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Mass relations of corresponding mirror nuclei
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In this paper we report two simple relations of masses between corresponding mirror nuclei, the first of which
is based on the regularity of empirical neutron-proton interactions, and the second of which is based on the
regularity of the one-nucleon separation energy. We demonstrate that, for N � 10, the empirical neutron-proton
interaction of given nucleus with neutron number N − 1 and proton number Z (we use the convention that
N = Z in this paper), or abbreviated by the (N − 1, Z ) nucleus, equals the neutron-proton interaction of its
corresponding mirror nucleus, i.e., the (N, Z − 1) nucleus; we also demonstrate that one-proton separation
energy Sp and one-neutron separation energy Sn of the (N − k, Z ) nucleus (k = 1, 2, 3, 4) equals one-neutron
separation energy Sn and one-proton separation energy Sp, respectively, of the (N, Z − k) nucleus, after a simple
correction of Coulomb energy and proton-neutron mass difference are considered. Numerical experiments show
that these correlations provide us with a remarkably accurate approach to predict masses and separation energies
of some proton-rich nuclei with neutron numbers from 10–46. Our predicted masses of proton-rich nuclei are
tabulated as a Supplemental Material of this paper.
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I. INTRODUCTION

Nuclear mass, or equivalently binding energy, is one of
the most important and fundamental quantities for a given
nucleus. Nuclear mass could be conveniently used to extract
pairing gaps, neutron-proton interactions, energies of α and β

decays, and information on the shell evolution; furthermore,
nuclear mass database is one of the key inputs in studying
astrophysical processes of the universe. Great efforts have
been devoted to describe the state-of-the-art atomic-mass-
evaluation database and to predict unknown masses, and along
this line, we mention here the Duflo-Zuker mode [1], the
finite range droplet model (FRDM) [2,3], the Skyrme Hartree-
Fock-Bogoliubov theory [4,5], the Weizsäcker-Skyrme (WS)
mass model [6–9], and the spherical relativistic continuum
Hartree-Bogoliubov (RCHB) theory [10]. These models are
usually called global models.

These global models are both interesting and important.
From another perspective, there are also many efforts, called
local mass formulas, which are applicable to given nucleus
and its neighboring nuclei in the nuclear chart. Along this
line we mention the Audi-Wapstra extrapolation method
[11,12], mass relations based on neutron-proton (n-p) inter-
actions [13–15], and the Garvey-Kelson mass relations (GKs)
[16–32].

Aside from the global models and local formulas, there
are some formulas that do not cover the whole nuclear chart
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but cover much larger regions than the local mass relations,
e.g., for pairs of mirror nuclei. Predicting nuclear masses by
using the isospin symmetry between mirror nuclei is actually
an old idea. In Ref. [33] the mass difference between mirror
nuclei, or more generally, between isospin multiplets was
discussed in terms of Coulomb energy and neutron-proton
mass difference. A recent examination of mass relation for
mirror nuclei was performed in Ref. [34], where it was shown
that with proper corrections of Coulomb energy and shell
effect one is able to describe masses of mirror nuclei with the
root-mean-squared deviation around 120–290 keV.

To proceed our discussion below, we take the convention of
Z = N for simplicity. Although the Wigner energy prohibits
the applicability of the Garvey-Kelson relations for nuclei
with N ≈ Z , in general, it was shown in Refs. [17,18,35] that
the transverse Garvey-Kelson relation

M(Z + 1, N − 1) + M(Z − 1, N ) + M(Z, N + 1)

− M(Z, N − 1) − M(Z + 1, N ) − M(Z − 1, N + 1)

= 0, (1)

works remarkably well. This applicability is a reflection of
the isospin symmetry between mirror nuclei. Based on this
idea, the above relations was generalized to a number of
sophisticated Garvey-Kelson mass relations for mirror nuclei
by Tian and collaborators [36], with the resultant root-mean-
squared deviation of 398 keV.

