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We describe bound states, resonances, and elastic scattering of light ions using a δ-shell potential. Focusing
on low-energy data such as energies of bound states and resonances, charge radii, asymptotic normalization
coefficients, effective-range parameters, and phase shifts, we adjust the two parameters of the potential to some
of these observables and make predictions for the nuclear systems d + α, 3H + α, 3He + α, α + α, and p + 16O.
We identify relevant momentum scales for Coulomb halo nuclei and propose how to apply systematic corrections
to the potentials. This allows us to quantify statistical and systematic uncertainties. We present a constructive
criticism of Coulomb halo effective field theory and compute the unknown charge radius of 17F.
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I. INTRODUCTION

Low-energy reactions between light ions fuel stars and
are relevant to stellar nucleosynthesis [1]. Because of the
Coulomb barrier, fusion cross sections decrease exponentially
with decreasing kinetic energy of the reactants, and this makes
it difficult to measure them in laboratories. For the extrapola-
tion of data to low energies, and a quantitative understanding
of the reactions, one thus has to turn to theoretical calcula-
tions.

Theoretical approaches can roughly be divided into two
kinds, taking either the ions as degrees of freedom or starting
from individual nucleons. The former approach includes a
variety of models [2–5], effective range expansions [6–12],
and effective field theories (EFTs) [13–18]; the microscopic
approach ranges from simpler models [19] to ab initio com-
putations [20–23]. Unfortunately, there are still significant
uncertainties [1], and data tables for relevant quantities such as
asymptotic normalization coefficients (ANCs) or astrophysi-
cal S factors may [24] or may not [25,26] contain theoretical
uncertainties.

There are various tools available for computing theoret-
ical uncertainties [27,28]. Systematic errors are accessible
within EFTs (because of a power counting) [28–32] but much
harder to quantify for models. Nevertheless, all models are
constrained by data with errors, and the propagation of the
latter to computed observables, or the employment of a set of
models provides us with means to uncertainty estimates [27].

In this work, we revisit low-energy bound states, reso-
nances, and scattering within simple two-parameter models,
using ions as the relevant degrees of freedom. In an attempt
to estimate uncertainties, we quantify the sensitivity of the
computed results to the input data. We also propose system-
atic improvements of the simple models. This allows us to
estimate model uncertainties. As we will see, this approach

yields accurate results when compared to data. One of the key
results is the prediction for the unknown charge radius of 17F.
We contrast our approach to Coulomb halo EFT (which is
not accurate at leading order for 8Be [13] and 17F [14]) and
present a constructive criticism based on a finite range and a
modified derivative expansion.

This paper is organized as follows. In Sec. II we present
arguments in support of finite-range interactions, review key
formulas for the δ-shell potential, and discuss systematic
improvements. Section III shows the results for a number of
interesting light-ion systems. We conclude with a summary in
Sec. IV. Several details are relegated to the Appendix.

II. THEORETICAL BACKGROUND

A. Energy scales and estimates for observables

1. Estimates for observables

While effective range expansions [7–9,33] established rela-
tions between low-energy observables, we still lack simple ex-
pressions that give estimates for such observables when only
basic properties such as energies and radii of the involved ions
are available. In applications of EFTs to low-energy ion scat-
tering one makes assumptions about the relevant momentum
scales to propose a power counting [13–15,17]. This makes
it important to understand the relevant scales. As it turns out,
the presence of Coulomb interactions modifies expectations
from neutron-halo EFT or pionless EFT significantly. To see
this, we explore how a finite-range potential differs from a
zero-range potential.

The range of the strong nuclear force is close to the sum of
the (charge) radii D of two interacting particles. This is true for
both the nucleon-nucleon interaction and for the strong force
between ions considered in this work. It is in this sense that
the nuclear interaction is short ranged. This implies that the
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two-body wave function essentially acquires its “free” asymp-
totic form for interparticle distances r � D.

The relevant asymptotic properties of a low-energy bound-
state wave function are its bound-state momentum (also
known as the bound-state wave number) and ANC [34,35]. In
the absence of the Coulomb interaction, and for a zero-range
interaction, the s-wave ANC C0 is related to the bound-state
momentum γ for weakly bound states via C2

0 ≈ 2γ . Similarly,
the s-wave scattering length a0 fulfills a0 ≈ 1/γ . This allows
one—at leading order—to work with zero-range potentials
whenever the physical range is sufficiently short and when the
bound state momentum is the smallest momentum scale. We
note that the effective range scales as r0 ∼ O(D). Finite-range
effects of the potential enter at next-to-leading order. Pion-
less EFT and neutron-halo EFT are based on these insights
[36–38].

Let us now contrast this to the case when the Coulomb
potential

VC (r) = h̄2kc

mr
(1)

is added. Here m is the reduced mass and kc is the Coulomb
momentum (or inverse Bohr radius),

kc ≡ Z1Z2αm

h̄
. (2)

It is given in terms of the fine structure constant α ≈ 1/137
and the charge numbers Z1 and Z2 of the two ions. As we
will see, this new momentum scale significantly modifies the
discussion of low-energy observables.

We consider a weakly bound state with energy
−h̄2γ 2/(2m) and bound-state momentum γ and assume
γ � kc; for resonances we consider a low-energy resonance
with energy h̄2κ2/(2m) and momentum κ and also assume
κ � kc. In what follows, we will simply refer to these
momenta as k, setting k = iγ for bound states and k = κ for
resonances. The Sommerfeld parameter is

η ≡ kc

k
. (3)

For radial distances r approximately exceeding the sum D
of the charge radii of the two ions, the strong interaction
potential vanishes, and the Hamiltonian consists of the kinetic
energy and the Coulomb potential. Thus, for r � D, the wave
functions are combinations of Coulomb wave functions. The
key argument is as follows: For small momenta |k| � kc, i.e.,
for |η| � 1, the Coulomb wave functions can be expanded in
a series of modified Bessel functions, where coefficients fall
off as inverse powers of η, while the modified Bessel func-
tions have arguments 2

√
2kcr (see the Appendix for details).

Thus, low-energy observables (such as ANCs, radii, scattering
lengths, and effective ranges) become series of functions of
2
√

2kcD, with coefficients that fall off as inverse powers of η.
We have to distinguish the case of weak Coulomb 2

√
2kcD �

1 from the case of strong Coulomb (where 2
√

2kcD � 1). In
the former case, one can take D → 0 and employ zero-range
interactions; in the latter case this is not possible. Estimates for
several low-energy s-wave observables are given in Table I,
and the results for 2

√
2kcD � 1 differ markedly from those

TABLE I. Simple estimates for low-energy observables of a two-
ion system with a bound-state momentum γ or a resonance momen-
tum κ in the presence of a Coulomb potential with the Coulomb
momentum kc, and a δ-shell potential with the range D, in the limit
κ, γ � kc. Here a0, r0, C0, and �/E are the s-wave scattering length,
effective range, and ANC, respectively. The resonance energy is
E = h̄2κ2/(2m), and the corresponding width is denoted as �, not to
be confused with the Gamma function �(1 + kc/γ ). The internuclear
distance is 〈r2〉.

Observable 2
√

2kcD � 1 D → 0

a0 −(πκ2D)−1e4
√

2kcD − 6kc
κ2

r0 (3kc )−1 O(D)

C0 (πD)−1/2�(1 + kc/γ )e2
√

2kcD
√

6kc�(1 + kc/γ )
�

E 4 kc
κ2D

e4
√

2kcDe−2π kc
κ 24π

k2
c

κ2 e−2π kc
κ

〈r2〉 D2 O(k−2
c )

where D → 0 could be taken. The displayed results have
been obtained with a δ-shell potential [8] (with details of the
calculation presented in the Appendix).

We see that the scattering length a0, the squared ANC
C2

0 , and the resonance width are exponentially enhanced by
a factor e4

√
2kcD when kcD � 1 compared to the case D → 0.

We also see that the internuclear distance squared 〈r2〉 is not
large, though we considered the limit of vanishing bound-state
momentum. However, this distance becomes very small in
the zero-range limit. It is clear that a zero-range potential is
not compatible with nuclei that consist of ions: As ions have
finite charge radii they must be separated by a distance that is
similar to the sum of their charge radii in order to retain their
identities. An EFT that employs a contact at leading order fails
short of this requirement. These arguments confirm the need
to include finite-range potentials or a finite effective range at
leading order [13,39,40]. Bounds for the minimum physical
range of the strong potential are also known from elementary
considerations [41] and causality arguments [42,43].

On the first view, the quantities displayed in the second col-
umn of Table I appear to be model dependent for 2

√
2kcD �

1 (as they depend on the parameter D). However, in the
considered limit, the internuclear distance fulfills 〈r2〉 = D2,
and this links observable quantities to each other.

