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Pairing effect on Kπ = 0+ quadrupole excitations in neutron-rich Mg isotopes studied by Skyrme
quasiparticle random-phase approximation calculations in wave-number space
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A method of the quasiparticle random-phase approximation (QRPA) calculation using the Skyrme energy
density functional (EDF) in three-dimensional wave-number space is presented. This method allows one to
perform the QRPA calculation for weakly bound nuclei in much smaller mesh space than that in three-
dimensional Cartesian mesh. With this code, I discuss Kπ = 0+ isoscalar quadruple excitations in neutron-rich
Mg isotopes. The large low-lying transition strengths are induced by the strong pairing fluctuation due to
the coherent contribution of nonresonant continuum states around the neutron drip line. This could be an
experimental probe of novel pairing correlations such as dineutron correlation.
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I. INTRODUCTION

The pairing correlation plays an important role in deter-
mining the static and dynamical properties of superfluid nuclei
[1,2]. The spatial two-neutron correlation between two weakly
bound neutrons, called dineutron correlation, is of special in-
terest, and it has been discussed extensively in the light-mass
region, e.g., for 11Li [3–10]. It is argued that the dineutron
correlation affects the nature of soft dipole excitation [3–5],
and the experimental signatures have been reported [6].

Dineutron correlation is considered to be a universal phe-
nomenon around the neutron drip line. Although the ex-
perimental evidence is still under intense debate, it is also
suggested in medium- and heavy-mass regions [11–14]. The
authors of Ref. [11] emphasized that the pair excitation into
continuum states plays a key role in creating the strong spatial
correlation, that is also predicted to influence low-lying dipole
and octupole excitations in medium-heavy–mass spherical
nuclei [11,15].

The two-neutron transfer reaction, that can induce pairing
vibration [2], is the more direct probe of pairing correla-
tion. Recently, two-neutron transfer experiments have been
conducted in light-mass neutron halo nuclei [16–18]. The-
oretical studies for neutron-rich nuclei also have been per-
formed [19–27]. The authors of Refs. [22,27] emphasized
that the monopole and quadruple pairing vibrational modes
in Sn isotopes are characterized by coherent contributions of
nonresonant continuum states, which suggest transfer of a
spatially correlated neutron pair.

The pairing vibration might have strong influence on
the Kπ = 0+ isoscalar quadrupole excitation in nuclei with
quadruple deformation. The fluctuation of occupation number
in Nilsson orbits with different spatial shapes induces the
vibration of nucleon density [28]. In our previous studies
[29,30], the Kπ = 0+ excitations were investigated by the
quasiparticle random-phase approximation (QRPA) calcula-
tion with Woods-Saxon potential in Mg isotopes. However,

the role of pair excitation into continuum states was not
clear.

In the present study, I demonstrate that the large low-lying
transition strengths of the Kπ = 0+ excitation are induced
by the pairing correlation created by coherent contribution of
nonresonant continuum states. I perform the QRPA with the
Skyrme energy density functional (Skyrme QRPA) for reliable
discussion.

The Cartesian (r-space) mesh is often used for descriptions
of deformations and weakly binding and continuum effects
in unstable nuclei [31]. The Skyrme QRPA calculation in
axially symmetric r-space mesh was done in Refs. [32–35].
By solving the QRPA problem iteratively (the finite amplitude
method) [36], the authors of Ref. [37] performed the Skyrme
QRPA calculation in the three-dimensional r-space mesh. Re-
cently, the pygmy dipole modes in 40Mg were investigated by
performing the Skyrme QRPA in axially symmetric r-space
mesh [38]. The large box size 27.6 fm is used for description
of the particle-hole (ph) excitations from weakly bound to
continuum states.

I perform the QRPA calculation in three-dimensional
wave-number space (k-space) mesh. The wave functions with
spatially extended structure can be best studied in k-space,
where the wide spatial distributions in r-space translates into
a narrow distribution in k-space [39]. Moreover multipole
operators with the radial dependence rL (r2 for L = 0) are
decreasing functions of |k| in k-space. Eventually, the dom-
inant contribution to the ph-type matrix element comes from
the low-|k| region. This advantage allows us to perform the
Skyrme QRPA calculation in much smaller mesh space than
that in r-space mesh.

This paper is organized as follows. In Sec. II, I explain the
Hartree-Fock-Bogoliubov (HFB) method in k-space mesh. In
Sec. III, I show the features of QRPA in k-space mesh. In
Sec. IV, I discuss the ground state properties of neutron-rich
Mg isotopes. The continuum effect for pairing correlation
is a focus. In Sec. V, I clarify the influence of the pairing
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correlation on the low-lying transition strengths of the Kπ =
0+ isoscalar quadrupole excitations in Mg isotopes. The con-
clusion is drawn in Sec. VI. The convergence of the QRPA
calculation is checked in the Appendix.

