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We explore the thermodynamic properties of homogeneous cold (zero-temperature) nuclear matter including
nucleons and α-particle condensation at low densities by using a generalized nonlinear relativistic mean-field
(gNL-RMF) model. In the gNL-RMF model, the α particle is included as an explicit degree of freedom and
treated as a pointlike particle with its interaction described by meson exchanges, and the in-medium effects on the
α binding energy are described by density- and temperature-dependent energy shift with the parameters obtained
by fitting the experimental Mott density. We find that below the dropping density ndrop (≈3 × 10−3 fm−3),
the zero-temperature symmetric nuclear matter is in the state of pure Bose-Einstein condensate (BEC) of α

particles while the neutron-rich nuclear matter is composed of α-BEC and neutrons. Above the ndrop, the
fraction of α-BEC decreases with density and vanishes at the transition density nt (≈8 × 10−3 fm−3). Above
the nt , the nuclear matter becomes pure nucleonic matter. Our results indicate that the empirical parabolic
law for the isospin asymmetry dependence of the nuclear matter equation of state is heavily violated by the
α-particle condensation in the zero-temperature dilute nuclear matter, making the conventional definition of
the symmetry energy meaningless. We investigate the symmetry energy defined under parabolic approximation
for the zero-temperature dilute nuclear matter with α-particle condensation and find it is significantly enhanced
compared to the case without clusters and becomes saturated at about 7 MeV at very low densities (�10−3 fm−3).
The critical temperature for α condensation in homogeneous dilute nuclear matter is also discussed.
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I. INTRODUCTION

The investigation of clustering effects in nuclear matter
and finite nuclei is currently a hot topic in nuclear physics.
It is known that the nuclear matter system can minimize its
energy by forming light clusters at very low densities [1–5].
The clustering phenomenon may exist in various nuclear and
astrophysical processes or objects, such as nuclear ground
states and excited states [6–11], heavy-ion collisions [12–17],
core-collapse supernovae [18,19], and the crust of neutron
stars [20–24]. The light clusters such as deuterons (d = 2H),
tritons (t = 3H), helium-3 (h = 3He), and α particles (α =
4He) will become unbound in nuclear matter when the density
is larger than a critical density, i.e., the Mott density. There-
fore, the clustering effects is important for understanding the
properties of nuclear matter, e.g., the nuclear matter equation
of state (EOS), at low densities, especially below the Mott
density. Since the deuterons and α particles are bosons, the
Bose-Einstein condensation of d and α particles may occur in
dilute nuclear matter systems when the temperature is lower
than the corresponding critical temperature, and the resulting
Bose-Einstein condensate (BEC) may play an important role
in understanding the properties of the dilute nuclear matter
system.

*Corresponding author: lwchen@sjtu.edu.cn

There have a large number of works devoted to the ex-
ploration of clustering effects in various nuclear and astro-
physical systems. Of particular interest is the α-clustering
phenomenon, due to the especially stable structure of α

particles. In recent decades, great efforts have been made
to study the properties of self-conjugate 4N nuclei (e.g.,
12C and 16O) in order to understand the condensation of α

particles in finite nuclei [25–31]. The formation of α particles
in the nuclear surface region of heavy nuclei is investigated
by Typel [32,33]. In particular, a Wentzel-Kramers-Brillouin
(WKB) approximation is used to obtain the α-particle wave
function self-consistently with the nucleon distributions in
the finite nuclei at zero temperature. In addition, during the
past decades, the α-clustering effects have also been widely
investigated in nuclear matter and compact stars [34–38]. In
the Lattimer-Swesty EOS constructed by Lattimer and Swesty
[39] and the Shen EOS constructed by Shen et al. [40], the α

particles are included and treated as an ideal Boltzmann gas.
Typel et al. studied the nuclear matter including formation
of light clusters up to the α particle with a generalized
density-dependent relativistic mean-field (gDD-RMF) model
[2]. The EOS of dilute nuclear matter including nucleons and
α particles at finite temperatures is also explored by using the
virial expansion [41], and later on the additional contributions
from d , t , and h as well as heavier nuclei are further included
by using the S-matrix method and the quasiparticle gas model
[42–44]. Ferreira and Provindência [45] explored the effect
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of the cluster-meson coupling constants on the dissolution
density. They used theoretical and experimental constraints
to fix the cluster-meson couplings and obtain the relative
fractions of light clusters at finite temperature. Furthermore,
Pais et al. investigated the effects of the cluster-meson cou-
pling constants on the properties of warm stellar matter [46]
and asymmetric warm nuclear matter [47]. In addition, the
thermodynamic stability, phase coexistence, and phase tran-
sition in dilute nuclear matter including light nuclei were
investigated in Refs. [2,22–24].