The internuclear distance is related to the charge radius. Let
the ions (labeled by i = 1, 2) have masses mi and charge radii
squared 〈r2

i 〉. Then, the charge radius squared of the bound
state is [44]

〈
R2

c

〉 = Z1
〈
r2

1

〉 + Z2
〈
r2

2

〉
Z1 + Z2

+
(
Z1m2

2 + Z2m2
1

)〈r2〉
(Z1 + Z2)(m1 + m2)2

. (4)

Here the first term account for the finite charge radii of the
ions, and the second term is the contribution of the ions (taken
as point charges) in the center-of-mass system. The derivation
of Eq. (4) is elementary and this expression is well known
[2,44]; for a recent EFT discussion of contributions to charge
radii in halo nuclei we refer the reader to Ref. [45]. We note
that the consistency of any two-ion model (or EFT) requires
that the distance between the two ions is larger than the sum of
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their individual charge radii. As we will see below, our results
are largely consistent with the assumption of separated ions.

We also note that cluster systems consisting of an even-
even and an odd-mass nucleus have magnetic moments (in
units of nuclear magnetons)

μ = μodd + Z

A
l. (5)

Here μodd is the magnetic moment of the odd-mass con-
stituent, l is the orbital angular momentum, and Z and A are
the charge and mass number, respectively, of the compound
system. Here we assumed that the magnetic moment due to
the spin S of the odd-mass ion and the magnetic moment due
to the orbital angular momentum l add up. This is the case
for states with total spin j = l + S. When applied to weakly
bound nuclei, Eq. (5) serves as a check to what extend these
nuclei can be viewed as clusters of two ions.

We note that (for 2
√

2kcD � 1) the effective range in
Table I does not depend on D and that it decreases with
increasing Coulomb momentum. Its value, r0 = 1/(3kc), is
that of a Coulomb system with a zero-energy bound state
(see Appendix for details), and 1/(3kc) is also at the causality
limit imposed by the Wigner bound [8,43]. We can define
the nontrivial regime of strong Coulomb interactions by the
model-independent relation 3kcr0 ≈ 1. For the δ-shell poten-
tial, it is interesting to compute corrections that are due to a
finite value of 2kcD. This yields [8] (see the Appendix for
details)

r0 − 1

3kc
= −πDe−4

√
2kcD. (6)

This equation expresses model-dependent quantities on its
right-hand side in terms of observables. Combining it with
the expression for the scattering length in Table I yields the
model-independent relation

κ−2 = a0

(
r0 − 1

3kc

)
. (7)

This formula was derived (for bound states) by Sparenberg
et al. [9] and very recently rederived by Schmickler et al. [40].

Other notable relations that can be obtained from Table I
are

a0 ≈ −(4πkc)−1 �

E
e2π kc

κ , (8)

relating the scattering length to resonance properties, and

C2
0 ≈ γ 2a0[�(1 + kc/γ )]2, (9)

relating the ANC to the bound-state energy and the scattering
length (after replacing κ by γ ). This last expression agrees
with the result in Refs. [9,33,43]. It seems to us that Eq. (8)
was not yet known. These model-independent expressions
are valuable. They relate quantities that are often unknown
or hard to measure (such as the ANC or the effective range
parameters) to others that are better known (such as energies
or widths).

We believe the model-dependent expressions in Table I are
also useful, because they allow us to estimate these hard-to-
measure quantities. Table II lists relevant parameters for two-
ion systems of interest. Of the considered systems, only the

TABLE II. Bound-state momentum γ (or momentum κ of the
resonant state), Coulomb momentum kc, and sum of charge radii D
for two-ion systems in the state with spin/parity Jπ . The dimension-
less quantity 2

√
2kcD is also shown.

System Jπ γ or κ (fm−1) kc (fm−1) D (fm) 2
√

2kcD

d + α 1+ 0.31 0.09 3.82 1.68
3H + α 3/2− 0.45 0.12 3.43 1.80
3He + α 3/2− 0.36 0.24 3.64 2.63
p + 7Be 1/2− 0.08 0.12 3.52 1.85
α + α 0+ 0.09 0.28 3.35 2.72
p + 16O 1/2+ 0.07 0.26 3.58 2.73

last two approximately fulfill both |η| � 1 and 2
√

2kcD � 1.
Thus, for theses systems, finite-range models will yield sig-
nificantly different values than zero-range models. Applying
the simple expressions of Table I and the estimates for D from
Table II to α-α scattering, for instance, yields a very large
scattering length of about a0 ≈ −2482 fm, an effective range
r0 ≈ 1.2 fm, and a resonance width of � ≈ 7.5 eV. These
values are reasonably close to actual values. For the weakly
bound Jπ = 1/2+ state of the p + 16O system, for example,
we note that the simple estimate from Table I yields an ANC
of about C0 ≈ 80 fm−1/2, close to the empirical estimates
[10,26,46,47]. Thus, δ-shell potential allows us to estimate the
sizes of relevant observables in Coulomb halo nuclei.

Table II shows that 2
√

2kcD � 1 for essentially all
Coulomb halo nuclei of interest. As a consequence, r0 −
1/(3kc) is very small for s waves, and this makes scattering
lengths, resonance widths, and ANCs large. We note that these
are natural properties of Coulomb-halo nuclei. In contrast,
the smallness of r0 − 1/(3kc) is viewed as a fine tuning in
Coulomb halo EFT [13,14,16].

Throughout this work, we will employ a single partial wave
for the description of low-energy phenomena. Thus, we tacitly
assume that the mixing of partial waves is a small correction
that can be neglected at the precision we are working at. In
this sense, the ANCs and resonance widths are single-particle
properties.

2. Energy scales

In what follows, we will exploit a separation of scales
between the low-momentum scale we are interested in and
a higher-lying breakdown scale. The breakdown momentum
	b defines the breakdown energy Eb ≡ h̄2	2

b/(2m). It is set
by the smaller of an empirical and a theoretical breakdown
scale. The empirical breakdown scale is set by the energy of
excited states of the two clusters or of the resulting nucleus;
however, only states with relevant quantum numbers count. In
8Be, for instance, the ground state has spin-parity Jπ = 0+,
and the empirical breakdown scale is set by first excited 0+
state at about 20 MeV (and not by the energy of the lowest 2+
state at 3 MeV). There is also a theoretical breakdown scale.
The strong interaction potential has a range that is of the size
of the sum D of the charge radii of the clusters involved. Thus,
at momenta π/D, the details of our model are fully resolved.
As we cannot expect that the δ-shell model would be accurate
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at such a high momentum, π/D sets the theoretical breakdown
momentum. In other words: When probed at this momentum
scale, different models that exhibit the same physical range D
will yield different results for observables.

The phenomena we seek to describe are simple because of
a separation of scales. Scattering phase shifts at low energies
are typically either close to zero or close to π . Only in
presence of a narrow resonance do phase shifts vary rapidly
in a small energy region of the size of the resonance width.
Thus, away from the resonance energy, the asymptotic wave
function consists mostly of the regular Coulomb wave func-
tion, which is exponentially small under the Coulomb barrier.
This implies that the wave function cannot resolve any details
of a finite-range potential as long as the classical turning point
is larger than the range D of our potential, i.e., the strong
potential is entirely in the classically forbidden region. The
corresponding “model” momentum 	m fulfills

	m ≡
√

2kc/D. (10)

Thus, for energies below Em ≡ h̄2	2
m/(2m), it will be hard

to distinguish between different finite-range models that have
been adjusted to low-energy data. In this sense, one deals with
universal and model-independent phenomena. For momenta
k with 	m � k � π/D differences between models start to
show up and eventually become fully resolved. Some models
might accurately describe data even for momenta beyond 	m;
we would view such models as fortuitous but useful picks. The
systematic improvements that are presented in Sec. II C below
can be used to estimate what a different model would yield;
we refer to resulting uncertainties as “systematic uncertain-
ties” in what follows. In EFT parlance, the momentum regime
below 	m would be that where “leading-order” results are
expected to be accurate and precise. Higher-order corrections
should become visible beyond that scale.

In this work, we employ simple finite-range models for
the nuclear potential that essentially exhibit two parameters
(a range and a strength). Most calculations will be done with
the δ-shell potential, but for 8Be we also employ a simple
square well or the Breit model [48], a hard-core potential
plus a boundary condition. As we will see, at sufficiently low
energies, and when adjusted to low-energy data, such simple
models will describe data accurately and precisely. We will
also propose how to make systematic improvements to these
models.

