momentum distribution

The knowledge of M(k, ω) allows us to write Green’s
function in the energy-momentum representation

G(k, ω) = 1

ω − k2

2m − M(k, ω)
. (3)

Generally, the mass operator M(k, ω) is complex and can be
written as

M(k, ω + iη) = V (k, ω) + iW (k, ω), (4)

with the property [M(k, ω + iη)]∗ = M(k, ω − iη), where
η = +0 to ensure the integral-path. Using the Lehmann rep-
resentation for Green’s function, the spectral function S(k, ω),
which describes the probability density of removing a particle
with momentum k from a target nuclear system and leaving
the final system with the excitation energy ω, is thus given by

S(k, ω) = i

2π
[G(k, ω) − G(k, ω)∗]

= − 1

π

W (k, ω)

[ω − k2/2m − V (k, ω)]2 + W (k, ω)2
. (5)

And it should fulfill the sum rule∫ ∞

−∞
S(k, ω)dω = 1. (6)

In Ref. [6], the authors show that elaborately dealing with
the integral over the energy can satisfy the sum rule quite
well by adopting the mass operator up to second order in the
framework of the EBHF approach.

Finally, the momentum distribution n(k) is related to the
spectral function by

n(k) =
∫ EF

−∞
S(k, ω)dω (7)

or

n(k) = 1 −
∫ ∞

EF

S(k, ω)dω, (8)

where the Fermi energy EF follows the on-shell condition
EF = k2

F /2m + V (k, EF ). The quantities of Eqs. (7) and (8)
are identical when the sum rule of the spectral function is
fulfilled.

Using the momentum distribution n(k), one can then define
the depletion parameter

χ =
[∑

k

n(k > kF )

]/
ρ =

[
1

π2

∫ ∞

kF

n(k)k2dk

]/
ρ, (9)

i.e., the proportion of the particle number above the Fermi
momentum. This parameter is related to several physical
quantities such as the correlation strength or the defect func-
tion, and is believed to be an indicator for the convergence of
the so-called BBG hole-line expansion.
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FIG. 1. Neutron and proton momentum distributions in asym-
metric nuclear matter at various isospin asymmetries calculated
within the EBHF approach for the different densities 0.50ρ0, 0.75ρ0,
1.0ρ0, 1.50ρ0, 2.0ρ0, and 2.5ρ0.

III. FORMULA FOR MOMENTUM DISTRIBUTION

In this section, we first exhibit the numerical calculation
of momentum distributions within the EBHF approach, then
roughly analyze the behavior of these distributions, and finally
provide a formula for calculating the distribution. The realistic
Argonne V18 two-body interaction supplemented with a mi-
croscopic TBF [40,41] is taken as the NN interaction. In the
present paper, the calculation is under zero temperature.

Generally, the mass operator and the G matrix should
be calculated self-consistently to obtain accurately the mo-
mentum distribution [11,42,43]. However, a completely self-
consistent process is quite difficult to be performed. In our
calculations, the G matrix is first self-consistently obtained
with the lowest order of the mass operator, i.e., taking ε(k) =
k2/2m + ReM1[k, ε(k)] into account in the calculation of the
G matrix. Afterward the second-order approximation of the
mass operator is calculated. These simplifications might vio-
late the conservation of the number of particles. Fortunately,
as in Ref. [6], the spectral functions are found to be almost
exactly normalized [the integrations in Eq. (6) are about 0.99]
with the help of the extrapolation of the spectral function,
which imply that Eqs. (7) and (8) are approximately the same
[we adopt Eq. (7) in our calculation]. Moreover, the calculated
momentum distribution n(k) fulfills the density sum rule quite
well. For symmetric nuclear matter at the saturation density,
3
∫ ∞

0 n(k)k2dk/k3
F ≈ 0.97.