II. HFB IN WAVE NUMBER SPACE

A. Symmetries

I solve the QRPA equation in the matrix form using the
canonical single-particle state [1,40]. First, the HFB equation(

h′ − λ �

−�∗ −h′ + λ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
(1)

is solved in the Hartree-Fock (HF) basis ϕl satisfying h′ϕl =
εlϕl (the two-basis method [41]). Here, the λ is a chemical
potential, and the index l runs over integers which distinguish
the single-particle states. I consider pairing correlation be-
tween like particles, and the index for distinguishing proton
and neutron is omitted if it is obvious.

The single-particle Hamiltonian h′ = h − ωrot jx describes
the independent-particle motion in a uniformly rotating tri-
axially deformed potential. The Skyrme energy density func-
tional (EDF) is used for h, and the jx is the single-particle
angular momentum operator. The rotational frequency is set
to ωrot = 0 in this study, although the time-reversal symmetry
is not imposed on ϕl for future studies.

Two discrete symmetries, the parity P and the rotation
about the x axis by the angle of π , Rx = eiπ jx/h̄, are imposed
on the single-particle wave functions

ϕ
(℘l ,αl )
l (r) =

(



(℘l ,αl )
l (r,+1)



(℘l ,αl )
l (r,−1)

)
. (2)

The 

(℘l ,αl )
l (r, σ ) denotes the component of the single-particle

wave function with spin 1
2σ (σ = ±1) along the z direc-

tion. The ℘k (= ±1) and αk (= ±i) are called parity and
x signature, and they satisfy Pϕ

(℘l ,αl )
l (r) = ℘lϕ

(℘l ,αl )
l (r) and

Rxϕ
(℘l ,αl )
l (r) = αlϕ

(℘l ,αl )
l (r) [31,42]. The indexes ℘l and αl

are often neglected if it is obvious.
The P and Rx symmetries allow us to represent

ϕ
(℘l ,αl )
l (r) by linear combination of real functions φ

(πx,πy,πz )
αl ,l

(r)
[31,43,44],

ϕ
(+1,+i)
l (r) = [

φ
(+,+,+)
+i,l (r) + iφ(+,−,−)

+i,l (r)
]
e1

+ [
φ

(−,−,+)
+i,l (r) + iφ(−,+,−)

+i,l (r)
]
e2, (3)

ϕ
(+1,−i)
l (r) = [

φ
(−,−,+)
−i,l (r) + iφ(−,+,−)

−i,l (r)
]
e1

+ [
φ

(+,+,+)
−i,l (r) + iφ(+,−,−)

−i,l (r)
]
e2, (4)

ϕ
(−1,+i)
l (r) = [

φ
(−,+,+)
+i,l (r) + iφ(−,−,−)

+i,l (r)
]
e1

+ [
φ

(+,−,+)
+i,l (r) + iφ(+,+,−)

+i,l (r)
]
e2, (5)

ϕ
(−1,−i)
l (r) = [

φ
(+,−,+)
−i,l (r) + iφ(+,+,−)

−i,l (r)
]
e1

+ [
φ

(−,+,+)
−i,l (r) + iφ(−,−,−)

−i,l (r)
]
e2. (6)

The φ
(πx,πy,πz )
αl ,l

(r) have reflection symmetry with respect to

x = 0, y = 0, and z = 0 planes such as φ
(±,πy,πz )
αl ,l

(−x, y, z) =

±φ
(±,πy,πz )
αl ,l

(x, y, z). The vectors in spin- 1
2 space, e1 =

1√
2
(1, 1)T and e2 = 1√

2
(1,−1)T , are used.

B. Wave-number space mesh

The real functions φ
(πx,πy,πz )
αl ,l

(r) are represented by the
Fourier-series expansion method:

φ
(πx,πy,πz )
αl ,l

(r) =
Nmax∑

n

φ
(πx,πy,πz )
αl ,l,n

f (πx )
nx

(x) f
(πy )
ny (y) f (πz )

nz
(z). (7)

Here, φ
(πx,πy,πz )
αl ,l,n

are wave functions in k-space mesh. The
summation of n = (nx, ny, nz ) runs over non-negative integers
nx, ny, and nz satisfying nx + ny + nz � Nmax.

The function f (π )
n (x) is defined in the interval −Rb �

x � Rb and has a definite parity: f (±)
n (−x) = ± f (±)

n (x). The
explicit form is

f (+)
n (x) = 1√

(1 + δ0,n)Rb
cos knx, (8)

f (−)
n (x) = 1√

Rb
sin knx (9)

with kn = n�k. The k-space mesh is discretized as kn =
(nx�k, ny�k, nz�k). The �k = π/Rb and kmax = Nmax�k
define the spacing and size of the k-space mesh. The parame-
ters Nmax = 12 and �k = 0.38 fm−1 for kmax = 4.56 fm−1 are
adopted in our calculation (see Appendix for the details).

C. Pairing interaction

The density-dependent zero-range interaction

Vpair(r, r′) = 1

2
V0(1 − Pσ )

[
1 − η0

ρ(r)

ρ0

]
δ(r − r′) (10)

is widely used in density functional theory calculations
[45,46] and three-body calculations [3,4,47]. Here, V0 is the
interaction strength, Pσ is the spin-exchange operator, and
ρ0 = 0.16 fm−3. The pairing forces with η0 = 0, 1/2, and 1
are called volume type, mixed type, and surface type respec-
tively [48,49].