B. δ-shell potential

The δ-shell potential plus the Coulomb interaction is well
understood and can be solved analytically [7,8,49]. In this
subsection, we briefly summarize some of the relevant results.
The Hamiltonian is

H = H0 + V. (11)

The strong interaction potential is V , and the “free” Hamil-
tonian H0 consists of the kinetic energy and the Coulomb
interaction

H0 = − h̄2

2m

 + VC (r). (12)

Here m denotes the reduced mass of the two-ion system
and VC is the Coulomb potential (1). The δ-shell potential is
parameterized as

V (r) = h̄2λ0

2m
δ(r − R). (13)

Here λ0 and R denote the strength and the physical range
of the potential, respectively. We work in the center-of-mass
system and employ spherical coordinates. The radial wave
function ψl (r) = ul (r)/r must be continuous at r = R, and
its derivative u′

l ≡ dul
dr fulfills

u′
l (R

+) − u′
l (R

−) = λ0ul (R). (14)

The radii R+ and R− are infinitesimal larger and smaller than
R, respectively.

As we shall see below, the δ-shell potential is quite useful
in describing the low-energy physics of charged ions. The key
is here that the outside (r > R) wave function has accurate
asymptotic properties, and that low-energy physics does not
probe the inaccurate and unphysical inside (r < R) wave
function.

1. Bound states

For bound states with energy E = − h̄2γ 2

2m we make the
ansatz

ul (r) =
⎧⎨
⎩

N
H+

l ( kc
iγ ,iγ R)

Fl (
kc
iγ ,iγ R)

Fl
( kc

iγ , iγ r
)
, r < R

NH+
l

( kc
iγ , iγ r

)
, r > R.

(15)

Here we employed the Coulomb wave functions Fl and H+
l .

We note that some readers might find the appearance of
the Coulomb wave function H+

l unusual and might have
preferred to see the Whittaker function W−kc/γ ,l+1/2(2γ R)
instead. For complex arguments the Coulomb wave function
H+

l (−ikcγ , iγ r) can be written in terms of the Whittaker
function W−kc/γ ,l+1/2(2γ R), see Ref. [50, chap. 33.2]. As we
employ the Coulomb wave functions at imaginary arguments,
some care must be taken in their numerical implementation;
we followed Gaspard and Sparenberg [51] and present details
in the Appendix. We also refer the reader to that reference for
a discussion of the analytical properties (or lack thereof) of
Coulomb wave functions. We recall that the Coulomb wave
functions F0(η, x), G0(η, x), and H±

0 (η, x) behave asymptot-
ically, i.e., for large real values of the argument x and real
values η, as the functions sin x, cos x, and exp (±ix) when
omitting the Coulomb phase.

In Eq. (15), the constant N ensures the proper normaliza-
tion ∫ ∞

0
dr|ul (r)|2 = 1 (16)

of the wave function. Because of the particular ansatz of
the wave function for r > R in terms of the Coulomb wave
function rather than the Whittaker function, the ANC is

Cl = N
W−kc/γ ,l+1/2(2γ R)

H+
l

( kc
iγ , iγ R

) . (17)
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The matching condition (14) yields

γ

λ0
= iFl

(
kc

iγ
, iγ R

)
H+

l

(
kc

iγ
, iγ R

)
. (18)

The internuclear distance squared

〈r2〉 =
∫ ∞

0
drr2|ul (r)|2 (19)

enters into the computation of the charge radius (4).

2. Scattering

For positive energies E = h̄2k2

2m we make the ansatz

ul (r) =
{

BFl
( kc

k , kr
)
, r < R

Fl
( kc

k , kr
)

cos δ + Gl
( kc

k , kr
)

sin δ, r > R.

Here Gl is the irregular Coulomb wave function and δ denotes
the phase shift, and we employed the shorthand

B ≡ Fl
( kc

k , kR
)

cos δ + Gl
( kc

k , kR
)

sin δ

Fl
( kc

k , kR
) . (20)

The matching condition (14) yields

k

λ0
= −F 2

l

(
kc

k
, kR

)
cot δ − Fl

(
kc

k
, kR

)
Gl

(
kc

k
, kR

)
. (21)

Given the phase shifts, one can use this equation to adjust λ0.
Alternatively, for fixed parameters (λ0, R) this equation can
be solved for the phase shifts. This yields

cot δ = −
k
λ0

+ Fl
( kc

k , kR
)
Gl

( kc
k , kR

)
F 2

l

( kc
k , kR

) . (22)

The δ-shell potential can at most exhibit one bound state.
It is interesting to identify the critical strength λ∗ at which
the bound state enters. To do so, we start from Eq. (21) and
consider a resonance by setting δ = π/2. In order to take
the limit k → 0, we employ asymptotic approximations of
the Coulomb wave functions (see Appendix for details). This
yields

λ−1
∗ = −2RI1(2

√
2kcR)K1(2

√
2kcR). (23)

Here I1 and K1 are modified Bessel functions.
The effective range expansion for the δ-shell potential is

[7,49]

a−1
l = 2k2l+1

c

(l!I2l+1)2

(
1

λ0R
+ 2I2l+1K2l+1

)

rl = − 2k2l−1
c

3(l!I2l+1)2

[
2

kc

λ0

lI2l+3 + √
2kcRI2l+2

I2l+1

+ 2l (l + 1)(l + 2)I2l+1K2l+1

− 1

2
(I2l+1)2 − l (l + 1) − kcR

]
. (24)

Here we used the shorthand

Il ≡ Il (2
√

2kcR) (25)

for the modified Bessel functions.

3. Resonances

As λ0 is decreased from 0 at fixed R, the potential becomes
increasingly more attractive. Just before the critical strength
(23) is reached, the phase shift exhibits a quick rise through
π/2 at a low momentum κ . This is reminiscent of a resonance,
and we can indeed model this physical phenomenon. The
goal is to adjust the parameters of the δ-shell potential to
the resonance energy and width. To do so, we set δ = π/2
in Eq. (21) and find

κ

λ0
= −Fl

(
kc

κ
, κR

)
Gl

(
kc

κ
, κR

)
. (26)

This relates the parameters of our potential to the resonance
momentum κ . The resonance energy is Eκ = h̄2κ2/(2m). To
compute the resonance width �, we use the relation [52]

dδ

dE

∣∣∣∣
Eκ

= 2

�
. (27)

This relation is particularly useful because it allows us to
describe narrow resonances based on elastic-scattering phase
shifts [53]. We denote the momentum derivative of a function
f as df

dk ≡ ḟ , take the derivative with respect to momentum of
Eq. (21), and set δ = π/2. This yields

λ−1
0 = (Fl )

2δ̇ − ḞlGl − Fl Ġl . (28)

Here and in what follows we suppress the arguments
(kc/κ, κR) of the Coulomb wave functions. Combining
Eqs. (26) and (28) and using δ̇ = 4Eκ/(κ�) yields an expres-
sion for the width that depends on R alone (and not on λ0)

Eκ

�
= κ (ḞlGl + FlĠl ) − Fl Gl

4(Fl )2
. (29)

Given the width and the resonance energy, one can solve
Eq. (29) for the parameter R; substitution of the result into
Eq. (26) then yields the parameter λ0.

It is now interesting to combine the result (26) with
Eq. (21) to compute the phase shift. We find

cot δ =
k
κ

Fl
( kc

κ
, κR

)
Gl

( kc
κ
, κR

) − Fl
( kc

k , kR
)
Gl

( kc
k , kR

)
F 2

l

( kc
k , kR

) .

(30)

Here it is implied that R fulfills Eq. (29).

C. Systematic improvements

We want to make systematic improvements to the δ-shell
potential. For this purpose, let us recall how this is accom-
plished in pionless EFT. There, the leading-order is a contact
potential, e.g., a δ-shell potential with a range R that is much
smaller than any other length scale in the problem under
consideration. Then, leading corrections for s waves are of the
form

g
δ(r − R+) + gδ(r − R+)
. (31)

Here 
 is the Laplacian, and g is a coupling constant. When
acting on the wave function with energy Ek = h̄2k2/(2m) of
the leading-order Hamiltonian the perturbation (31) yields a
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contribution proportional to gk2, and this is a small correction
because g ∝ R2 in a natural EFT, and kR � 1 because k is a
low momentum and R is a small length scale.