Furthermore, Mişicu et al. [48] investigated the behavior
of boson complex scalar fields associated with α particles
and anti-α particles by using the relativistic mean-field (RMF)
method. They considered both compressed standard baryonic
matter with small admixtures of α particles and systems com-
prising α particles that are gradually doped with symmetric
nuclear matter, and calculated the energy of the momentum
k = 0 state, which can be viewed as the BEC of α matter.
Using the momentum-projected Hartree-Fock approximation,
Röpke et al. [49–51] calculated the critical temperature of α

condensation in dilute nuclear matter.
In our previous work [52], a generalized nonlinear rel-

ativistic mean-field (gNL-RMF) model was developed to
describe the low-density nuclear matter including nucleons,
d , t , h, and α particles at finite temperature. It was found
that the clustering effect may significantly influence the EOS
of nuclear matter at low densities (�0.02 fm−3). The tem-
perature considered in Ref. [52] was above 3 MeV, and the
α condensation was ignored there since it cannot occur at
the considered temperature region in the gNL-RMF model.
Given that more stringent constraints on the EOS of zero-
temperature asymmetric nuclear matter, especially the zero-
temperature symmetry energy, at subsaturation densities, have
been obtained from theoretical model analyses on nuclear ex-
perimental data (see, e.g., Ref. [53]), it is thus very interesting
to investigate the α condensation and its influence on the low-
density behaviors of the EOS of zero-temperature asymmetric
nuclear matter and the symmetry energy at zero temperature,
which provides the main motivation of the present work.

In this work, we explore the properties of cold (zero-
temperature) dilute nuclear matter using the gNL-RMF
model. At zero temperature, the dilute nuclear matter is
composed of nucleons and α-BEC. The existence of the α-
BEC is shown to violate the empirical parabolic law for the
isospin asymmetry dependence of nuclear matter EOS and
makes the conventional definition of the symmetry energy
meaningless. The symmetry energy defined under parabolic
approximation displays a significant enhancement compared
to the case without clusters and is found to be saturated at
about 7 MeV at very low densities (�10−3 fm−3).

This paper is organized as follows. In Sec. II, we introduce
the gNL-RMF model for low-density nuclear matter including
nucleons and α particles, and then the theoretical results
and discussions are presented in Sec. III. Finally, we give a
conclusion in Sec. IV.

II. THEORETICAL FRAMEWORK

In the nonlinear RMF (NL-RMF) model [54–61], the
nonlinear couplings of mesons are introduced to reproduce

the ground-state properties of finite nuclei and to modify the
density dependence of the symmetry energy. The gNL-RMF
model [52] is an extension of the NL-RMF model including
additional light nuclei degrees of freedom, i.e., d , t , h, and
α particles. The light nuclei are treated as pointlike particles
and they interact via the exchange of various effective mesons
such as isoscalar scalar (σ ) and vector (ω) mesons and an
isovector vector (ρ) meson. The in-medium effect on the
binding energy of light nuclei is described by density- and
temperature-dependent energy shift, and the parameters of
binding energy shift are determined by fitting the Mott density
extracted from the experimental data [62] (see Ref. [52] for
the details).

As the temperature decreases, the light nuclei except the α

particles make decreasing contributions to the dilute nuclear
matter system. Our calculations indicate that the contributions
of d , t , and h can be neglected at extremely low temperatures,
i.e., below about 1 MeV. The fractions of d , t , and h, which
are defined by Yd = 2nd/ntot , Yt = 3nt/ntot , and Yh = 3nh/ntot ,
respectively, are smaller than about 10−5 at such extremely
low temperatures. Therefore, the light nuclei d , t , and h
are not taken into account in the present gNL-RMF model
calculations for the zero-temperature dilute nuclear matter.
The Lagrangian density of the homogeneous nuclear matter
system including nucleons, α particles, and mesons reads

L =
∑
i=p,n

Li + Lα + Lmeson, (1)

where the nucleons (i = p, n) with spin 1/2 are described by

Li = �̄i[γμiDμ
i − M∗

i ]�i, (2)

while the Lagrangian density of α particles with spin 0 is
given by

Lα = 1
2

(
iDμ

αφα

)∗
(iDμαφα ) − 1

2φ∗
α (M∗

α )2φα. (3)

The covariant derivative is defined by

iDμ
i = i∂μ − gi

ωωμ − gi
ρ

2
−→τ · −→ρ μ, (4)

and the effective mass of nucleon is expressed as

M∗ = m − gσ σ, (5)

where gσ , gω, and gρ are coupling constants of σ , ω, and ρ

mesons with nucleons, respectively; m is nucleon rest mass
in vacuum which is taken to be m = 939 MeV. It should be
noted that here neutrons and protons are assumed to have
the same mass in vacuum, but for astrophysical applications
of nuclear matter EOS, the experimental masses of neutrons
(mn) and protons (mp) should be adopted for accuracy and this
contributes a linear splitting term in the isospin dependence of
nucleon mass. The behavior that α particles dissolve at higher
density can be described by introducing the in-medium effect.
The in-medium binding energy of α-particle Bα is related to
the α-particle effective mass M∗

α via the following relation:

M∗
α = 4m − Bα − gα

σ σ. (6)
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The meson Lagrangian densities are given by Lmeson =
Lσ + Lω + Lρ + Lωρ with

Lσ = 1
2∂μσ∂μσ − 1

2 m2
σ σ 2 − 1

3 g2σ
3 − 1

4 g3σ
4, (7)

Lω = − 1
4WμνW μν + 1

2 m2
ωωμωμ + 1

4 c3(ωμωμ)2, (8)