The purpose of this paper is to report two interesting
relations related to masses of mirror nuclei. We demonstrate
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that some empirical neutron-proton interactions (to be defined
later) of the (N − 1, Z ) nucleus are very close to those of the
(N, Z − 1) nucleus, and that one-nucleon separation energy of
the (N, Z − k) [k = 1, 2, 3, 4] nucleus is close to that of the
(N − k, Z ) nucleus after correction of Coulomb energy and
the neutron-proton mass difference. These simple relations
provide us with a new approach to predict, at a remarkable
accuracy, some masses of proton-rich nuclei, which are hith-
erto unaccessible experimentally.

This paper is organized as follows. In Sec. II, we study
the empirical neutron-proton interactions, and in Sec. III we
study separation energies. Finally in Sec. IV we summarize
the results of this paper.

II. NEUTRON-PROTON INTERACTIONS

The residual neutron-proton interaction plays an impor-
tant role in the evolution of the nuclear properties, such as
single-particle structure, nuclear collectivity, and deformation
[37–40], and has attracted much attention [13–15,41–44]. The
neutron-proton interaction between the last i neutrons and j
protons for the nucleus with neutron number N and proton
number Z is defined by

Vin− j p(N, Z ) = −M(N, Z ) + M(N − i, Z )

+ M(N, Z − j) − M(N − i, Z − j). (2)

We denote the difference between the neutron-proton interac-
tion Vin– j p of two-mirror nuclei, the (N − k, Z ) and (N, Z − k)
pair by

�Vin− j p(N − k, Z ) = Vin− j p(N − k, Z ) − Vjn−ip(N, Z − k),

(3)

where the N = Z convention is used to ensure the (N − k, Z )
and (N, Z − k) pair are two-mirror nuclei. Suppose that the
neutron-proton interactions of two-mirror nuclei are equal.
One has

�V1n–1p(N − 1, Z ) = 0. (4)

This relation was pointed out by Jänecke in Ref. [35] many
years ago, and was recently exemplified for a few cases by
Zhang et al. in Ref. [45].

An examination of the relation in Eq. (4) and relation
�V2n–2p(N − 1, Z ) = 0 by using the AME2016 database [46]
is presented in Fig. 1, one sees that these two simple relations
works remarkably well for N � 10. The root-mean-squared
deviation (RMSD) of this relation is very small: For the
relation in Eq. (4), namely, �V1n–1p(N − 1, Z ) = 0, all devi-
ations are well below 200 keV except one case with a large
uncertainty; the RMSD value is only 77 keV and 73 keV, re-
spectively, for Eq. (4) and the relation �V2n–2p(N − 1, Z ) = 0,
with N − 1 � 10. We note without details that the exception
of the relation with the largest uncertainty is originated from
the proton-rich nucleus 44V whose experimental uncertainty
of mass is large. If one excluded this exceptional nucleus,
the above RMSD value would be reduced to 43 keV and
73 keV, respectively, for relations �V1n–1p(N − 1, Z ) = 0 and
�V2n–2p(N − 1, Z ) = 0.

FIG. 1. �V1n–1p(N − 1, Z ) and �V2n–2p(N − 1, Z ) (N = Z) ex-
tracted from the AME2016 database [46] versus neutron number
N . One sees that �V1n–1p(N − 1, Z ) = 0 and �V2n–2p(N − 1, Z ) = 0
works very well for N � 10. Note that the result of �V1n–2p(N −
1, Z ) is precisely the same as that of �V1n–1p(N − 1, Z ), and the
result of �V2n–1p(N − 1, Z ) is a simple combination of �V2n–1p(N −
1, Z ) and �V2n–2p(N − 1, Z ). Therefore plots of �V2n–1p(N − 1, Z )
and �V1n−2p(N − 1, Z ) are not necessary here.