Having this in mind, we now have to consider our case, i.e.,
Coulomb is added. Let us discuss how to make systematic
improvements to the δ-shell potential. For this purpose we
consider the operator

Wn ≡ 1
2 (H0)nδ(r − R+) + 1

2δ(r − R+)(H0)n. (32)

Here R+ denotes a point that is larger than R by an arbitrarily
small amount, and n is a non-negative integer.1 Consider the
Hamiltonian (n � 1)

H̃n = H0 + V + gnWn, (33)

where gn denotes a low-energy constant. We write down
the Schrödinger equation for the Hamiltonian H̃n acting
on the eigenfunction of H0 with eigenvalue E and integrate
over the neighborhood of the singularities at r = R. This
yields

0 =
∫ R+

R−
drH̃nul (r)

= − h̄2

2m
[u′

l (R
+) − u′

l (R
−) − λ0ul (R)] + gnEnul (R

+).

(34)

Comparison with Eq. (14) shows that the matching condition
becomes

u′
l (R

+) − u′
l (R

−) = λ̃ul (R), (35)

where we introduced the energy-dependent coupling constant

λ̃ ≡ λ0 + 2m

h̄2 gnEn. (36)

One might prefer to convert energy dependence into a mo-
mentum dependence. We employ the shorthand

gn =
(

2m

h̄2

)n−1

g̃n, (37)

and E = h̄2k2/(2m), noting that k can be real (for positive
energies) or purely imaginary k = iγ for bound states. Then,
the momentum-dependent coupling constant is

λ̃(k) = λ0 + g̃nk2n. (38)

We remind ourselves that this is only correct if the Hamilto-
nian acts on eigenstates of H0.

Let us discuss the power counting. The breakdown momen-
tum is 	b. By definition, the leading-order Hamiltonian (11)
and the perturbation (32) have the same energy h̄2	2

b/(2m) at
the breakdown scale. Equating the respective energies yields

h̄2	2
b

2m
∼ h̄2	2

b

2m

n

gn|ul (R)|2. (39)

1We could envision also more “democratic” ways to write powers
of H0 left and right from the δ function, but this is not important at
this stage.

Using the estimate |ul (R)|2 ∼ R−1 yields the scaling

g̃n ∼ R

	
2(n−1)
b

. (40)

Thus, for “natural” coefficients of this size, the momentum-
dependent coupling constant (38) is a small correction at
low momenta, and contributions systematically decrease with
increasing n. We propose that W2 is the leading correction
to the Hamiltonian H . The rationale is as follows: The two
parameters of our theory allow us to fit, for instance, the
scattering length and the effective range. Then, a quartic
correction at next-to-leading order should affect the shape
parameters in the effective range expansion.

We note that the same result could have been obtained from
perturbation theory. We also note that the same systematic cor-
rections apply to the Breit model or the square-well potential.
The reason is that also for these models the eigenstates of H =
H0 + V are wave functions of the “free” Hamiltonian H0 for
r > R. Thus, the expectation value of gnWn in a state with low
energy E = h̄2k2/(2m) is (k2/	2

b)n−1E . For k � 	b, this is
a small correction and we have established a power counting.
The systematically improvable Hamiltonian is (with terms in
order of decreasing importance)

H = H0 + h̄2λ0

m
W0 + g2W2 + g3W3 + · · ·

= H0 + h̄2λ(k)

m
δ(r − R). (41)

In the first line, we have replaced the δ-shell potential (13)
by W0. In the second line we reminded ourselves that this
corresponds to introducing a momentum-dependent coupling
constant

λ(k) = λ0 + g̃2k4 + g̃3k6 + · · · (42)

when acting on eigenstates of H = H0 + V . In what follows,
we will simply denote the coupling constant as λ, suppress-
ing its momentum dependence. In practical applications, we
will use λ = λ(0) = λ0 and employ the leading correction to
estimate systematic uncertainties.

On the one hand, the proposed way to include corrections
to the δ-shell Hamiltonian (11) exhibits a power counting
and thereby follows central ideas from EFT. On the other
hand, the approach is not simply a derivative expansion of the
unknown strong interaction, because H0 contains the Coulomb
potential. This is important, because the contributions from
the Coulomb potential and the kinetic energy are large when
the Sommerfeld parameter is large; only the combination of
kinetic and Coulomb potential energy yields a small total
energy. To see this, we note that the expectation value of
the Coulomb potential term δ(r − R+)h̄2kc/(mr) for a state
with energy E is C2

l h̄2kc/(mR). As this expectation value
can be very large (compared to C2

l E ), the contribution of a
derivative contact such as δ(r − R+)h̄2
/(2m) must be large
in size, too, when compared to C2

l E . This analysis suggests
that systematic improvements to Coulomb systems should be
based on a Coulomb-corrected derivative expansion such as
Eq. (41) rather than on a purely derivative expansion as done
in Coulomb halo EFT.
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TABLE III. Potential parameters (λ0, R) of the δ-shell potential
that reproduce the central values for the nuclei described in this
paper.

Nucleus Jπ l λ0 (fm−1) R (fm)

6Li 1+ 0 −0.89 3.84
7Li 3/2− 1 −1.45 3.14
7Li 1/2− 1 −1.31 3.50
7Be 3/2− 1 −1.42 3.22
7Be 1/2− 1 −1.25 3.75
17F 5/2+ 2 −1.63 3.60
17F 1/2+ 0 −0.79 3.85
8Be 0+ 0 −0.81 3.54

To further illuminate this point, we consider the Coulomb
wave functions F0(kc/k, kr) and G0(kc/k, kr) for the case of
low momentum (i.e., for k → 0) and large Coulomb momen-
tum (i.e., for kcr � 1). Then (details are presented in the
Appendix)

d

dr
F0(kc/k, kr) ≈ +4kcF0(kc/k, kr),

d

dr
G0(kc/k, kr) ≈ −4kcG0(kc/k, kr). (43)

Thus, the derivative of the Coulomb wave function (even
with a small momentum k � kc) yields the large Coulomb
momentum kc. This casts some doubts on employing the
usual derivative expansion known from pionless EFT when
the Coulomb momentum is large compared to the momentum
scale of interest.

III. RESULTS

In this section we present our results for various systems
of interest. Our emphasis is on uncertainty estimates and
a comparison with results from Coulomb halo EFT. The
prediction of the 17F charge radius is subject to confrontation
with data [54]. For completeness, we display the parameters
of the δ-shell potential in Table III. We note that the values
of D (i.e., the sum of the ions’ charge radii) in Table II are
smaller than the values of R displayed in Table III (except for
the 3/2− ground state of 7Li). Thus, the strong interaction is
peripheral in the cluster model we employ. In what follows we
will employ energies of bound and resonant states. These are
all taken from National Nuclear Data Center [55].

A. 8Be as α + α resonance

The nucleus 8Be is not bound but rather a Jπ = 0+ resonant
state at an energy E ≈ 92 keV and a width of � ≈ 6 eV above
the α + α threshold. The next known 0+ state is at 20.2 MeV
of excitation. We note that this energy is equal to the energy
of the first 0+ state of the α particle to three significant digits.
Assuming there are indeed no other 0+ states, 20 MeV sets the
empirical breakdown energy for any cluster model or EFT that
describes 8Be in terms of “elementary” α particles (because an
“elementary” point particle dies not exhibit any structure and

FIG. 1. Phase shifts of α-α scattering in the s wave, as a function
of the center-of-mass energy computed with a shallow square-well
potential (dotted line), the δ-shell (solid line), the Breit model
(dashed line), and a deep square well (dashed-dotted line). Data taken
from Refs. [56,57].

cannot be exited). The corresponding empirical breakdown
momentum is 1.4 fm−1.

However, α particles have a finite size, and the sum of
the two charge radii of the α particles is D ≈ 3.3 fm. At a
momentum π/D ≈ 0.95 fm−1, the details of any Hamiltonian
with a physical range D can be resolved. The correspond-
ing breakdown energy in the center-of-mass system is Eb ≈
9.4 MeV. This energy is lower than the empirical breakdown
scale discussed in the previous paragraph and therefore sets
the breakdown scale. We note that it is not precluded to
construct a model that describes data accurately even at the
breakdown scale. However, that would seem to be fortuitous,
as a generic finite-range model that is adjusted to low-energy
data is expected to not be accurate at such energies.

The Coulomb momentum is kc ≈ 0.28 fm−1. We expect
model dependencies to become visible above the momentum
	m ≈ 0.4 fm−1, see Eq. (10). This corresponds to a center-of-
mass energy of about Em = h̄2	2

m/(2m) ≈ 1.7 MeV. Recall
that this is the energy where the classical turning point is at a
radial distance D.

To summarize the arguments: Virtually any model with a
physical range of size D that is adjusted to low-energy data
is expected to describe data accurately up to about Em =
1.7 MeV. At higher energies, model dependencies start getting
resolved because the strong potential is not anymore in the
classically forbidden region; a de facto breakdown of models
with a range of size D is expected at an energy of about Eb =
9.4 MeV. The model dependencies of the δ-shell potential
can be estimated by employing the momentum-dependent
coupling λ(k) = λ0 + gRk4/	2

b. Here g is a number of order
one.