Lρ = − 1
4

−→
R μν · −→

R μν + 1
2 m2

ρ
−→ρ μ · −→ρ μ, (9)

Lωρ = �v

(
g2

ωωμωμ
)(

g2
ρ
−→ρ μ · −→ρ μ

)
. (10)

where W μν and
−→
R μν are the antisymmetric field tensors

for ωμ and −→ρ μ, respectively. In the RMF approach, meson
fields are treated as classical fields and the field operators
are replaced by their expectation values. For homogeneous
matter, the nonvanishing expectation values of meson fields
are σ = 〈σ 〉, ω = 〈ω0〉, and ρ = 〈ρ3

0〉. Noting that the cluster
binding energy is density dependent, one can express the
equations of motion for the meson fields as

m2
σ σ + g2σ

2 + g3σ
3 =

∑
i=p,n,α

gi
σ ns

i , (11)

m2
ωω + c3ω

3 + 2�vg2
ωg2

ρωρ2 =
∑

i=p,n,α

gi
ωni

− m2
ω

2gω

(
∂Bα

∂nps
p

+ ∂Bα

∂nps
n

)
ns

α,

(12)

m2
ρρ + 2�vg2

ωg2
ρω

2ρ =
∑
i=p,n

gi
ρI i

3ni

− m2
ρ

gρ

(
∂Bα

∂nps
p

− ∂Bα

∂nps
n

)
ns

α,

(13)

where ns
i is the scalar density, ni is the vector density, Bα

represents the binding energy shift of the α particle, isospin
I i
3 is equal to 1/2 for i = p and −1/2 for i = n, and following

Refs. [2,3,52], the meson-α couplings are assumed to have the
following forms:

gα
σ = 4gσ , gα

ω = 4gω. (14)

We note that some other forms for meson-α couplings are
proposed in the literature [24,45–47].

The in-medium cluster binding energy Bα = B0
α + Bα is

dependent on temperature T , total proton number density ntot
p ,

and total neutron number density ntot
n of the nuclear matter

system, where B0
α is the binding energy for α particles in

vacuum and its value is B0
α = 28.29566 MeV [63]. The total

energy shift of a cluster in nuclear medium mainly includes
the self-energy shift, the Coulomb shift, and the Pauli shift.
The gNL-RMF model has already contained the self-energy
shift. The Coulomb shift can be obtained from the Wigner-
Seitz approximation, and it is very small for the α particle
considered here and thus is neglected in the present work.
The Pauli shift can be evaluated in the perturbation theory
with Gaussian approaches for α particles [2]. The energy shift
Bα is thus from the Pauli shift and it is assumed to have the

following empirical quadratic form [2], i.e.,

Bα

(
ntot

p , ntot
n , T

) = −ñα

[
1 + ñα

2ñ0
α

]
δBα (T ), (15)

where ñα stands for

ñα = ntot
p + ntot

n , (16)

and the density scale for α particles is given by

ñ0
α (T ) = B0

α

δBα (T )
. (17)

The temperature dependence comes from δBα (T ), which is
defined by [2]

δBα (T ) = aα,1

(T + aα,2)3/2
. (18)

At a certain temperature, the Mott density of the α particles is
obtained when the α-particle binding energy vanishes. In our
previous work [52], the values of aα,1 = 137 330 MeV5/2 fm3

and aα,2 = 10.6701 MeV are obtained by fitting the experi-
mental Mott density [62], and we also use these values in the
present work.

In the above derivations, to avoid complications due to the
total baryon density dependence of the cluster binding ener-
gies in the present theoretical framework, following the work
of Typel et al. [2], the dependence on the total baryon density
in Eq. (15) is replaced by a dependence on the pseudodensities
which are defined by

nps
n = 1

2 [ρω − ρρ], nps
p = 1

2 [ρω + ρρ], (19)

with

ρω = m2
ω

gω

√
ωμωμ, ρρ = 2m2

ρ

gρ

√−→ρ μ−→ρ μ. (20)

The clusters are treated as pointlike particles, and the
vector and scalar densities of the fermions (i = p, n) are given,
respectively, by

ni = 2
∫

d3k

(2π )3
[ f +

i (k) − f −
i (k)], (21)

ns
i = 2

∫
d3k

(2π )3

M∗
i√

k2 + M∗2
i

[ f +
i (k) + f −

i (k)], (22)

with the occupation probability given by the Fermi-Dirac
distribution, i.e.,

f ±
i = 1

1 + exp
[(√

k2 + M∗2
i ∓ νi

)
/T

] . (23)

The densities of the α particles are obtained from

nα =
∫

d3k

(2π )3 [b+
α (k) − b−

α (k)] + nBEC, (24)

ns
α =

∫
d3k

(2π )3

M∗
α√

k2 + M∗2
α

[b+
α (k) + b−

α (k)] + ns
BEC, (25)

where nBEC and ns
BEC are the vector and scalar density of the

α particles in the BEC state, respectively. It should be noted
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that in homogeneous and isotropic matter nBEC and ns
BEC are

actually identical. The Bose-Einstein distribution gives the
occupation probability in the following form:

b±
α = 1

−1 + exp
[(√

k2 + M∗2
α ∓ να

)
/T

] . (26)