The zero-range interactions lead to divergences and can
be meaningful as effective interactions within a truncated
space of states. In Refs. [3,47,50], it was proposed that the
interaction strength V0 should be deduced from the low-energy
s-wave phase shift δ of neutron-neutron (nn) scattering. The
scattering problem in free space with the pairing interaction
(10) can be exactly solved with the states truncated by a
wave-number space cutoff k � kc,

k cot δ = − 1

ann
− k

π
ln

kc − k

kc + k
. (11)

Here, ann is the scattering length and one can derive an
expression for the effective range rnn = 4/(πkc) and the cutoff
energy [47,51]

ecut = h̄2k2
c

2m
= h̄2

2m

[
4

πrnn

]2

. (12)
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The cutoff energy for the center-of-mass frame used in
Refs. [3,47,50] is defined by e(cm)

cut = 2ecut. The interaction
strength V0 is expressed by [47]

V0 = − 2π2h̄2m−1

kc − π/(2ann)
. (13)

It is considered that for a given cutoff energy ecut the scat-
tering length ann is an adjustable parameter for the low wave
number k region of the phase shift [47,50], because the empiri-
cal values ann = −18.5 fm and rnn = 2.8 fm (ecut = 4.3 MeV)
cannot well reproduce the wave number k dependence of
the phase shift δ obtained by using realistic nn interactions.
The optimal parameter ann can be found for cutoff energies
satisfying 7.5 � ecut � 10 MeV. Although the medium effects
in nuclei modify the effective interaction and generate density
dependent terms, the cutoff energy should not be far away
from ecut = 10 MeV for consistency with the low-energy nn
scattering.

In the configurational HFB calculations, the pairing
problem is considered in the energy window defined by
|εl − λ| < Epair. The cutoff energy Epair can be compared with
the quasiparticle energy cutoff El < Epair (El is the quasiparti-
cle energy of the single-particle state l), and can be related to
the cutoff ecut in free space by Epair = ecut [50,51].

In the present study, the pairing correlation is active for
single-particle states satisfying

−E (−)
pair < εl − λ < E (+)

pair .

The lower cutoff E (−)
pair = 10 MeV is fixed. The upper cutoff

E (+)
pair is varied in order to examine the influence of continuum

single-particle states. It will be shown that the HFB and
QRPA calculations converge by using the upper cutoff E (+)

pair =
10 MeV (see Secs. IV B and V D for details).

The density dependence parameter η0 is determined in
order to produce the known ground-state properties. In
Refs. [4,47], it was shown that the three-body calculations
using the density dependence parameter η0 = 1 and the in-
teraction strength V0 of Eq. (13) with the scattering length
ann = −15 fm well describe the ground-state properties in
light-mass halo nuclei.

The optimization for the interaction strength V0 and the
density dependence parameter η0 in the HFB calculation with
the Skyrme EDFs show that the parameter η0 = 0.875, that
is close to the surface type, minimizes the root-mean-square
deviation between the experimental and theoretical neutron
pairing gaps in even-even nuclei across the nuclear chart, as
shown in Fig. 5 of Ref. [52].

From these considerations, I mainly use the surface-type
pairing force. I also examine the mixed- and volume-type
pairing forces for comparison of how the discussion depends
on the choice, because the form of pairing energy density
functional and the choice of the parameters are still under
discussion [50–53]. The interaction strength V0 is fixed by the
neutron paring gap in 34Mg for each set of three elements: the
cutoff energy E (+)

pair , the density dependence parameter η0, and
the Skyrme EDF (see Sec. IV A for the details).

D. Canonical state

The density matrix and pairing tensor [1,40] are defined by

ρll ′ = 〈�|c†
l ′cl |�〉 , (14)

κll ′ = 〈�|cl cl ′ |�〉 , (15)

where c†
l and cl are the particle operators of the HF state

and |�〉 is the quasiparticle vacuum. The ρ is diagonal in
the canonical state: ρcan,kk′ = v2

k δkk′ . The eigenvalues of ρ are
the occupation probabilities v2

k and the eigenvectors are the
coefficients Dlk of the unitary transformation from c†

l to the
canonical state a†

k :

a†
k =

∑
l

Dlkc†
l . (16)

The canonical single-particle wave functions ϕcan,k are also
constructed in the same way. The ϕcan,k with v2

k > 0 is a
localized function in r space even for the canonical single-
particle energy εcan,k = 〈ϕcan,k|h|ϕcan,k〉 > 0 [54–56].