Figure 1 shows s-wave phase shifts for α-α scattering
computed from different models and compares them to data.
The two-parameter models have been adjusted to the reso-
nance energy and its width. The models are (i) the δ-shell
potential, (ii) a shallow square well (with no bound states),
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FIG. 2. Phase shifts of α-α scattering in the s wave as a function
of the energy in the center-of-mass frame. The dark band shows
the uncertainty from the resonance width. The light band shows the
theoretical uncertainty estimate. Data taken from Refs. [56,57].

(iii) a deep square well with multiple bound states,2 and (iv)
the Breit model [48], i.e., a hard-core potential where the
wave function’s logarithmic derivative at the hard core is set.
All models are practically indistinguishable below Em ≈ 1.7
MeV and differ significantly at the breakdown energy Eb ≈
9.4 MeV. This behavior is as expected from the discussion
of the energy scales presented in Sec. II A 2. We note that
the δ-shell potential and the Breit model yield similar results.
However, unlike the former, the latter employs a hard core and
its wave functions thus exhibit significant high-momentum
modes.

Let us focus on the δ-shell potential and estimate uncertain-
ties. Figure 2 shows the phase shifts over an even larger range
of energies. The central line is obtained from adjusting to the
resonance energy and the central value of its width. Varying
the resonance width � = 5.57 ± 0.25 eV within its uncer-
tainty produces the dark band. The systematic uncertainty
estimate, i.e., the range that different models would explore,
is shown as a light band. Its extent is generated by employing
λ(k) = λ0 ± Rk4/	2

b. We see that the prediction of the δ-shell
potential agrees well with data, even for energies beyond
Em = 1.7 MeV. This model happens to be accurate. The
comparison with Fig. 1 shows that the systematic uncertainty
band is a reasonable estimate for the range of results spanned
by different models.

We computed the scattering length and effective range and
obtained a0 = −2020 ± 100 fm and r0 = 1.106 ± 0.005 fm,
respectively. The uncertainties stem from the uncertainty in
the resonance width. Let us compare this with effective range
parameters from the literature. Overall, there is a consensus on
the effective range, which is close to the estimate 1/(3kc) =
1.21 fm shown in Table I. The scattering length, of course,
is sensitive to the precise difference r0 − 1/(3kc) [see the
approximation (7)], and it is probably only known to about 5

2These bound-state energies are large and outside the domain of
low-energy physics.

FIG. 3. Phase shifts of α + α scattering in the s wave computed
from finite-range models and in leading order (LO) and next-to-
leading order (NLO) Coulomb halo EFT [13], as a function of the
center-of-mass energy. Data taken from Refs. [56,57].

to 10%. The effective range expansions by Rasche [58], Higa
et al. [13], and Kamouni and Baye [59] found a0 = 1650 ±
150 fm, a0 = 1920 ± 90 fm, and a0 = 2390 fm, respectively.
The potential models by Kulik and Mur [3] yielded a0 =
2030 ± 100 fm. Ab initio computations have not yet reached
the precision to extract very large scattering lengths precisely
[60].

We discuss some of these works in more detail. Kulik and
Mur [3] uses simple models for the computation of phase
shifts and effective range parameters. The two-parameter
models are the δ-shell potential and the Breit model. These
models are adjusted to the resonance energy and to phase
shifts, and they virtually agree with each other for energies in
the center-of-mass system up to 2 MeV. They agree with data
over an even wider range. Interestingly, these models yield
an accurate description of the resonance width when adjusted
to phase shifts. Kamouni and Baye [59] use the resonating
group method and R-matrix theory to extract an effective
range expansion. This approach adjusts about two parameters
in each partial wave.

Let us also contrast our approach to the halo EFT work
by Higa et al. [13]. That approach is based on a dimeron
formulation with contact interactions. At leading order (LO),
a fit to the resonance energy and width yields phase shifts
that agree with data only up to 0.3 MeV in the center-of-mass
frame. At next-to-leading-order (NLO), three parameters are
adjusted to the resonance energy, its width, and phase shifts.
The resulting phase shifts clearly deviate from data above 0.7
MeV of center-of-mass energy. Figure 3 compares the EFT
results at LO and NLO to models. The EFT results are not
accurate. This is somewhat surprising, because the effective-
range expansion by the same authors yielded phase shifts that
agree with data.

B. 17F as 16O + p

The 17F nucleus plays a role in nucleosynthesis. Its Jπ =
5/2+ ground state and its first excited 1/2+ states are bound
by about 0.6 and 0.1 MeV, respectively. These energies are
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FIG. 4. Phase shifts of p + 16O scattering in the 2S1/2 partial
wave, as a function of the energy in the center-of-mass frame. Data
taken from Refs. [62–64].

small compared to 6 MeV, the energy it takes to excite the
doubly magic nucleus 16O, and we can thus approximate 17F
as a 16O + p system at sufficiently low energies. The next
excited states in 17F with quantum numbers 5/2+ and 1/2+
are separated by 6.7 and 6.5 MeV, respectively, from the corre-
sponding bound states. Thus, the empirical breakdown energy
is about Eb ≈ 6 MeV. The sum of the charge radii of the
proton and 16O is about D ≈ 3.6 fm. This sets the theoretical
breakdown momentum to π/D ≈ 0.88 fm−1, corresponding
to an energy of about 17 MeV. Thus, the breakdown scale is
set by the empirical breakdown energy. The Coulomb momen-
tum is kc ≈ 0.26 fm−1. Thus, potentials with a physical range
D are expected to exhibit model dependencies above about
	m = (2kc/D)1/2 ≈ 0.27 fm−1, corresponding to an energy
Em ≈ 1.6 MeV.

Let us consider the excited Jπ = 1/2+ halo state [61].
We adjust the model parameters to the binding energy and
the 2S1/2 phase-shift data from Ref. [62]. The results are
shown in Fig. 4. We then predict the ANC to be C0 =
78.9 ± 4.2 fm−1/2, and the charge radius of the excited
state is R∗

c = 3.096 ± 0.034 fm. The uncertainties reflect the
uncertainties from the χ2 fit of the phase shifts, obtained
from doubling the χ2. The ANC agrees with the results by
Gagliardi et al. [46], Artemov et al. [47], and Huang et al.
[26], who found values of (80.6 ± 4.2) fm−1/2, (75.5 ± 1.5)
fm−1/2, and 77.2 fm−1/2, respectively. Our effective range
parameters are a0 = 4080 ± 430 fm, and r0 = 1.17 ± 0.01
fm. Within their uncertainties, these values agree with those of
Refs. [10,59].

Let us also compare to Coulomb halo EFT. For the excited
1/2+ state, Ryberg et al. [14] employed one parameter at
leading order and found that the relative distance 〈r2〉 =
(0.59 fm)2 between the proton and the core and the ANC
C0 = 21.4 fm−1/2 are too small. At next-to-leading order,
effective range contributions enter, and the charge radius is
increased by a factor 3.6–3.8 [65].

Let us turn to the 17F ground state. Its charge radius is not
yet known but its measurement is currently an active exper-
iment at CERN Isolde [54]. We want to make a prediction

FIG. 5. Phase shifts of p + 16O scattering in the 2D5/2 partial
wave, as a function of the energy in the center-of-mass frame. Data
taken from Refs. [62–64].

for this observable. To put things into perspective we note
that the charge radius of 19F is Rc = 2.8976(25) fm [66]; the
ground state of that nucleus has spin/parity 1/2+. We adjust
our model parameters to the binding energy and the ANC. The
ground-state ANC extracted from transfer reaction data via
potential models is 1.04 ± 0.05 fm−1/2 [46,47]. The resulting
phase shifts are shown in Fig. 5. Unfortunately, the phase shift
analysis lacks uncertainties, but we see a systematic deviation.
We compute a scattering length of a2 = 1.15(11) × 103 fm5

and an effective range of r2 = −0.068(7) fm−3, in agreement
with results by Yarmukhamedov and Baye [10] (who were
also informed by the ANCs we used). We compute a charge
radius of Rc = 2.88(1) fm. This is a large radius for a d-wave
state and practically as large as the charge radius of the 1/2+
ground state of 19F.