For a system including nucleons and α particles in chemical
equilibrium, as we are considering in the present work, νi

and να are the effective chemical potentials which are defined
as νi = μi − gi

ωω − gi
ρI i

3ρ for nucleons and να = μα − 4gωω

for α particles, respectively. The chemical potential of the α

particle is determined by

μα = 2μn + 2μp. (27)

The thermodynamic quantities of homogeneous matter are
easily derived from the energy-momentum tensor. The energy
density is given by

ε =
∑
i=p,n

2
∫

d3k

(2π )3

√
k2 + M∗2

i ( f +
i + f −

i )

+
∫

d3k

(2π )3

√
k2 + M∗2

α (b+
α + b−

α ) + nBECM∗
α

+1

2
m2

σ σ 2 + 1

3
g2σ

3 + 1

4
g3σ

4 − 1

2
m2

ωω2 − 1

4
c3ω

4

−1

2
m2

ρρ
2 +

∑
i=p,n

(
gi

ωωni + gi
ρρI i

3ni
) + 4gωωnα

−�vg2
ωg2

ρω
2ρ2, (28)

and the pressure is obtained as

p = 1

3

∑
i=p,n

2
∫

d3k

(2π )3

k2√
k2 + M∗2

i

( f +
i + f −

i )

+ 1

3

∫
d3k

(2π )3

k2√
k2 + M∗2

α

(b+
α + b−

α )

− 1

2
m2

σ σ 2 − 1

3
g2σ

3 − 1

4
g3σ

4 + 1

2
m2

ωω2 + 1

4
c3ω

4

+ 1

2
m2

ρρ
2 + �vg2

ωg2
ρω

2ρ2. (29)

It should be noted that the condensed bosons do not contribute
to the pressure but to the energy density. The entropy density
is expressed as

s = −
∑
i=p,n

2
∫

d3k

(2π )3
[ f +

i ln f +
i

+ (1 − f +
i ) ln(1 − f +

i ) + f −
i ln f −

i

+ (1 − f −
i ) ln(1 − f −

i )] −
∫

d3k

(2π )3

× [b+
α ln b+

α − (1 + b+
α ) ln(1 + b+

α )

+ b−
α ln b−

α − (1 + b−
α ) ln(1 + b−

α )]. (30)

These thermodynamic quantities satisfy the Hugenholtz–van
Hove theorem, i.e.,

ε = T s − p +
∑

i=p,n,α

μini. (31)

It is convenient to define the internal energy per baryon as

Eint = ε/nB − m, (32)

and the free energy per baryon is given by

F = Eint − T
s

nB
. (33)

The α condensation cannot occur above the critical tem-
perature. For a system with fixed temperature, density, and
isospin asymmetry, the thermodynamically favored state can
be obtained by minimizing the free energy per baryon with
respect to five independent variables, i.e., σ , ω, ρ, μp, and
μn. Below the critical temperature, the α condensation occurs,
and the effective chemical potential of the α particle equals
the effective mass of the α particle, leading to consequence
that the μp and μn are not independent at a fixed density
of nBEC for the α-BEC. In this case, we can use nBEC to
replace one of the two variables μp and μn to minimize the
free energy per baryon. For a uniform three-dimensional Bose
gas consisting of noninteracting particles with no apparent
internal degrees of freedom, the critical temperature for Bose-
Einstein condensation can be expressed analytically as [64]

T Ideal
c =

(
nnum

ζ (3/2)

)2/3 2π h̄2

mBosonkB
, (34)

where nnum is the number density, mBoson is the boson rest
mass, kB is the Boltzmann constant, and ζ is the Riemann
ζ function. It would be interesting to compare the T Ideal

c
to the corresponding critical temperature obtained from the
gNL-RMF model.

III. RESULTS AND DISCUSSION

In our previous work [52], it is found that the clustering
effects are essentially independent of the interactions among
nucleons and light nuclei in low-density nuclear matter. In the
present work, therefore, we choose only one parameter set
of the NL-RMF model, namely, FSUGold [60], for the ten
parameters mσ , mω, mρ , gσ , gω, gρ , g2, g3, c3, and �v .

First, we investigate the composition of dilute nuclear
matter including α particles at zero temperature by using the
gNL-RMF model. At zero temperature, all of the α particles
occupy the lowest energy state and form α-BEC. In addition,
the α particle has largest binding energy among the considered
light nuclei with A � 4. Moreover, in the gNL-RMF model,
for the Mott density of the light nuclei d , t , h, and α in
nuclear matter at zero temperature, the α particle has the
largest value. Therefore, only nucleons and α-BEC are present
in the zero-temperature dilute nuclear matter in the gNL-RMF
model calculations. Figure 1 shows the fraction for nucleons
and α particles in the α-BEC as a function of the total baryon
density in a dilute nuclear matter system at zero tempera-
ture with isospin asymmetry δ = 0, δ = 0.3, and δ = 0.6,
respectively. In zero-temperature dilute nuclear matter, the
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FIG. 1. The fraction for nucleons and α particles as a function
of the total baryon density nB in zero-temperature dilute nuclear
matter with α condensation considered from the gNL-RMF model
with FSUGold interaction for δ = 0 (a), δ = 0.3 (b), and δ = 0.6 (c).
The corresponding Mott density is also indicated.