The |�〉 has the BCS form

|�〉 =
∏
k>0

(uk + vka†
ka†

k̄
) |−〉 . (17)

The product runs only the positive-signature state, that is
expressed as k > 0. For each k > 0, there exists a conjugate
state k̄ < 0 that has negative signature. The phase convention
uk̄ = uk > 0, vk̄ = −vk < 0 is adopted. The quasiparticle op-
erators are defined by

α
†
k = uka†

k − vkak̄, (18)

α
†
k̄

= uka†
k̄
+ vkak, (19)

and the κ in the canonical form is κkk̄′ = ukvk′δkk′ [40]. The
quasiparticle energy is defined by

Ek =
√

(εcan,k − λ)2 + (
�

(can)
kk̄

)2
(20)

with the pairing gap in the canonical basis

�
(can)
kk̄

= 1

2

∑
l

〈kk̄|Vpair|l l̄〉 ulvl . (21)

For comparison to the experimental pairing gap, the aver-
aged pairing gap [57,58] is defined by

�̄ =
∑
k>0

ukvk�
(can)
kk̄

/ ∑
k>0

ukvk . (22)

III. QRPA CALCULATION

A. QRPA equation

The wave functions of the QRPA excitation are a superpo-
sition of

�
(℘,ξ )
kk′ (r) = [

ϕ
(℘k ,αk )
can,k (r)

]†
ϕ

(℘k′ ,αk′ )
can,k′ (r). (23)

They can be classified by the parity ℘= ℘k℘k′ = ±1 and
the x signature ξ = (αk )∗αk′ = ±1. The QRPA equation is
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FIG. 1. One-body matrix elements O20,kk′,n in k-space mesh are
shown as a function of |kn|. Panel (a) is for the main neutron two-
quasiparticle configurations of the lowest Kπ = 0+ state in 34Mg and
(b) is the same but for 44Mg. The SkM* and the surface-type pairing
force are used. See text for the details.

separated into sectors of (℘, ξ ),

∑
j j′

(
A(℘,ξ )

kk′ j j′ B(℘,ξ )
kk′ j j′

−B(℘,ξ )∗
kk′ j j′ −A(℘,ξ )∗

kk′ j j′

)(
f (℘,ξ )
ν, j j′

g(℘,ξ )
ν, j j′

)
= E (℘,ξ )

ν

(
f (℘,ξ )
ν,kk′

g(℘,ξ )
ν,kk′

)
. (24)

The cutoff energy is imposed on the two-quasiparticle energy
Ek + Ek′ < 30 MeV.

The one-body transition operators O(ξ )
LK can be classified

by the z component K of its angular momentum and the
x signature ξ = ±1 representing the symmetry property for
rotation about the x axis: RxO(ξ )

LKR−1
x = ξO(ξ )

LK [42,59].
In this paper, I concentrate on the (℘, ξ ) = (+1,+1)

sector containing (L, K ) = (2, 0) and (2,−1) modes [59].
The indexes ℘ and ξ are often neglected if it is
obvious. The explicit forms of the transition opera-

tors are O20 = r2Y20 =
√

5
16π

(2z2 − x2 − y2) and O2,−1 =
i√
2
r2[Y2,−1 + Y2,1] =

√
15
4π

yz in terms of the spherical har-
monics function YLK .

The real and imaginary parts of �kk′ (r) with (℘, ξ ) =
(+1,+1) can be written as

Re[�kk′ (r)] =
∑

n

�
(R)
kk′,n f (+1)

nx
(x) f (+1)

ny
(y) f (+1)

nz
(z),

Im[�kk′ (r)] =
∑

n

�
(I )
kk′,n f (+1)

nx
(x) f (−1)

ny
(y) f (−1)

nz
(z). (25)

Here, �
(R)
kk′,n and �

(I )
kk′,n are wave functions in k-space mesh,

and they are real numbers.

B. One-body matrix element

The one-body matrix element

OLK,kk′ =
∫ Rb

−Rb

∫ Rb

−Rb

∫ Rb

−Rb

OLK (r)�kk′ (r)dx dy dz (26)

can be expressed in k-space mesh by

O20,kk′ =
∑

n

O20,kk′,n, (27)

O2,−1,kk′ =
∑

n

O2,−1,kk′,n (28)

with

O20,kk′,n = �
(R)
kk′,n

(
2δnx,0δny,0Ô20,nz

− δny,0δnz,0Ô20,nx − δnx,0δnz,0Ô20,ny

)
, (29)

O2,−1,kk′,n = �
(I )
kk′,nδnx,0Ô2,−1,ny,nz . (30)

Here, Ô2,n and Ô2,−1,nn′ are defined by Ô20,0 =√
5/(18π )R7/2

b ,

Ô20,n =
√

5

16π
(
√

2Rb)2
∫ Rb

−Rb

x2 f (+)
n (x)dx

= (−1)n

√
20

π

R3/2
b

k 2
n

, (31)

Ô2,−1,nn′ =
√

15

4π

√
2Rb

∫ Rb

−Rb

∫ Rb

−Rb

yz f (−)
n (y) f (−)

n′ (z)dy dz

= (−1)n+n′
2

√
30

π

R3/2
b

knkn′
(32)

for n, n′ � 1.
The Ô20,n and Ô2,−1,nn′ are decreasing functions of |kn|,

and the canonical single-particle wave functions ϕcan,k with
v 2

k > 0 are localized in the low-|kn| region (see discussion in
Sec. II D). Eventually, the dominant contribution to ph-type
matrix elements, Eqs. (27) and (28), comes from the low-|kn|
components.