The relation �Vin– j p(N − 2, Z ) = 0 works also very
well. In the third column of Table I we present the
RMSD values of �Vin– j p(N − 2, Z ) = 0 for (i, j) =
(1, 1), (1, 2), (2, 1), (2, 2) with N − k � 10. The RMSD
values of these cases are from 64–152 keV. For relation
�Vin– j p(N − 3, Z ) = 0, the RMSD values are 133 and
136 keV for (i, j) = (1, 1), (1, 2), respectively; however,
they are very large for (i, j) = (2, 1), (2, 2). On the
other hand, we should note that the number of relation
�Vin– j p(N − 3, Z ) = 0 is only one for (i, j) = (2, 1),
(2, 2); therefore it is not very clear whether the relation
�Vin– j p(N − 3, Z ) = 0 does not work for (i, j) = (2, 1),
(2, 2), or these two cases with very large deviations are given
by exotic structure of certain nucleus in this region, or some
of relevant data should be reexamined.

It is instructive to perform numerical experiments of ex-
trapolation by using our simple mass relations. To exemplify
this approach, we choose the relation �Vin–ip = 0 with i =
j = 1, i = j = 2, and (i = 2, j = 1), for k = 1. We rewrite
these three relations as below.

M(N − 2, Z ) = M(N, Z − 2) + M(N−1, Z ) − M(N, Z − 1)

+ M(N − 2, Z−1)−M(N − 1, Z − 2), (5)

TABLE I. The RMSD (in unit of keV, denoted by σk) of relations
�Vin– j p(N − k, Z ) and the number (denoted by Nk) of �Vin– j p(N −
k, Z ) extracted by the AME2016 database for each case, for k = 1–3
and different i, j values, with the isotope 44V excluded.

σ1 N1 σ2 N2 σ3 N3

�V1n–1p 43 19 64 16 133 5
�V2n–1p 55 18 110 6 868 1
�V1n–2p 43 19 76 17 136 5
�V2n–2p 73 19 152 6 1071 1
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FIG. 2. Histogram plot for the number of nuclei involved in
our predictions, versus experiment uncertainty σexp compiled in the
AME2016 database. One sees that very few data have experimental
uncertainties larger than 100 keV. Therefore the uncertainties of
our predicted results come essentially from the uncertainties of
Eqs. (5)–(7).

M(N − 3, Z ) = M(N, Z − 3) + M(N − 1, Z )

− M(N, Z − 1) + M(N − 2, Z − 1)

− M(N − 1, Z − 2) + M(N − 3, Z − 2)

− M(N − 2, Z − 3), (6)

M(N − 3, Z ) = M(N, Z − 3) + M(N − 1, Z )

− M(N, Z − 1) + M(N − 3, Z − 1)

− M(N − 1, Z − 3), (7)

with N = Z .
We make use of these three relations and extrapolate

some mass excesses from the AME1995 database to the
AME2016 database [46]. The resultant RMSD value of our
extrapolated eleven proton-rich nuclei is very small: only
47 keV. Therefore, it is very interesting to apply them and
to predict unknown masses for the proton-rich nuclei based
on the AME2016 database [46]. Here the uncertainty of our
predictions by using each of Eqs. (5)–(7) is defined by the
square root of corresponding (σ1)2 of Table I plus a sum
of squared uncertainties σ 2

exp of masses involved in corre-
sponding formula. Very luckily, experimental uncertainties
of masses in this region are very small, as shown in Fig. 2.
Therefore theoretical uncertainties of our predicted values by
using each of the formulas are always small.

From Eqs. (6)–(7), we have here up to two possible
predicted results, each with a theoretical value (mi) and an
uncertainty (σi ), our final predicted result is defined by

m = F
m1

(σ1)2
+ F

m2

(σ2)2
, (8)

F = 1
1

(σ1 )2 + 1
(σ2 )2

,

TABLE II. Predicted mass excesses and corresponding uncer-
tainties of our predictions (in units of keV) by using Eqs. (5)–(7).