fractions of neutrons, protons, and α particles in the α-BEC
are simply determined by the ntot

p and ntot
n (nB = ntot

p + ntot
n )

as well as the in-medium α-particle binding energy, and all
protons are bound in the α-BEC when the baryon density is
below a critical density (denoted as dropping density ndrop

above which the α-particle density starts to drop with density)
whose value depends on the isospin asymmetry and is slightly
larger than the corresponding Mott density (≈3 × 10−3 fm−3)
at which the α particles’ binding energy vanishes. For the
neutron-rich nuclear matter system, therefore, the system only
contains neutrons and α-BEC when the baryon density is
below the dropping density ndrop (i.e., ≈4 × 10−3 fm−3 for
δ = 0.3 and ≈5 × 10−3 fm−3 for δ = 0.6), as observed in
Figs. 1(b) and 1(c). It is interesting to see from Fig. 1(a) that
the zero-temperature dilute symmetric nuclear matter (δ = 0)
becomes pure α matter in the α-BEC state when the baryon
density is below the corresponding dropping density ndrop

(which is very close to the Mott density for δ = 0).
When the baryon density is larger than the Mott density

of the α particle, the binding energy of α particles becomes
negative and so the α particles are no longer in bound states,
and in this case the α particles may be considered as effec-
tive resonance and continuum states. As the density further
increases, the effective resonance and continuum states of α

particles are expected to be continuously suppressed due to the
negative binding energy (and the fraction of nucleons gradu-
ally increases to conserve the baryon number and isospin of
the system) and eventually disappear at a transition density
nt above which the nuclear matter becomes pure nucleonic
matter. Indeed, as expected, one sees from Fig. 1 that the
fraction of α-BEC begins to decrease above the dropping den-
sity ndrop and then drops to zero at a critical density (i.e., the
transition density nt ) around ≈8 × 10−3 fm−3, above which
the system becomes pure nucleonic matter. The dropping
density ndrop is slightly larger than the corresponding Mott
density and this may be due to the interactions between the α

particles and nucleons. (Note that the neutron density at ndrop

is proportional to the isospin asymmetry.)
Shown in Fig. 2 is the internal energy per baryon as a

function of the total baryon density in zero-temperature dilute
nuclear matter with and without considering α condensation

FIG. 2. The internal energy per baryon Eint (nB, δ, T ) as a func-
tion of the total baryon density nB in zero-temperature dilute nuclear
matter with (thick curves) and without (thin curves) considering α

condensation from the gNL-RMF model with FSUGold interaction
for δ = 0, 0.3, and 0.6. The corresponding Mott density and transi-
tion density are also indicated (thin vertical lines).

for isospin asymmetry δ = 0, 0.3, and 0.6. For both cases
with and without considering α condensation, the internal
energy per baryon at a fixed baryon density increases with
the isospin asymmetry, and the increasing effect is much
more pronounced in the case with α condensation considered
than that without considering α condensation, especially at
lower densities. Generally, the symmetric nuclear matter has
the minimum internal energy per baryon. For a fixed isospin
asymmetry, it is seen that the internal energy per baryon
with and without considering α condensation is getting close
to each other with increasing density and becomes identical
above the transition density nt , indicating the α clustering
effects become weaker with increasing density. This feature is
due to the fact that above the dropping density ndrop, the frac-
tion of the α-BEC decreases with density and the α particles
disappear above the transition density nt , as shown in Fig. 1.
Compared to the case without considering α condensation,
the internal energy per baryon in the case with α conden-
sation considered is drastically reduced by the formation of
α particles.

For zero-temperature dilute symmetric nuclear matter with
α condensation considered, the matter actually becomes pure-
α matter as shown in Fig. 1(a). For pure-α matter, the interac-
tion between α particles is ignorable when the density tends to
zero and the internal energy per baryon is completely from the
α-BEC. As a result, the internal energy per baryon of dilute
symmetric nuclear matter at zero temperature approaches to
the negative binding energy per baryon of the α particle in
vacuum (i.e., −B0

α ≈ −7.1 MeV) when the density tends to
zero, which is indeed clearly seen in Fig. 2.

The clustering effects may break the empirical parabolic
law for the isospin asymmetry dependence of nuclear matter
EOS, especially at low temperatures [2–4,52]. It is thus in-
teresting to check the empirical parabolic law for the dilute
nuclear matter at zero temperature. To this end, we show in
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FIG. 3. The internal energy per baryon Eint (nB, δ, T ) vs squared
isospin asymmetry δ2 in zero-temperature dilute nuclear matter with
α condensation considered at nB = 0.002 fm−3 from the gNL-RMF
model with FSUGold interaction.