Figures 1(a) and 1(b) display the O20,kk′,n of the main two-
quasiparticle configurations of the lowest Kπ = 0+ states in
34Mg and 40Mg as a function of |kn| (see Sec. V for details of
the configurations). Actually, the large components appear in
the low-|kn| region, and the |O20,kk′,n| decrease exponentially
as a function of |kn|. The same description can hold for any
multipole operators of the radial dependence rL (r2 for L = 0).
This is a strong advantage of the k-space mesh.

The situation is different in r-space mesh. The integrand
OKL(r)�kk′ (r) in Eq. (26) has a peak around or outside of
the nuclear surface. Especially the significant contribution
to OLK,kk′ comes from the far outside region (typically, r �
20 fm) when halo-type single-particle states are involved [60].
Therefore, for the accurate description of wave functions in
the low density asymptotic region it is essential to use large
box size or the exact treatment of the asymptotic form in the
HFB approach for deformed nuclei [61].
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C. Transition strength

The νth QRPA excited state is expressed as |ν〉 = Q†
ν |0〉

with excitation operator

Q†
ν =

∑
kk′

fν,kk′α
†
k α

†
k′ − gν,kk′αk′αk . (33)

For the ph-type one-body operator

O(ph)
LK =

∑
kk′

OLK,kk′a†
kak′ , (34)

the transition matrix element between |ν〉 and the ground state
|0〉 is expressed as

M (ph,ch)
LK (ν) = 〈ν | O(ph)

LK | 0〉 ≡
∑
kk′

M (ph)
LK,kk′ (ν). (35)

The summation over (k, k′) runs over both neutron and proton
two-quasiparticle configurations for the isoscalar transition
matrix element M (ph,IS)

LK (ν). The neutron transition matrix
element is defined by

M (ph,n)
LK (ν) = M (ph,n(pair))

LK (ν) + M (ph,n(no pair))
LK (ν), (36)

where the partial sum is restricted to the neutron pairing
channel (k = k′) for M (ph,n(pair))

LK (ν) and to the neutron ph
channel (k �= k′) for M (ph,n(no pair))

LK (ν). The proton transition
matrix element M (ph,p)

LK (ν) is also defined.
The isoscalar transition strength is defined by B(QIS2; ν) =

|M (ph,IS)
20 (ν)|2. The neutron and proton transition strengths

B(Qn2; ν) and B(E2; ν) are also defined in the same way.
The partial sum of transition matrix elements up to cutoff

energy E (cut)
2qp is defined by

M (ph,ch)
KL

(
ν; E (cut)

2qp

) =
∑

Ek+Ek′<E (cut)
2qp

M (ph)
KL,kk′ (ν). (37)

The particle-particle (pp) type matrix element is also ex-
pressed as

M (pp)
LK (ν) = 〈ν | O(pp)

LK | 0〉 ≡
∑
k>0

M (pp)
LK,kk (ν) (38)

with

O(pp)
LK =

∑
k>0

OLK,kka†
ka†

k̄
. (39)

The index ν in matrix elements is often neglected if it is
obvious.

D. Residual interaction

The ph residual interaction is derived from the Skyrme
EDF through the Landau-Migdal approximation [62–64]:

Vph(r, r′) = N−1
0 [F0 + F ′

0τ · τ ′

+(G0 + G′
0τ · τ ′)σ · σ ′]δ(r − r′). (40)

For the pairing channel, I use the same pairing force Vpair of
Eq. (10).

If the same Hamiltonian is consistently used in both HFB
and QRPA, and the model space is enough large, the spurious
modes appear at zero energy and they are decoupled from
other eigenmodes of QRPA. However the Landau-Migdal

approximation is used for the ph residual interaction, and
the cutoff energies for the pairing-active space and the two-
quasiparticle configuration are imposed due to the excessive
demand on computer resources. Therefore the Vph and Vpair are
normalized by multiplying factors fph and fpp (Vph → fphVph,
Vpair → fppVpair) to obtain zero energies of the spurious ro-
tational mode with (L, K ) = (2,−1) and the spurious particle
number fluctuation mode with (L, K ) = (0, 0). The technical
details can be found in Refs. [30,32].

IV. GROUND STATE PROPERTIES

A. Neutron drip line and deformation

The quadrupole deformation in neutron-rich Mg isotopes
has been of interest in determining how the region of deforma-
tion expands from the quenched spherical magic number N =
20. Recent observations of the energy ratio of the first and
second excited states in 34,36,38Mg revealed the quadrupole
deformation [65–67]. The low excitation energy in 40Mg sug-
gests the quenching of spherical magic number N = 28 and
the prolately deformed ground states [68]. Theoretical studies
also have predicted the prolate deformation in 34,36,38,40Mg
(for example, see Refs. [69–75]).

The prediction of the two-neutron drip line depends on the
models: for example, 40Mg in the macroscopic-microscopic
model [74], the antisymmetrized molecular dynamics method
[72], and the HFB with Skyrme SLy4 [75], Gogny D1S [69],
and M3Y-P6 [70]. It is also predicted that the two-neutron drip
line nucleus is 42Mg in the relativistic Hartree Bogoliubov
(RHB) model with PK1 [73], and 46Mg in the HFB with
Skyrme BSk24 [71] and the RHB with NL3 [73].