To estimate the reliability of our computations, we alter-
natively fit to the potential parameters to the phase shifts
and the binding energy and find R ≈ 2.957 fm and λ0 ≈
−1.924 fm−1. We note the the resulting χ2 per degree of
freedom is about 11, hinting at phase-shift uncertainties of
about three degrees (assuming them to be of statistical nature).
In this case, we compute an ANC of C2 = 0.7286 fm−1/2 and
a charge radius Rc = 2.80(2) fm. These values are significant
smaller than those given in the previous paragraph, and the
uncertainties do not overlap. It seems to us that the phase-shift
data [62–64] and the transfer reaction data [46] are probably
not compatible. We note, however, that the accurate determi-
nation of d-wave phase shifts from low-energy scattering is
complicated because s and p waves dominate. We also note
that somewhat smaller ANCs of 0.91 and 0.88 fm−1/2 have
been computed by Huang et al. [26] and Blokhintsev et al.
[12], respectively. As the extraction of the ANC by Gagliardi
et al. [46] is more recent than the phase-shift analysis (and
includes uncertainties), we base our computation on the ANC
and predict a charge radius of 2.88(1) fm for 17F. The mea-
surement [54] will certainly be useful to yield insight into the
low-energy properties of the p + 16O system. We also note
that this nucleus is in reach of ab initio computations [67], but
its charge radius and ANC have not been computed yet.
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C. 6Li as a α + d bound state

The ground state of 6Li is only bound by about E = 1.47
MeV with respect to the d + α threshold. This corresponds
to a bound-state momentum of γ ≈ 0.31 fm−1. Its spin-parity
is identical to that of the deuteron, and the estimate (5) for
its magnetic moment yields 0.86 nuclear magnetons, which is
close to the observed value of 0.822 [68]. These basic prop-
erties suggest that the 6Li ground state exhibits a dominant
s-wave halo structure, and we will we neglect any d-wave
component in what follows.

Let us assess the breakdown scale. The three-body breakup
of 6Li into α + n + p requires the breakup of the deuteron
and is thus about 2.2 MeV above threshold. This inelastic
process is without concern to us. The first excited state with
the same spin and parity as the ground state is at 5.65 MeV,
and this is the empirical breakdown energy. The sum of
charge radii is D ≈ 3.8 fm, setting the theoretical breakdown
momentum at π/D ≈ 0.82 fm−1, which corresponds to a high
energy of 10.6 MeV. Thus, the breakdown scale is set by the
empirical properties. The binding energy of the deuteron to
the α core is a factor of about four smaller than the breakdown
energy, and this provides us with a separation of scale. The
Coulomb momentum of the d + α system is kc ≈ 0.09 fm−1,
and model differences are start to get resolved above the
momentum 	m ≈ 0.22 fm−1, corresponding to an energy
Em ≈ 0.75 MeV. As this energy is smaller than the binding
energy of the α + d system, model dependencies could be
relevant. However, below we will see that the δ-shell model
yields an accurate description of existing low-energy data.

We model the 6Li ground state using the δ-shell potential
in the s partial wave. Ryberg et al. [69] pointed out that charge
radii can be used to constrain low-energy observables that are
relevant in astrophysics. Together with the binding energy,
these are the most precise data available at low energies.
We therefore adjust the two parameters of our potential to
the binding energy and the charge radius. The charge radius
of 6Li is 2.589 ± 0.039 fm [66] and we perform a total of
three calculations, adjusting to its central, lower, and upper
values. For the relevant s wave we compute an ANC of C0 =
2.23(11) fm−1/2, a scattering length a0 = 29.1 ± 1.7 fm, and
an effective range r0 = 1.85(5) fm. The uncertainties reflects
the uncertainty in the charge radius. The central value of the
internuclear distance is

√
〈r2〉 = 3.86 fm, and this marginally

exceeds the sum of charge radii of its constituents, 3.82 fm.
The resulting phase shifts are shown in Fig. 6, and they agree
with data [70,71]. This gives us confidence in the accuracy of
our results.

It is interesting to compare our prediction for the ANC
and the effective range parameters with the literature. The
effective range parameters agree with Ref. [72], which states
a0 = 30.8 fm and r0 = 1.88 fm; the ANC agrees with the
values of Refs. [5,73,74]. However, we note that ANCs have
clearly evolved (and decreased) over time, as the papers
[73,75–77] show. We note that the ab initio computation by
Nollett et al. [20] reports an ANC of 2.28 ± 0.02 fm−1/2 (in
agreement with recent cluster models and our result), while
Hupin et al. [22] found a larger ANC of about 2.7 fm−1/2.
While the calculation of Ref. [20] is informed by charge radii

FIG. 6. Phase shifts of d + α scattering in the 3S1 partial wave,
as a function of the energy in the center-of-mass frame. Data taken
from Refs. [70,71].

through its variational wave function, Ref. [22] did not present
results for charge radii. We believe our calculations, through
their consistency for all low-energy observables, add further
weight to an ANC around 2.2 fm−1/2.

D. 7Be as α + 3He bound state

The 7Be ground state has quantum numbers Jπ = 3/2−
and is bound by 1.6 MeV with respect to the α + 3He
threshold. The only other bound state is at about 0.4 MeV of
excitation energy and has quantum numbers Jπ = 1/2−. Both
states are thus weakly bound and can be viewed as p waves
of the α + 3He system. We note that the estimate (5) for the
ground state’s magnetic moment, −1.556 nuclear magnetons,
is close to the experimental value of −1.398 [68]. This all
suggests that we can describe 7Be as an α +3 He system.

The empirical breakdown energy is set by the energy of
excited states 9.9 MeV for quantum numbers Jπ = 3/2−;
it is about twice as high for the numbers Jπ = 1/2− state.
Of course, the 3He nucleus breaks up at an excitation energy
of about 6 MeV, but this inelastic channel is of no concern
for us. The sum of the two charge radii is D ≈ 3.6 fm, setting
the theoretical breakdown momentum to π/D ≈ 0.86 fm−1,
corresponding to an energy of 9 MeV. Thus the breakdown
energy is about 9 MeV. Model dependencies become visible
above the momentum scale 	m ≈ 0.36 fm−1, corresponding
to an energy of 1.6 MeV. We note that this energy is similar to
the ground-state energy.

For the 2P3/2 partial wave, we adjust the two parameters
of the δ-shell potential to the binding energy of the ground
state and its charge radius of 2.646 ± 0.016 fm [66]. As
before, we propagate the uncertainty of the charge radius
to low-energy observables. Then the ground-state ANC is
C1 = 3.6 ± 0.1 fm−1/2, and the effective-range parameters
are a1 = 207 ± 8 fm3 and r1 = −0.041 ± 0.004 fm−1. The
predicted phase shifts are shown in Fig. 7 and compared to
data [78,79]. The agreement is fair. Unfortunately, the older
data by Spiger and Tombrello [78] lack uncertainties.

Let us compare with other approaches for the 3/2− par-
tial wave. Descouvemont et al. [25] found an ANC of
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FIG. 7. Phase shifts of 3He + α scattering in the 2P3/2 partial
wave, as a function of the energy in the center-of-mass frame. Data
taken from Refs. [78,79].

C1 = 3.79 fm−1/2 (close to our value) from an R-matrix
analysis, while Tursunmahatov and Yarmukhamedov [80]
found an ANC of C1 = 4.83+0.1

−0.25 from evaluations of cap-
ture reactions. We refer to the latter paper for a review of
literature values. The ab initio computation by Dohet-Eraly
et al. [23] found a scattering volume of a1 = 210.4 fm3 (close
to our result), while the effective range expansion techniques
[10] found effective range parameters a1 = 301 ± 6 fm3 and
r1 = 0.0170 ± 0.0026 fm−1 (and a squared ANC of C2

1 =
23.3 fm−1). We note that the ab initio computation [23] yields
a charge radius that is close to data.

We note that Coulomb halo EFT was very recently applied
to the α + 3He system [16,18] for a computation of the
astrophysical S factor. Zhang et al. [18] pursued a Bayesian
approach based on data from capture reactions, avoiding the
need to adjust parameters to phase shifts. Higa et al. [16]
employed the ANC from Ref. [80] for their computation of the
astrophysical S factor. At leading order (a one-parameter or a
three-parameter theory, depending on the power counting), the
resulting phase shifts are visibly above the data [79].

It seems to us that this α + 3He system is still not suf-
ficiently well understood. Existing theoretical results are in
conflict with each other, and no calculation seems to be able
to reproduce charge radii, phase shifts, and capture data.

E. 7Li as α + 3H bound state

The 3/2− ground state of 7Li is bound by about 2.5 MeV
with respect to the threshold of the α + 3H system. Based on
a cluster assumption (5), its magnetic moment is 3.4 nuclear
magnetons, which is close to the experimental datum of 3.256
[68]. This suggests that one can describe 7Li as the bound state
of the α + 3H system with orbital angular momentum l = 1.