Fig. 3 the internal energy per baryon Eint (nB, δ, T = 0) as a
function of the squared isospin asymmetry δ2 in dilute nuclear
matter at a representative density of nB = 0.002 fm−3, which
is below the Mott density of α particle in symmetric and
asymmetric nuclear matter. (Note that the Mott density of
the α particle in nuclear matter generally increases with the
isospin asymmetry, as shown in Figs. 1 and 2.) As expected,
the Eint (nB, δ, T = 0) reaches its minimum value at δ = 0.
However, the curve significantly deviates from the linear
relation Eint ∼ δ2 around δ = 0, indicating the violation of
the empirical parabolic law. This can be understood from the
fact that the formation of α-BEC significantly reduces the
Eint (nB, δ, T = 0) as seen in Fig. 2, and the system consists
of only α-BEC and neutrons with their fractions linearly
depending on the isospin asymmetry, as observed from Fig. 1
[see also Eqs. (38) and (39) in the following].

We now discuss the symmetry energy of dilute nu-
clear matter. Conventionally, the internal energy per
baryon Eint (nB, δ, T ) of isospin asymmetric nuclear mat-
ter can be expanded in powers of isospin asymmetry δ =
(ntot

n − ntot
p )/(ntot

n + ntot
p ) as

Eint (nB, δ, T ) = Eint (nB, 0, T ) + Esym(nB, T )δ2 + · · · , (35)

where the density- and temperature-dependent symmetry (in-
ternal) energy Esym is defined by

Esym(nB, T ) = 1

2!

∂2Eint (nB, δ, T )

∂δ2

∣∣∣∣
δ=0

. (36)

On the other hand, under the parabolic approximation in
which the higher order expansion coefficients (i.e., the high-
order symmetry energies) on the right-hand side of Eq. (35)
are assumed to be small and can be neglected, the symmetry
energy can be obtained as

Epara
sym (nB, T ) = Eint (nB, δ = 1, T ) − Eint (nB, 0, T ). (37)

Within essentially all many-body theories to date, the
parabolic approximation has been shown to be very success-

FIG. 4. The symmetry energy as a function of the total baryon
density nB in zero-temperature dilute nuclear matter with and with-
out considering α condensation from the (g)NL-RMF model with
FSUGold interaction. Some experimental constraints on the sym-
metry energy at zero-temperature are also included for comparison.
The constraints on E para

sym (nB, T ) in the temperature range of T 	
3–11 MeV extracted from heavy-ion collisions (Wada and Kowalski)
[66] are included only for exploratory comparison. See the text for
details.

ful for nucleonic matter which only contains protons and
neutrons, at least for densities up to moderate values (see,
e.g., Ref. [65]). Therefore, usually we have Epara

sym (nB, T ) ≈
Esym(nB, T ) for nucleonic matter. For dilute nuclear matter in-
cluding light nuclei, especially at low densities (�0.02 fm−3)
and low temperatures (�3 MeV), as shown in Refs. [2,3,52])
as well as observed from the results presented above in
this work, the higher order expansion coefficients on the
right-hand side of Eq. (35) could be very large and thus
the expansion of Eq. (35) may not be convergent, lead-
ing to not very meaningful symmetry energy with the con-
ventional definition Eq. (36). Therefore, one usually uses
the Epara

sym (nB, T ) to define the symmetry energy for di-
lute nuclear matter including light nuclei and to compare
with the experimental data (see, e.g., Refs. [2–4,52,66]).
It should be noted that the Epara

sym (nB, T ) is identical to the
symmetry energy defined through the finite-difference for-
mula Esym(nB, T ) = 1

2 [Eint (nB, δ = 1, T ) − 2Eint (nB, 0, T ) +
Eint (nB, δ = −1, T )] [2–4,66] if the mass difference between
proton and neutron (as well as between h and t) is omitted.
Similarly, one can define the symmetry free energy and the
symmetry entropy in the same manner (see, e.g., Ref. [52]).

Figure 4 displays the symmetry energy Epara
sym (nB, T = 0)

as a function of the total baryon density nB in nuclear matter
with and without considering α condensation from the (g)NL-
RMF model with FSUGold interaction. For comparison, we
also include some experimental constraints on the symmetry
energy Esym(nB, T = 0), i.e., the constraints from transport
model analyses of midperipheral heavy-ion collisions of Sn
isotopes (HIC) [67], the constraints from the SHF analyses
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of isobaric analog states (IAS) as well as combing addition-
ally the neutron skin “data” (IAS+NSkin) in Ref. [68], the
constraints from analyzing the data on the electric dipole
polarizability in 208Pb (αD in 208Pb) [53], the constraints on
the value of Esym around 2/3n0 (n0 ≈ 0.16 fm−3 is nuclear
saturation density) from binding energy difference between
heavy isotope pairs [69] and properties of doubly magic nuclei
[70], and the constraints on Epara

sym (nB, T ) at densities below
0.2n0 and temperatures in the range 3–11 MeV from the
analysis of cluster formation in heavy-ion collisions [66].