I adopt the Skyrme SkM* [76] and UNEDF0 [77] EDFs.
The SkM* is one of the standard EDFs, that well describes
deformation properties. The UNEDF0 is a result of state-
of-the-art optimization. The pairing strength V0 is fitted to
the neutron pairing gap �n in 34Mg. Here, the experimental
pairing gap is extracted by the three-point odd-even staggering
of nuclear masses [78]. The proton pairing is not considered
in the current study, because the proton pairing gaps are negli-
gible in neutron-rich Mg isotopes when the density-dependent
pairing force is used [53].

The predicted two-neutron drip line nucleus is 44Mg
and the neutron chemical potential is λn = −0.173 MeV
in the calculation using the SkM*, while 42Mg and λn =
−0.156 MeV in the calculation using the UNEDF0. Here
the surface-type pairing force with E (+)

pair = 10 MeV is used.
Figure 2 shows the quadrupole deformation parameter β2

obtained with the SkM* and UNEDF0. Here, the triaxial
deformation parameter γ is negligible in these nuclei.

Figure 3 displays the canonical single-particle energies
in 34,40,44Mg obtained with the SkM*. The red (blue) line
represents the positive- (negative-) parity single-particle level.
The solid (dashed) line indicates the single-particle level
that has prolate (oblate) density distribution with βk =
〈ϕcan,k|r2Y20|ϕcan,k〉 > 0 (<0). The thin dotted line represents
the discretized nonresonant continuum states. The nonres-
onant continuum states are identified by checking the �k
dependence (equivalent to the box size Rb dependence) of the
single-particle energies [45].
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FIG. 2. Quadrupole deformation parameter β2 in neutron-rich
Mg isotopes. The results using the SkM* and UNEDF0 are shown.
The surface-type pairing force with E (+)

pair = 10 MeV is used.

B. Continuum effect for pairing

Figure 4 shows the neutron pairing gaps �n in neutron-
rich Mg isotopes. The results with the SkM* and UNEDF0
are compared. The surface-type pairing force is used in both
calculations. One finds that the neutron pairing gaps �n are
almost constant from 34Mg to the neutron drip line in both
calculations.

In order to clarify the role of continuum states in pairing
correlations, the cutoff energy E (+)

pair dependence is examined
in Fig. 5. Here, the SkM* and the surface-type pairing force
are used. With E (+)

pair = 5 MeV, which is a typical model size
for stable nuclei [31], the neutron pairing gap �n gradually

-1.98 (1.49)

 4.46 (1.54)

 0.91 (2.51)

 7.04 (2.62)

 3.26 (1.29)

 0.84 (2.27)

 10.98 (2.69)  2.71 (2.44)

 -1.82 (2.37)

 -3.11 (1.73)

2.62 (2.43)

 3.80 (0.68)

 -3.54 (1.18)

 -3.48 (2.09)

 0.49 (1.11)

FIG. 3. Neutron canonical single-particle energies in 34,40,44Mg.
The blue (red) line represents the negative (positive) parity level.
The solid (dashed) line indicates the level with prolate (oblate)
density distribution. The thin dotted line represents discretized
nonresonant continuum states. The quadruple matrix element βk =
〈ϕcan,k |r2Y20|ϕcan,k〉 (fm2) is shown for each level with quasiparticle
energy Ek < 3 MeV. The number in parenthesis is the quasiparticle
energy Ek (MeV). The SkM* and the surface-type pairing force are
used.

FIG. 4. Same as Fig. 2 but for the neutron pairing gap �n. The
experimental data are also shown. The pairing strength parameter V0

is fixed at 34Mg.

decreases as a function of mass number. The quenching at
40Mg with small E (+)

pair is due to missing resonant single-
particle states at εcan,k ≈ 6 MeV.

The contribution of continuum states up to E (+)
pair = 10 MeV

becomes sizable around the neutron drip line. The cutoff
energy E (+)

pair = 10 MeV is consistent with the low-energy nn
scattering, and reasonable for the description of the pairing
correlation in weakly bound nuclei (see Sec. II C for the
details).

I note that the single-particle state with ε = (h̄kc)2/2m ≈
10 MeV has a cutoff wave number kc ≈ 0.27 fm−1. The spa-
tial size �x ≈ 1/kc ≈ 3.7 fm is comparable to the predicted
diameter of a dineutron in 40Mg [53], in light-mass neutron
halo nuclei [79], and in medium-heavy neutron-rich nuclei
[11].

The authors of Ref. [11] emphasized that the coherent
contribution of the nonresonant continuum states with high-
orbital angular momentum l is involved to produce the
dineutron correlation in spherical neutron-rich nuclei. A two-
particle wave function made of the relative s wave brings

FIG. 5. Cutoff energy E (+)
pair dependence of the neutron pairing

gaps �n. The SkM* and the surface-type pairing force are used.
The results using the mixed- and volume-type pairing forces with
E (+)

pair = 10 MeV are also compared.
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about an angular correlation
∑

m Y ∗
lm(r̂1)Ylm(r̂2) ∼ Pl (cos θ12)

with respect to the relative angle θ12 between the positions r1

and r2 of the two neutrons. Here, the Legendre polynomial
Pl (cos θ12) is peaked at θ12 = 0 and always positive for θ12 �
1/l . If we superpose them coherently over a large number of
l from zero to high orbital angular momentum lmax, the two-
particle wave function may exhibit an angular correlation at
small relative angles θ12 � 1/lmax. The same argument about
the continuum-coupling effect can be made for neutron pairs
in deformed nuclei [53].