The next 3/2− state is at about 9.8 MeV, setting the
empirical breakdown scale. The breakup of the triton at
about 6 MeV is an inelastic channel we are not concerned
with. The sum of the charge radii of the constituent ions
is D ≈ 3.4 fm, and the theoretical breakdown momentum is
π/D ≈ 0.91 fm−1, corresponding to an energy of about 10

FIG. 8. Phase shifts of 3H + α scattering in the 2P3/2 partial wave
as a function of the energy in the center-of-mass frame. Data taken
from Ref. [78].

MeV. Thus the breakdown energy is at about 10 MeV. At the
momentum 	m = 0.26 fm−1, corresponding to an energy of
0.84 MeV, model dependencies become visible. We note that
this energy is smaller than the bound-state energy, and model
dependencies could thus be notable.

We adjust the δ-shell parameters to the α-separation energy
and the charge radius (2.444 ± 0.042 fm [66]) of the 7Li. The
resulting phase shifts are shown in Fig. 8 and compared to a
phase-shift analysis [78]. The agreement is poor. However, the
scatter of the points from the phase-shift analysis also suggests
that the uncertainties are significant.

For the 3/2− channel, we compute a scattering volume
a1 = 74 ± 8 fm3, an effective range r1 = −0.24 ± 0.02 fm−1,
and an ANC C1 = 3.0 ± 0.2 fm−1/2. The ab initio compu-
tations by Dohet-Eraly et al. [23] found a scattering vol-
ume of 70 fm3 (which agrees with our result), and their
computed charge radius is close to data. Kamouni and Baye
[59] fit a model to phase shifts and report effective-range
parameters a1 = 72.77 fm3 and r1 = 0.27 fm−1 (which are
close to our results); however, the ground-state energy of the
3H + α system was about twice as large as the data. However,
Descouvemont et al. [25] found an ANC of C1 = 3.49 fm−1/2

from an R-matrix analysis, while Yarmukhamedov and Baye
[10] computed effective-range parameters a1 = 58.10 ± 0.65
fm3 and r1 = 0.346 ± 0.005 fm−1 (with an ANC of C1 =
3.57 ± 0.15 from Ref. [81]).

We see that there is no consensus yet about low-energy
observables for the α + 3H system. However, the simplicity
of the δ-shell potential, its economical use of only two low-
energy data, its agreement with ab initio computations, and its
ability to estimate uncertainties of models make it an attractive
potential also here.

IV. SUMMARY

We employed a simple two-parameter model to describe a
number of nuclear light-ion systems that exhibit a separation
of scale. Whenever possible, the model parameters were con-
strained by the energy and width of a low-energy resonance
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or by the energy and charge radius of a weakly bound state.
In those cases, we predicted phase shifts, effective range
parameters, and ANCs. Our analysis of ANCs, charge radii,
and resonance widths shows that the inclusion of a finite range
is relevant for systems with strong Coulomb interactions. We
also proposed a way to account for systematic corrections and
model uncertainties. This allowed us to present uncertainty
estimates for the computed observables. The presented ap-
proach provides us with a constructive criticism of Coulomb
halo EFT. We predicted a charge radius of 2.88(1) fm for the
17F ground state, taking its energy and ANC to constrain the
model.

The potential model employs two parameters in each par-
tial wave. When applied to a single partial wave, it is a
minimal model whose results compete well at low energies
with traditional Woods-Saxon potential models or R-matrix
analyses that employ more parameters. We pointed out that the
δ-shell model practically delivers model-independent results
below a momentum 	m when it is adjusted to low-energy
data. We also presented simple formulas that estimate the sizes
of effective-range parameters and ANCs based on energies of
low-energy states and charge radii of the involved ions. Such
estimates are useful in the construction of EFTs, and they
seemed to be missing in the literature.
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APPENDIX

The Appendix presents some details that could be looked
up or are straightforward (but sometimes tedious) to derive.
We present them here briefly to make the paper self-contained.

A. Coulomb wave function

For the Coulomb wave functions we followed Gaspard
and Sparenberg [51]. In that paper, the analytical proper-
ties are emphasized. This is relevant to us because we call
the Coulomb wave functions at real and purely imaginary
arguments. We employed MATHEMATICA and SCIPY special
functions in PYTHON for our numerical implementation. We
checked for a number of arguments that our implementation
agrees with the precise numerical routines by Michel [82].

The regular Coulomb wave function is

Fl (η, ρ) = Cl (η)ρ l+1eiρM(l + 1 + iη, 2l + 2,−i2ρ).

(A1)

Here η = kc/k is the Sommerfeld parameter and ρ = kr.
For bound states with energy E = −h̄2γ 2/(2m) we have
k = −iγ , and the arguments η = −ikc/γ and ρ = i2γ r are
purely imaginary. In Eq. (A1), we employed Kummer’s
function M(a, b, z) or the confluent hypergeometric func-
tion 1F1(a, b, z) = M(a, b, z). The η-dependent normalization
Cl (η), not to be confused with the ANC and distinct from it
by its argument, is

Cl (η) = (2η)l

(2l + 1)!

√
2πηwl (η)

e2πη − 1
, (A2)

with

wl (η) =
l∏

j=0

(
1 + j2

η2

)
. (A3)

The incoming and outgoing Coulomb wave functions are

H±
l (η, ρ) = D±

l (η)ρ l+1e±iρU (l + 1 ± iη, 2l + 2,∓i2ρ).

(A4)

Here U denotes Tricomi’s function (or the confluent hyperge-
ometric function of the second kind) and the normalization is

D±
l (η) = ∓i2(−1)l eπη (2l + 1)!Cl (η)

�(l + 1 ∓ iη)
. (A5)

The irregular Coulomb wave function is then defined as

Gl (η, ρ) = 1
2 [H+

l (η, ρ) + H−
l (η, ρ)]. (A6)

We are interested in low-energy phenomena and therefor
seek approximations for Coulomb wave functions for η � 1.
Following Ref. [50, chap. 33.9] we expand the Coulomb wave
functions into a series of modified Bessel functions whose
coefficients decrease with inverse powers of η. Thus (η ≡
kc/k and ρ ≡ kR),

F0(η, ρ) = C0(η)

2η

∞∑
n=1

bn(2kcR)
n
2 In(2

√
2kcR),

G0(η, ρ) = 2

β0(η)C0(η)

∞∑
n=1

(−1)nbn(2kcR)
n
2 Kn(2

√
2kcR).

(A7)

Here

b1 = 1,

b2 = 0,

b3 = − 1

4η2
,

b4 = − 1

12η2
, (A8)
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and all other bn are of order O(η−4) or smaller. We have

β0(η) = −1 + O(η−4). (A9)

Similar expressions exist for nonzero orbital angular momen-
tum.

We also need to know similar approximations for the
Coulomb wave functions for purely imaginary momen-
tum k = iγ . In the weak-binding limit γ → 0, the regular
Coulomb wave function becomes [50, Eq. 13.8.12]

Fl

(
kc

iγ
, iγ r

)
≈ (iγ r)l+1Cl (−ikc/γ )

× (2l + 1)!

(2kcr)l+1/2
I2l+1(2

√
2kcr). (A10)

The Coulomb wave functions Gl and H+
l are based on

Tricomi’s function. For γ → 0 we use (see Ref. [83])

lim
a→∞U (a, b, z/a)�(1 + a − b) = 2z

1−b
2 Kb−1(2

√
z). (A11)

We see that Coulomb wave functions are approximated by
modified Bessel functions as the momentum goes to zero. Let
us also consider approximations of the latter. We have

In(z) ≈
( z

2

)n
[

1

n!
+ z2

4(n + 1)!

]
,

Kn(z) ≈ 1

2

(
2

z

)n[
(n − 1)! + (n − 2)!z2

4

]
, (A12)

valid for z � 1, see Ref. [50, chaps. 10.25 and 10.31]. We also
have

In(z) ≈ ez

√
2πz

[
1 − a1(n)

z

]
,

Kn(z) ≈
√

π

2z
e−z

[
1 + a1(n)

z

]
, (A13)

valid for z → ∞, see Ref. [50, chap. 10.40]. Here

a1(n) ≡ 4n2 − 1

8
. (A14)

B. Estimate for the asymptotic normalization coefficient
and internuclear distance

We want to compute an estimate for the ANC. For the δ-
shell potential, the bound-state wave function can be written
as follows:

ul (r) =

⎧⎪⎨
⎪⎩

Cl

W− kc
γ ,l+ 1

2
(2γ R)

Fl

(
kc
iγ ,iγ R

) Fl
( kc

iγ , iγ r
)
, for r < R,

ClW− kc
γ

,l+ 1
2
(2γ r), for r > R.