It is seen from Fig. 4 that compared to the results of pure
nucleonic matter obtained from the NL-RMF calculations
with FSUGold, the symmetry energy is drastically enhanced
by including the α condensation in the gNL-RMF calcula-
tions. (Note that for nucleonic matter without light nuclei,
one has Epara

sym (nB, T ) ≈ Esym(nB, T ) in the NL-RMF calcu-
lations with FSUGold.) Very interestingly, one sees that the
Epara

sym (nB, T = 0) in dilute nuclear matter with α condensation
considered is saturated at about 7 MeV when the baryon
density is very small (less than about nB = 10−3 fm−3). It is
constructive to examine such a saturation behavior in the low-
density limit where analytic expressions might be obtained.
According to Fig. 1, only α-BEC and neutrons can exist below
the dropping density ndrop for the neutron-rich dilute nuclear
matter, and the α-particle number density nBEC in the BEC
state and neutron number density nn can be expressed as

nBEC = nB(1 − δ)/4, (38)

nn = nBδ. (39)

At zero temperature, the total energy density is given by

ε = nBECM∗
α + Cn5/3

n + nnm, (40)

with C = 3
5

h̄2

2m (3π2)2/3 = 119.1 MeV fm2. At very low densi-
ties so that one has M∗

α = 4m − Bα − 4gσ σ ≈ Mα , the total
energy per baryon can be expressed as

E = 1

4
Mα +

(
m − Mα

4

)
δ + Cn2/3

B δ5/3. (41)

The second-order derivative of E with respect to δ is then
obtained as

∂2E

∂δ2
= 10

9
Cn2/3

B δ−1/3. (42)

Therefore, in the zero-temperature case for the dilute nuclear
matter containing α-BEC and neutrons, the conventional def-
inition of the symmetry energy Esym [i.e., Eq. (36)] is diver-
gent, and so one usually uses the symmetry energy definition
Epara

sym in the parabolic approximation [i.e., Eq. (37)]. From
Eq. (41), one can obtain

Epara
sym (nB, T = 0) =

(
m − Mα

4

)
+ Cn2/3

B . (43)

In the zero-density limit, one has

Epara
sym (nB → 0, T = 0) =

(
m − Mα

4

)

= B0
α/4 ≈ 7.1 MeV, (44)

and this is exactly what one has observed in Fig. 4. Above
about nB = 10−3 fm−3, the Epara

sym (nB, T = 0) in dilute nu-
clear matter with α-condensation considered decreases with
density, and then increases after reaching a minimum value
at a density of about nB = 6 × 10−3 fm−3, and eventually
approaches to the Epara

sym (nB, T = 0) for nucleonic matter above
the transition density (≈8 × 10−3 fm−3).

It is nice to see from Fig. 4 that our present results
on the Esym(nB, T = 0) of nuclear matter from the gNL-
RMF model with FSUGold are in good agreement with
the constraints included in the figure for baryon density
above nB = 0.02 fm−3. Unfortunately, to the best of our
knowledge, there currently have no experimental constraints
on the Epara

sym (nB, T = 0) of dilute nuclear matter for baryon
density below nB = 0.02 fm−3. Our present results provide
the predictions of the α-condensation effects on the sym-
metry energy in dilute nuclear matter at zero temperature
and indicate that the Epara

sym (nB, T = 0) of nuclear matter is
significantly enhanced due to the α condensation. We would
like to point out that the constraints on Epara

sym (nB, T ) in the
density region of nB 	 0.003–0.03 fm−3 and the temperature
range of T 	 3–11 MeV extracted from heavy-ion collisions
[66] are included in Fig. 4 only for exploratory comparison.
For nB 	 0.003–0.03 fm−3 and T 	 3–11 MeV, there are no
BEC in the nuclear matter and the clustering effects due to
the formation of d , t , h, and α significantly enhance the
Epara

sym (nB, T ), leading to a reasonable agreement between the
experimental data and the gNL-RMF model predictions as
shown in Ref. [52]. In addition, one also sees a rather good
agreement between the measured and calculated results in the
quantum statistical (QS) approach that takes the formation
of clusters into account (see, e.g., Refs. [4,66]). Therefore,
any experimental or model-independent information on the
symmetry energy of dilute nuclear matter at zero temperature
for baryon density below nB = 0.02 fm−3 is critically useful
to confirm or disconfirm our present results based on the
gNL-RMF model predictions.

Finally, we evaluate the critical temperature for α con-
densation in homogeneous dilute nuclear matter within the
gNL-RMF model with the FSUGold interaction. The obtained
results of the critical temperature Tc versus the total baryon
density nB in homogeneous dilute nuclear matter for δ =
0, 0.3, and 0.6 are shown in Fig. 5. For comparison, we also
include the critical temperature as a function of the total
baryon density obtained from the analytical expression T Ideal

c
[i.e., Eq. (34)] for free α gas. It is seen that the critical
temperature in the homogeneous dilute symmetric nuclear
matter (δ = 0) within the gNL-RMF model is almost identical
to that in the free α gas when the baryon density is less than
the corresponding α-Mott density (indicated by dotted lines
in Fig. 5). This is because that in the gNL-RMF model for
δ = 0, the homogeneous dilute nuclear matter becomes pure
α matter and the interactions between α particles are very
weak at such low densities. In addition, the variation of the
α-particle mass due to the binding energy shift in the ho-
mogeneous dilute nuclear matter is also very small compared
with the rest mass of α particles in vacuum. When the baryon
density is larger than the corresponding α-Mott density in the
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FIG. 5. The critical temperature Tc for α condensation as a
function of the total baryon density nB in dilute nuclear matter
obtained from the gNL-RMF model with FSUGold interaction for
δ = 0, 0.3, and 0.6. The corresponding Mott density is also indicated.
For comparison, the critical temperature T Ideal

c for free α gas is also
included.

homogeneous dilute symmetric nuclear matter, the fraction of
α particles decreases with density, leading to the correspond-
ing decreasing of the α-particle density and thus the critical
temperature, and eventually the critical temperature vanishes
at the transition density (≈8 × 10−3 fm−3), as observed in
Fig. 5.