The volume- and mixed-type pairing forces have weak
continuum-coupling effect. For example, the difference be-
tween the neutron pairing gaps in 44Mg obtained by using
the volume-type (mixed-type) pairing force with E (+)

pair = 5 and

10 MeV is 0.20 MeV (0.23 MeV). Therefore, the cutoff E (+)
pair

dependence for these pairing forces is not shown in Fig. 5.
It is also noted that the results using these pairing forces
are close to that using the surface-type pairing force with
E (+)

pair = 5 MeV.
The HFB calculations with the surface-type pairing force

give almost the constant neutron pairing gaps and the
quadrupole deformation β2 ≈ 0.3 from 34Mg to 40Mg. By
taking pairing and deformation into account, the moments of
inertia (MOI) I are considered to be almost constant except
for the mass number A dependence [53]. Namely, the normal-
ized MOI Ī = I /A5/3 should be nearly constant (the A5/3

dependence is from the rigid rotor or irrotational limit [1]).
This tendency is consistent with the recent observations of the
first excitation energy E1st in 34,36,38,40Mg [65–68]. Actually,
the Ī = (3h̄2/E1st )/A5/3 of 34Mg and 40Mg coincide within
1%. If the volume- or mixed-type pairing force is used, the I
becomes significantly larger due to the quenching of neutron
pairing correlation around 40Mg [53].

V. Kπ = 0+ EXCITATIONS

A. Strength functions

Figure 6 displays the QRPA strength distributions of the
Kπ = 0+ isoscalar quadrupole excitations from 34Mg to the
neutron drip line nucleus. The SkM* and the surface-type
pairing force are used. Figure 7 is the same but the UNEDF0
is used.

As seen in Fig. 6 (Fig. 7), the first excited state in 34Mg
at the excitation energy Eν = 1.96 MeV (1.73 MeV) has
the large transition strength B(QIS2) = 73.78 fm4 (89.60
fm4). The transition strengths of the first excited states in
36Mg and 38Mg are small, while the first excited state in
40Mg at Eν = 1.84 MeV (1.98 MeV) has the large transition
strength B(QIS2) = 53.98 fm4 (79.98 fm4). The large transi-
tion strengths below 2 MeV also appear in Mg isotopes with
the neutron number N � 30.

The QRPA excitation is generated by coherent superpo-
sition of both ph- and pp-type configurations. The transition
strengths without dynamical pairing effect, i.e., QRPA cal-
culation ignoring the residual pairing interactions, are also
shown in Figs. 6 and 7. It should be noted that the transition
strengths of low-lying state are drastically reduced when the
dynamical pairing effect is ignored.

FIG. 6. QRPA strength distributions for the Kπ = 0+ isoscalar
quadrupole excitations from 34Mg to the neutron drip line are shown.
The QRPA calculation without dynamical pairing correlation is
compared. The SkM* and the surface-type pairing force with E (+)

pair =
10 MeV are used. The arrow indicates the neutron threshold energy.

In terms of the asymptotic quantum numbers, the nonzero
ph-type matrix element

〈[N ′n′
z�

′]�′|r2Y20|[Nnz�]�〉 �= 0 (41)

should have �N = |N ′ − N | = 2, and thus the excitation is
associated with the high-frequency quadrupole mode [28].
However the pairing correlation is included, the low-lying
excitation can appear by the fluctuation of pair occupation in
Nilsson orbits with different spatial shapes [28–30].

According to this mechanism, the low-lying transition
strengths in neutron-rich Mg isotopes can be outlined. As seen
in Fig. 3, the shell gap at N = 22 is composed of the prolate-
type orbit [321]3/2 and the oblate-type orbit [202]3/2, and
the first excited state in 34Mg has the large transition strength.

The prolate-type orbit [312]5/2 just above (below) the
shell gap at N = 24 (26) has the small quadruple matrix
element βk = 〈ϕcan,k|r2Y20|ϕcan,k〉, and the transition strength
below the neutron threshold energy is small in 36Mg (38Mg).

FIG. 7. Same as Fig. 6 but the UNEDF0 is used.
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FIG. 8. Partial sum of transition matrix elements M (ph,ch)
20 (E (cut)

2qp )

for the lowest Kπ = 0+ states in 34,40,44Mg. Short dashed, dashed,
and solid lines denote the isoscalar (ch = IS), neutron (ch = n), and
neutron pairing [ch = n (pair)] channels. The SkM* and the surface-
type pairing force are used.

On top of that, N = 26 is composed of prolate-type orbits
only, and the low-lying transition strength is more suppressed
in 38Mg.