Now we first systematically report the calculated neutron
and proton momentum distributions at various isospin asym-
metries β = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 with different total
densities 0.50ρ0, 0.75ρ0, 1.0ρ0, 1.50ρ0, 2.0ρ0, 2.5ρ0 in Fig. 1.
Hereafter, the isospin asymmetry β is defined as β = (ρn −
ρp)/(ρn + ρp) and ρ0 = 0.17 fm−3 is the empirical saturation
density of nuclear matter. The distributions present a discon-
tinuity at their respective Fermi momenta kτ

F (hereafter τ =
n, p). For positive asymmetries, the neutron Fermi momentum
kn

F is larger than the proton Fermi momentum kp
F , therefore

FIG. 2. The normalized momentum distribution n(k)/n(0) vs
k/kτ

F below the Fermi momentum at various isospin asymmetries
(upper panel) and at various densities (lower panel).

the proton and neutron momentum distributions are located at
the left and right sides of the symmetric case, respectively.
One should note that the neutron momentum distribution
differs only slightly from proton momentum distribution in
the symmetric case due to the charge-dependent interaction
Argonne V18. The discrepancy is too tiny to be recognized in
the figures.

Interestingly, if focusing on the shapes of the momentum
distributions in Fig. 1, one would notice that these distribu-
tions are quite similar except for the magnitudes. Inspired by
this quality, we show the normalized momentum distributions
n(k)/n(0) as a function of the ratio k/kτ

F below the Fermi mo-
mentum at various isospin asymmetries and densities in Fig. 2.
Where kτ

F is the respective Fermi momentum corresponding to
the different isospin asymmetry β and density ρ. The shapes
of the normalized distributions are practically identical except
for slightly small discrepancies near the Fermi momentum.
In Fig. 3, the same normalized momentum distributions as in
Fig. 2 but above the Fermi moment exhibit the coincidence
of the shapes as well. In other words, the normalized mo-
mentum distributions as a function of the ratio k/kτ

F below
(above) the Fermi momentum at various densities and isospin
asymmetries can be described by the same expression with
tolerable errors. In the domain 0 < k/kτ

F < 1, the normalized
momentum distribution varying with k/kτ

F below the Fermi
momentum can be described by the following parametriza-
tion:

nτ
<(k)

n(0)
= 1.00329 − 0.02876x − 0.09053x7, (10)

where nτ
<(k) corresponds to n(k < kτ

F ) and x represents the
ratio k/kτ

F . A comparison between the calculated nτ
<(k)/n(0)

and the parametrization is shown in the upper panel of Fig. 4.
The polynomial fit is in good agreement with the calculation
within the EBHF approach.

For the high-momentum distributions, i.e., k > kτ
F ,

Ref. [44] reports that the momentum distributions appear to
decrease as k−4, following Tan’s relation [45,46]. However,
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FIG. 3. The normalized momentum distribution n(k)/n(1.05kτ
F )

vs k/kτ
F above the Fermi momentum at various isospin asymmetries

(upper panel) and various densities (lower panel).

Tan’s relation is simply valid for a dilute system with contact
interaction whereas the NN interaction is much more compli-
cated. And the microscopic calculations including the EBHF
approach [38] and the SCGF method [8,32] indicate a nearly
linear relation between ln n(k) and k at large momentum, i.e.,
n(k) ∝ exp(−ck) (c is a positive constant). In addition, if
one adopts the form of k−4 to describe the high-momentum
distributions, a cutoff k� is always supplemented owing to
the slow convergence of the number density. When k� is
employed, the neglected number density is∫ ∞

k�

n(k)k2dk ∝ 1

k�

. (11)

In calculations, the maximum value of k� is usually about
5 fm−1, which implies 3–5% is missing of the number density.
Most importantly, our calculations within the EBHF approach

FIG. 4. The normalized distributions as a function of k/kτ
F and

the fittings. The upper and the lower panels correspond to the
momentum below and above the momentum, respectively.

reveal the same behavior of the high-momentum distributions
as Ref. [38]. For the above reasons, we employ the exponential
form replenished by a Gauss function to describe the high-
momentum behavior. The normalized momentum distribution
above the Fermi momentum can be expressed as

nτ
>(k)

n
(
1.05kτ

F

) = 3.548e−1.799x + 52.2e−4.2766x2
, (12)

with nτ
>(k) ≡ n(k > kτ

F ) and x ≡ k/kτ
F . We display the ex-

pression of k−4 (1/k4), the parametrization (12) (Exp) and
the calculation within EBHF approach in the lower panel of
Fig. 4. Obviously, the exponential fit is more approaching
to the calculation than the k−4 fit. But we should stress that
owing to the approximations adopted in the calculations and
fittings, the possibility of Tan’s relation in nucleon momentum
distribution could not be ruled out.