Here we employed the Whittaker function W (which is pro-
portional to the outgoing Coulomb wave function for bound
states [50]), and Cl is the ANC by definition. We have

Wκ,μ(z) = e− z
2 zμ+ 1

2 U (1/2 + μ − κ, 1 + 2μ, z). (A15)

The ANC is determined by the normalization condition

1 =
∫ ∞

0
dr|ul (r)|2

= C2
l

∫ ∞

R
dr

[
W− kc

γ
,l+ 1

2
(2γ r)

]2

+
∣∣∣∣∣Cl

W− kc
γ

,l+ 1
2
(2γ R)

Fl
( kc

iγ , iγ R
)

∣∣∣∣∣
2 ∫ R

0
dr

∣∣∣∣Fl

(
kc

iγ
, iγ r

)∣∣∣∣
2

. (A16)

To perform the integration, we need to make approximations.
As we are interested in the case of weak binding, i.e., γ → 0,
we use the approximation (A11). Thus,

W− kc
γ

,l+ 1
2
(2γ r) ≈ 2(2kcr)−l− 1

2

�(kc/γ − l )
K2l+1(2

√
2kcr). (A17)

Here we approximated e−γ r ≈ 1. We note that the bound-state
momentum enters as the argument of the � function. To
simplify matters further, we approximate

�(kc/γ − l )

(
kc

γ

)l+1

≈ �(kc/γ + 1), (A18)

which is correct in leading order when γ � kc. Then

W− kc
γ

,l+ 1
2
(2γ r) ≈ 2

√
2kcr

�(1 + kc/γ )
K2l+1(2

√
2kcr). (A19)

In the weak-binding limit γ → 0, we use the approximation
(A10) for the regular Coulomb wave function. The integral
(A16) can now be evaluated exactly (e.g., via MATHEMATICA),
but we did not find the result particularly illuminating. How-
ever, for l = 0 one can then take the limit R → 0 and find

C0 ≈
√

6kc�(1 + kc/γ ). (A20)

This is the result from leading-order Coulomb halo EFT [65].
For further analytical insights we return to Eqs. (A19) and

(A10) and assume kcR � 1. This allows us to use the leading
terms of Eqs. (A7). We change the integration variable to z =√

2kcr and perform the integration (A16). Keeping only the
leading term in kcR � 1 yields

Cl ≈ �(1 + kc/γ )√
πR

e2
√

2kcR. (A21)

Replacing R → D yields the result presented in Table I.
Similar computations allow us also to give an estimate

for the squared internuclear distance (19). Making the same
approximations as in the computation of the ANC we find (for
orbital angular momentum l = 0)

〈r2〉 ≈
{

9
35k−2

c ,
for R → 0,

R2, for kcR � 1.
(A22)

The results are strikingly different from each other because the
wave function is strongly localized and peaked around r = R
in for large Coulomb momenta. We see in particular that
the internuclear distance does not depend on the bound-state
momentum, and this is in stark contrast to the case without
Coulomb, where 〈r2〉 ∝ γ −2. Replacing R → D yields the
expressions presented in Table I.
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C. Estimate for the resonance width

For the δ-shell potential, the resonance width is given in
Eq. (29).

Using the approximation (A7) the inverse width becomes
in leading order of kc/κ � 1

E

�
≈ κR

3C2
0 (η)

√
2kcR(I1K4 − I4K1) − 3(I1K3 + I3K1)

I2
1

.

(A23)

Here we have suppressed the arguments of the modified
Bessel function, i.e., In ≡ In(2

√
2kcR) and Kn ≡ Kn(2

√
2kcR).

We consider two cases. For zero-range interactions, we
take R → 0 and obtain

�

E

∣∣∣∣
R→0

≈ 24π
k2

c

κ2
e−2π kc

κ . (A24)

Here we used the expansions (A12). The physically rele-
vant case kcR � 1 is more interesting. We use the expansions
(A13) and find

�

E

∣∣∣∣
kcR�1

≈ 4
kc

κ2R
e4

√
2kcRe−2π kc

κ . (A25)

Replacing R → D yields the results presented in Sec. II A.

D. Estimates for effective-range parameters

We start from the effective-range parameters given in
Eq. (24). These expressions contain the strength λ0 of the
δ-shell potential. For a resonance with energy E = h̄2κ2/(2m)
this parameter fulfills Eq. (26). We assume κ � kc and use the
approximation (A7), focusing on orbital angular momentum
l = 0. This yields

(λ0R)−1 ≈ −2I1K1 − κ2R

8kc
√

2kcR
, (A26)

and we have omitted higher-order corrections in κ/kc. Here
and in what follows the modified Bessel functions have argu-
ments In ≡ In(2

√
2kcR) and similar for Kn.

We insert the expression (A26) into the Eq. (24) for the
s-wave scattering length and find

a−1
0 = − κ2R

4I2
1

√
2kcR

. (A27)

Again, we consider two approximations. For 2
√

2kcR � 1,
we take the leading approximation of Eqs. (A13) and find

a0 = −(πκ2R)−1e4
√

2kcD . (A28)

For R → 0, we take the approximations (A12) and find a0 =
−6kc/κ

2. Replacing R → D yields the expressions given in
Table I.

We turn to the effective range of Eq. (24) and employ the
leading term (λ0R)−1 ≈ −2I1K1 from Eq. (A26). This yields

r0 = 1

3kc

[
1 + 2(2kcR)3/2I2K1 − kcR

I2
1

]
. (A29)

Again, we consider two approximations. For 2
√

2kcR � 1,
we take the Eqs. (A13) and find [8]

r0 = (3kc)−1 − πR e−4
√

2kcR. (A30)

For R → 0, we employ the approximations (A12) and find
r0 = O(R). Replacing R → D yields the expressions given in
Table I and in Eq. (6).

E. Derivatives of Coulomb wave functions

We limit the discussion to orbital angular momentum l = 0
and positive energies. For k � kc we find (z ≡ 2

√
2kcr) from

Eq. (A7) that

F0(kc/k, kr) ∝ zI1(z),

G0(kc/k, kr) ∝ zK1(z). (A31)

Here we neglected any constants and functions that de-
pend on k and kc, but not on r. We see that only
the combination 2kcr enters, and it is clear that a
derivative with respect to r will yield a factor kc

rather than k. Taking a derivative becomes particu-
larly simple for strong Coulomb interactions as kcr � 1
practically holds for all distances exceeding 1 fm or so. We
use the approximations (A13) and find

F0(kc/k, kr) ∝
√

z

2π
ez,

G0(kc/k, kr) ∝
√

πz

2
e−z. (A32)

Taking the derivative with respect to r and using z � 1 yields

d

dr
F0(kc/k, kr) ≈ +4kcF0(kc/k, kr),

d

dr
G0(kc/k, kr) ≈ −4kcG0(kc/k, kr). (A33)

F. Square well plus Coulomb

The potential is

V (r) =
{

− h̄2q2

2m , r < R
Z1Z2αh̄

r r > R.
(A34)

We limit ourselves to s waves. Solutions with positive energy
E = h̄2k2/(2m) are

u(r) =
⎧⎨
⎩

cos δF0( kc
k ,kR)+sin δG0( kc

k ,kR)
sin pkR sin pkr, r < R

cos δF0
( kc

k , kr
) + sin δG0

( kc
k , kr

)
, r > R.

(A35)

Here pk ≡
√

k2 + q2. The phase shifts fulfill

cot δ = G′
0

( kc
k , kR

)
sin pkR − p

k G0
( kc

k , kR
)

cos pkR

F ′
0

( kc
k , kR

)
sin pkR − pk

k F0
( kc

k , kR
)

cos pkR
. (A36)

Here we used F ′
0 (η, z) ≡ d

dz F0(η, z) and similarly for the
irregular Coulomb wave function. A resonance at energy
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Eκ ≡ h̄2κ2/(2m) fulfills

pκ cot pκR = κ
G′

0

( kc
κ
, κR

)
G0

( kc
κ
, κR

) . (A37)

The resonance width � fulfills

Eκ

�
= G0

4

(
q2

p2
κ

G′
0 + κĠ′

0 − κ
G′

0Ġ0

G0
+ κRG0

sin2 pκR

)
. (A38)

Here we used Ġ0(kc/κ, κR) ≡ d
dκ

G0(kc/κ, κR), and we
dropped the arguments for all Coulomb wave function. For
a given resonance energy and width, one can solve Eqs. (A37)
and (A38) for the parameters (q, R) of the potential. Once
these are known, the phase shifts result from Eq. (A36).
As the square well can hold an arbitrary number of bound
states, the solutions are not unique. However, low-energy data
such as the α-α phase shifts exhibit sensitivity to such details
only at energies above about 1.7 MeV.
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