Furthermore, one sees from Fig. 5 that the critical tem-
perature depends on the isospin asymmetry of the nuclear
matter system, and it decreases with the isospin asymme-
try. This can be understood since for a fixed baryon den-
sity, the number density of α particles decreases with the
isospin asymmetry [see, e.g., Eq. (38)] and thus the criti-
cal temperature also decreases with the isospin asymmetry
due to the accordingly decreasing α-particle number den-
sity, as shown in Eq. (34). In addition, for isospin asymme-
try δ = 0.3 and 0.6, the corresponding critical temperature
exhibits similar density dependence as in the case of δ =
0; namely, it increases with density, reaches a maximum
value at a certain density, then decreases and vanishes at
the transition density (≈8 × 10−3 fm−3). It should be noted
that the baryon density at the maximum critical tempera-
ture is slightly larger than the corresponding α-Mott den-
sity, and this may arise from the interactions between the
α particles and nucleons, as also observed in Fig. 1 for
the fraction of α-BEC in zero-temperature dilute nuclear
matter.

Our results on the critical temperature for α condensation
in homogeneous dilute symmetric nuclear matter below the
α-Mott density within the gNL-RMF model are consistent
with the results from the quasiparticle gas model obtained in
Refs. [43,44] where the isospin dependence and the effects
of resonance and continuum states above the Mott density
are not considered. Generally speaking [64], the mean-field
potentials in the gNL-RMF model can globally influence the

thermodynamic properties of the α matter but hardly affect the
critical temperature for α condensation in homogeneous dilute
nuclear matter. We would like to mention that, in the present
calculations, the heavier nuclei are not considered, and only α

particles and nucleons are taken into account. Including heav-
ier nuclei, e.g., 56Fe, may significantly influence the α conden-
sation and the critical temperature, as shown in Ref. [44]. On
the other hand, as pointed out in Ref. [44], in some situations
(e.g., in heavy-ion collisions or at some stages of supernova
explosions), the timescales of formation of heavier nuclei such
as 56Fe may be too long so that the light nuclei (A � 4) could
be still the predominant component in the matter. In these situ-
ations, the α-BEC is expected to indeed occur in the clustered
matter. In addition, it should be mentioned that the pairing
effect, which is not considered in the present work, may be-
come important for the Bose condensation at higher densities
(�3 × 10−2 fm−3) [49].

IV. CONCLUSION

We have investigated the thermodynamic properties of ho-
mogeneous dilute nuclear matter at zero temperature by using
a generalized nonlinear relativistic mean-field (gNL-RMF)
model. In the gNL-RMF model, the light nuclei d , t , h, and
α are included as explicit degrees of freedom and treated as
pointlike particles with their interactions described by meson
exchanges and the in-medium effects on their binding energy
are described by density- and temperature-dependent energy
shifts with the parameters obtained by fitting the experimental
Mott densities of the light nuclei extracted from heavy-ion
collisions at Fermi energies.

Our results have shown that in homogeneous zero-
temperature dilute nuclear matter, the binding energy of α

particles is always larger than that of d , t , and h. As a
result, the d , t , and h are not present in the system, and
the homogeneous zero-temperature dilute nuclear matter is
composed of nucleons and α particles. In particular, when
the baryon density nB is less than the dropping density (≈3 ×
10−3 fm−3), the zero-temperature symmetric nuclear matter is
found to be in the state of pure α-BEC and the neutron-rich
nuclear matter is composed of α-BEC and neutrons. Above
the Mott density, the binding energy of α particles becomes
negative and the resonance and continuum states may appear,
which makes the fraction of the α particle begin to drop at the
dropping density ndrop and eventually vanish at the transition
density nt .

In addition, we have explored the α-condensation effects
on the symmetry energy of homogeneous dilute nuclear mat-
ter at zero temperature. We have shown that at zero tem-
perature, the existence of the α-BEC in the homogeneous
dilute nuclear matter violates the empirical parabolic law
for the isospin asymmetry dependence of the nuclear matter
equation of state and makes the conventional definition of the
symmetry energy meaningless. Within the gNL-RMF model,
the symmetry energy of the zero-temperature dilute nuclear
matter defined under parabolic approximation is found to be
drastically enhanced compared to the case without consider-
ing α-BEC, and it becomes saturated at about 7 MeV at very
low densities (�10−3 fm−3).
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Finally, we have evaluated the critical temperature for
α condensation in the homogeneous dilute nuclear matter.
Our results indicate that the critical temperature increases
with the baryon density up to the dropping density ndrop,
then decreases, and eventually vanishes at the transition
density nt . In general, our results within the gNL-RMF
model gives almost an identical critical temperature as that
in the free α gas, indicating the α-particle interactions are
not important in the homogeneous dilute nuclear matter,
which is consistent with the result of the quasiparticle gas
model.
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