To obtain the momentum distributions, the magnitudes of
n(k) below and above the Fermi momentum remain to be iden-
tified once the shapes are provided. Actually, the magnitudes
connect with the depletion parameter χ via the relations

1 − χ =
1
π2

∫ kτ
F

0 nτ
<(k)k2dk

ρτ

= 3
∫ 1

0
nτ

<(k)x2dx = 0.9546n(0), (13)

χ =
1
π2

∫ ∞
kτ

F
nτ

>(k)k2dk

ρτ

= 3
∫ ∞

1
nτ

>(k)x2dx = 2.9537n
(
1.05kτ

F

)
. (14)

Consequently, the magnitudes of the n(k) below and above
the Fermi momentum are directly related to the depletion
parameter, i.e.,

n(0) = 1 − χ

0.9546
, n

(
1.05kτ

F

) = χ

2.9537
. (15)

The depletion parameter χ calculated within the EBHF
approach with various isospin asymmetries β = 0.0, 0.1, 0.2,
0.3, 0.4, and 0.5 at two typical densities ρ0 and 2.0ρ0 are
exhibited in Fig. 5. Obviously, the proton (neutron) depletion
of the Fermi sea increases (decreases) almost linearly with
varying isospin asymmetry. Due to Eq. (15), n(0) demon-
strates the analogous behavior reported in Refs. [5,47]. The
experiments show that the np correlation is much stronger
than nn or pp correlations [23,24]. One should notice that
the probability of a proton (neutron) encountering a neutron
(proton) increases (decreases) linearly as a function of isospin
asymmetry. If supposing equal correlation in each correlated
np pair and neglecting the nn and pp correlations, the linear
isospin dependence of χ comes very naturally. In Fig. 6 we
illustrate the density dependence of the depletion parameter.
The different types of dots correspond to the calculated χ

within the EBHF approach. According to the shapes of χ

varying with ρ, we propose an expression with the parameters
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FIG. 5. The depletion parameter χ calculated within the EBHF
approach varying with isospin asymmetry β for two densities ρ0 and
2.0ρ0.

calibrated to the calculated χ . The expression reads

χ (ρ, β ) = 0.1669

[
1 + λ

(
0.1407

ρ

ρ0
− 0.7296

)
β

]

×
[

1 + 2.448e−4.1854 ρ

ρ0 + 0.1382

(
ρ

ρ0

)1.5
]
.

(16)

Where λ = 1 (−1) corresponds to neutron (proton). The
isospin and density dependence of χ are mainly included in
the first and second square brackets on the right-hand side of
Eq. (16), respectively. One would find that there is a slight
discrepancy between the slopes of curves in Fig. 5 indicating
a weak density dependence of ∂χ/∂β. We actually account

FIG. 6. The depletion parameter χ vs densities. The symbols
correspond to the calculations within the EBHF approach. The lines
are obtained from Eq. (16). The upper and lower lines are related to
protons and neutrons, respectively.

FIG. 7. Neutron and proton momentum distributions from the
formula (17) and the calculation within the EBHF approach at two
isospin asymmetries and densities.

for this dependence in the first square bracket of Eq. (16). In
fact, a simple analysis of the calculated data on the density
dependence of the slope reveals a roughly linear dependence.
In Ref. [8], the authors have also mentioned a similar behavior
of momentum distribution in asymmetric nuclear matter at
finite temperature. The expression (16) for various densities
and isospin asymmetries is shown by lines in Fig. 6. Below
the saturation density, the depletion of the Fermi sea becomes
stronger with decreasing density which might mainly result
from the increasing effect of the tensor correlation. While
above the saturation density, the hard-core effect and the
depletion get larger and larger with increasing density [7].