N Z A massexcess
pred σpred

27 30 57 −32778 45
28 31 59 −34019 60
29 31 60 −39988 60
29 32 61 −34001 92
30 32 62 −42328 70
30 33 63 −33832 125
31 33 64 −39666 102
31 34 65 −33484 136
32 34 66 −42059 116
32 35 67 −32935 137
33 35 68 −38712 90
33 36 69 −32755 171
34 36 70 −41579 142

and our predicted uncertainty σ is defined by

σ =
√

F . (9)

By using Eqs. (5)–(7), we predict 13 nuclear masses above
the N = Z line, and present our predicted results in Table II.

III. SEPARATION ENERGIES

In Refs. [33,34], mass relations between mirror nuclei have
been performed. In those cases, mass differences between
mirror nuclei with neutron number and proton numbers being
(N − k, Z ) and (N, Z − k), are highly k dependent. The pa-
rameter sets in Ref. [34] are determined by empirical neutron-
proton mass difference and Coulomb energy difference, as
well as a phenomenological shell effect. The RMSD values
in Ref. [34] are from 126–289 keV. In this section we report
the relations of separation energies for mirror nuclei, which
yield substantially smaller RMSD values with much less
parameters.

We begin with masses differences of Refs. [33,34],

M(N − k, Z ) − M(N, Z − k)

= ack(A − k)2/3 + k(Mp − Mn), (10)

where the Z = N convention is used as above, A = N + Z is
the mass number, ac is the Coulomb term coefficient, and Mp

and Mn are the masses of a free proton and a neutron.
Now let us define one-neutron separation energy Sn(N, Z )

and one-proton separation energy Sp(N, Z ),

Sn(N, Z ) = M(N − 1, Z ) − M(N, Z ) + Mn, (11)

Sp(N, Z ) = M(N, Z − 1) − M(N, Z ) + Mp. (12)

We next define two quantities, �n and �p,

�n(N − k, Z ) = Sn(N − k, Z ) − Sp(N, Z − k)

+ (Mp − Mn), (13)

�p(N − k, Z ) = Sp(N − k, Z ) − Sn(N, Z − k)

+ (Mn − Mp). (14)
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TABLE III. The RMSD (in keV) of Eqs. (15)–(16), the pair
number of mirror nuclei with k � 4 (denoted by N ), and resultant
parameters ac and C in Eqs. (15)–(16) optimized by using the
AME2016 [46].

� RMSD N ac C

�n 113 43 718 −1833
�p 132 68 702 +1637

For short we denote these �n and �p by �. By using the above
definitions and Eqs. (10)–(14), we obtain

�n(N − k, Z ) = M(N − 1 − k, Z ) − M(N − k, Z )

− M(N, Z − k − 1) + M(N, Z − k)

= acδ
n
c + (Mp − Mn), (15)

�p(N − k, Z ) = M(N − k, Z − 1) − M(N − k, Z )

− M(N − 1, Z − k) + M(N, Z − k)

= acδ
p
c + (Mn − Mp), (16)

where

δn
c = (k + 1)(A − k − 1)2/3 − k(A − k)2/3, (17)

δp
c = (k − 1)(A − k − 1)2/3 − k(A − k)2/3, (18)

correspond to the Coulomb-energy correction, which are
based on the simple formula of Coulomb energy

Vc = acZ (Z − 1)

A1/3
.

We abbreviate the above δn
c and δ

p
c by using δc. For k = 1,

Eq. (16) is reduced to Eq. (10). Therefore, Eqs. (15)–(16) are
generalizations of the key formula in Ref. [34].

In Fig. 3, we present the values of � defined in
Eqs. (13)–(14) and extracted by using the AME2016 database
[46], versus δc defined in Eqs. (17)–(18). One sees there exist
strong linear correlations between those � and δc. These
correlations are independent of k, and this independence is
very useful and convenient, as one is able to predict masses
of (N − k, Z ) nuclei (with different k) based on the unified
trajectory.