Finally, the formula of the momentum distribution can be
summarized as

n(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1−χ

0.9546

[
1.00329 − 0.02876 k

kτ
F

− 0.09053
(

k
kτ

F

)7]
if k � kτ

F ,

χ

2.9537

[
3.548e

−1.799 k
kτ
F + 52.2e

−4.2766( k
kτ
F

)2]
if k � kτ

F ,

(17)

with the expression of the depletion parameter of Eq. (16).
A comparison between the momentum distributions from
formula (17) and from the EBHF approach is given in Fig. 7. It
can be clearly seen that the formula is quite accurate except for
a slight difference near the Fermi momentum. This formula
can be applied to calculate the momentum distribution in
finite nuclei assisted by the local density approximation. As
is well known, at low densities the nuclear matter system
can minimize its energy by forming light clusters such as
deuterons, or particularly strongly bound α particles [48].
In theoretical calculations such as the EBHF approach, the
in-medium T-matrix method, and the SCGF method, the effec-
tive interaction including all the ladder-diagram contribution
always encounters a singularity leading to unstable results
at low densities [49,50]. Therefore, we emphasize that the
achieved formula (17) of the momentum distribution might
be solely reliable for the density of 0.1ρ0 < ρ < 3.0ρ0 and
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FIG. 8. Upper panel: Free neutron to proton ratio as a function
of momentum in the central Au + Au reaction at 400 MeV/nucleon.
Middle panel: Same as upper panel, but for π−/π+ ratio. Lower
panel: Comparison of calculated total π−/π+ yields ratios and FOPI
data [53].

the isospin asymmetry of β ∈ (−0.5, 0.5) for uniform nuclear
matter. Otherwise, one should be careful of the depletion
parameter.

IV. APPLICATION TO THE TRANSPORT MODEL

As an example of application, the obtained density-
and asymmetry-dependent nucleon momentum distribution
of Eq. (17) and the fraction of high-momentum nucleons
from Eq. (16) were both involved in the isospin-dependent
Boltzmann-Uehling-Uhlenbeck (IBUU) transport model [51].
The free neutron to proton ratio and the π−/π+ ratio as a
function of momentum in the central Au + Au reaction at
400 MeV/nucleon are demonstrated in the upper and middle
windows of Fig. 8. As comparisons, the nucleon momen-
tum distribution from Cai et al. is also used [17,52]. The

lower window shows the integrations of the π−/π+ ratio
and comparison with the FOPI data [53]. From Fig. 8, with
the formula (17) and the work of Cai et al., it is seen that
both the momentum distribution of the free n/p ratio and
the π−/π+ ratio are quite similar, except for energetic n/p
ratio. While the difference of the total π−/π+ yields ratios is
evidently shown in the lower window of Fig. 8. The value of
the π−/π+ yields ratio with formula (17) is higher than that
with the formula of Cai et al.. The reason is that the fraction of
high-momentum nucleons with formula (17) is smaller than
that with the formula of Cai et al. [52] and a larger number
for the neutron-proton correlation causes a lower value of the
π−/π+ ratio in heavy-ion collisions.

V. SUMMARY AND OUTLOOK

In summary, we have systematically calculated the nucleon
momentum distributions and the depletions of the Fermi sea at
various densities and isospin asymmetries for nuclear matter
within the EBHF approach. The identity of these shapes of the
normalized momentum distributions below (above) the Fermi
momentum varying with k/kF is detected, indicating a uni-
form expression of the momentum distribution for different
densities and isospin asymmetries. Whereas the magnitude of
the momentum distribution is directly related to the depletion
of the Fermi sea, which first decreases and then increases
with densities resulting from the tensor and hard core ef-
fects of the NN interaction [7]. Using these properties, the
parametrized formula of momentum distribution is proposed
with the expression of the depletion. Moreover, a heavy-ion
reaction example adopting the obtained formula is given to
test its reliability.

In the present paper, the mass operator is just calculated
up to the second order, the missing higher order perhaps
enhances the depletion of the Fermi sea and eventually in-
fluences the momentum distribution. Especially, the missing
higher order might also reduce the particle strength around
the Fermi surface [54]. Thus, the parametrized formula cannot
be considered as definite. In addition, the calculation is based
on realistic Argonne V18 only. With different interactions,
the depletions of the Fermi sea and the momentum distribu-
tions would differ from each other [7,8,32]. Furthermore, the
normal state of symmetric nuclear matter becomes unstable
owing to the pairing tendency of np [49,50,54,55] and one
should account for the effect of the pairing on the momentum
distribution. An improvement of the calculations including
these effects is under way.
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