We rewrite the simple relations in short as below

� = acδ + C. (19)

For each of �n and �p, we adjust the above coefficients ac

and C to optimize the correlation. The resultant coefficients ac

and C are listed in Table III. We note that values of ac here are
close to that in the Weizsäcker formula, and the values of C are
in the reasonable consistence with the neutron-proton mass
difference. It is also noted that Eq. (19) for �n with k = 0 is
equivalent to the case for �p with k = 1. The RMSD values
of the simple �-δ correlation (which are 113 and 132 keV
for one-nucleon separation energy here) are substantially
smaller than those obtained in Ref. [34] (which are about
126–300 keV, depending on the value of k) for binding
energies.

Clearly, the simple and remarkable �-δ correlation pro-
vides us with an approach to predict unknown nuclear masses

FIG. 3. Linear correlation of � extracted from the AME2016
database and δc defined in Eqs. (17)–(18). One sees that these
correlations are k independent, which enables us to explore masses
far from the N = Z line. Here we exclude cases with (N − k) < 10.
(a): �n; (b): �p.

by extrapolations in high accuracy for proton-rich nuclei with
N � 10. We rewrite Eqs. (15)–(16) as below

M(N − 1 − k, Z ) = M(N − k, Z ) + M(N, Z − 1 − k)

− M(N, Z − k) + acδ
n
c + C, (20)

M(N − k, Z ) = M(N − k, Z − 1) − M(N − 1, Z − k)

+ M(N, Z − k) − acδ
p
c − C. (21)

They are used in extrapolations to unknown masses. From
these two formulas, we have up to two possible predictions
for given nucleus. In this case, our predicted masses are
their averaged value with the weight of uncertainties, as in
Eqs. (8)–(9).

Before going to our predictions, it is interesting to demon-
strate the predictive power of Eqs. (20)–(21) by numerical ex-
periments. For the extrapolation from the AME2003 database
to the AME2016 database, our RMSD value is only 102 keV
for 11 proton-rich nuclei in the region that we consider above.
This RMSD value is substantially smaller than the RMSD
(303 keV) given in Ref. [34]. This means that Eqs. (20)–(21)
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are very powerful in extrapolations to the proton-rich nuclei
for which experimental data is not yet available.

By using Eqs. (20)–(21), we predict 58 nuclear masses for
proton-rich nuclei with N from 10–50 and k � 4, based on the
AME2016 database [46]; our predicted results are tabulated as
a Supplemental Material of this paper [47].

IV. SUMMARY

To summarize, in this paper we report two regularities,
one of which is related to neutron-proton interactions, and
the other of which is related to the separation energies,
for corresponding mirror nuclei. These regularities provides
us with a simple but powerful approach to predict un-
known neutron-rich nuclear masses with very competitive
accuracy, as demonstrated by numerical experiments of ex-
trapolations from the AME1995 database to the AME2016
database, and from AME2003 database to the AME2016
database.

The first regularity is that, neutron-proton interactions of
two mirror nuclei, particularly those with neutron number N
is smaller than proton number by one or two and their mirror
nuclei, are very close to each other. This regularity enables
us to predict six proton-rich nuclear masses with theoretical
uncertainty (σth) below 100 keV, and other seven proton-rich
nuclear masses with σth around 100–200 keV.

The second regularity is that, difference between one-
nucleon separation energies of corresponding mirror nuclei
exhibits a linear correlation with the Coulomb correction term,
typically with the RMSD values below 150 keV. This regu-
larity reduces to two formulas of extrapolation to unknown
masses, and by which we are able to predict about 60 un-
known proton-rich nuclear masses, typically with theoretical
uncertainties below 250 keV.

We believe that our predicted nuclear masses and separa-
tion energies, via sagacious application of the isospin sym-
metry, are useful to all studies in which these masses are
involved.
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