The N = 28 shell gap is composed of the prolate-type
orbit [310]1/2 and the oblate-type orbit [303]7/2. Around
the shell gaps at N = 30 and 32, the single-particle levels of
the prolate-type [440]1/2 and [321]1/2 and the oblate-type
[312]3/2 and [303]7/2 are close to each other. Eventually, the
large low-lying transition strengths can appear in Mg isotopes
with N � 28.

In the subsequent Secs. V B and V C, I focus on the micro-
scopic structure of the lowest Kπ = 0+ states in 34,40,44Mg as
illustrative examples. The contribution of the pairing effect,
the low-energy ph-type configurations, and the coupling to
the high-frequency quadrupole mode is clarified by analyzing
the partial sum of transition matrix elements M (ph,ch)

20 (E (cut)
2qp ). I

show the results using the SkM* but the same conclusion can
be drawn with the UNEDF0 (see also discussion in Sec. V E).

B. 34Mg

Figure 8(a) displays the partial sum of transition matrix
elements M (ph,ch)

20 (E (cut)
2qp ) for the lowest Kπ = 0+ state at Eν =

1.96 MeV in 34Mg. The short dashed, dashed, and solid lines
denote the isoscalar (ch = IS), neutron (ch = n), and neutron
pairing [ch = n (pair)] channels. In Table I, the isoscalar
transition matrix elements M (ph,IS)

20 are classified into the neu-
tron pairing [ch = n (pair)], neutron ph [ch = n (no pair)],

TABLE I. Isoscalar transition matrix elements M (ph,IS)
20 of the

lowest Kπ = 0+ states in 34,40,44Mg. The breakdowns M (ph,n(pair))
20 ,

M (ph,n(no pair))
20 , and M (ph,p)

20 are listed as percentages. The ph channels
are decomposed into the low-E2qp, mid-E2qp, and high-E2qp parts. The
ratios of neutron to proton transition matrix elements are also shown.
See text for the details.

34Mg 40Mg 44Mg

M (ph,IS)
20 (fm2) 8.59 7.34 6.89

M (ph,n(pair))
20 29.1% 23.9% 28.9%

M (ph,n(no pair))
20 43.7% 57.5% 56.3%
low-E2qp 3.4% 10.3% 18.6%
mid-E2qp 1.7% 2.7% 2.8%
high-E2qp 38.6% 44.5% 34.9%

M (ph,p)
20 27.2% 18.6% 14.8%
low-E2qp 0.0% 2.2% 4.4%
mid-E2qp 4.0% 0.9% 0.8%
high-E2qp 23.2% 15.5% 9.6%

M (ph,n)
20

M (ph,p)
20

/ N
Z 1.46 1.87 2.17

and proton ph channels as percentages. One finds that the
main pp-type configurations are in the low two-quasiparticle
energy E2qp (low-E2qp) part where E2qp satisfies 0 < E2qp <

7.5 MeV. The ph channel is decomposed into the low-E2qp,
the middle-E2qp (mid-E2qp, 7.5 < E2qp < 17.5 MeV), and the
high-E2qp (high-E2qp, E2qp > 17.5 MeV) parts.

The two-quasiparticle configurations generating the lowest
Kπ = 0+ state are clearly separated into the pairing channel
and the ph high-E2qp part. The main pp-type configurations
are the oblate-type pair [202]3/2 ⊗ [202]3/2 and the prolate-
type pairs [321]3/2 ⊗ [321]3/2 and [330]1/2 ⊗ [330]1/2.
Once the dynamical pairing effect is included, the high-E2qp

configurations generates the large transition strength (61.8%
contribution to M (ph,IS)

20 ).

C. 40Mg and 44Mg

Figure 8(b) displays the partial sum of transition matrix
elements M (ph,ch)

20 (E (cut)
2qp ) for the lowest Kπ = 0+ state at Eν =

1.84 MeV in 40Mg, and (c) is for the Kπ = 0+ state at Eν =
1.15 MeV in 44Mg.

Table I shows the breakdown of the isoscalar transition
matrix elements M (ph,IS)

20 of these states. In 40Mg, the pairing
channel contributes 23.9%. The main pp-type configurations
are the prolate-type pairs [310]1/2 ⊗ [310]1/2 (13.4%) and
[440]1/2 ⊗ [440]1/2 (−3.6%; the minus sign means the
reduction of M (ph,IS)

20 ), and the oblate-type pair [303]7/2 ⊗
[303]7/2 (11.6%). In 44Mg, the pairing channel contributes
28.9%. The main pp-type configurations are the prolate-
type pair [440]1/2 ⊗ [440]1/2 (16.0%) and the oblate-type
pairs [312]3/2 ⊗ [312]3/2 (8.3%) and [303]7/2 ⊗ [303]7/2
(4.1%).

Unlike 34Mg, the ph-type configurations in the low-E2qp

part can contribute around the drip line. This is due to viola-
tion of the asymptotic selection rule, Eq. (41), when weakly
bound and continuum states are involved [30].
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In 40Mg, the neutron ph channel in the low-E2qp part
contributes 10.3%. The ph excitation from the weakly bound
[310]1/2 state to the resonant [310]1/2 state contributes
7.6%. In 44Mg, the contribution of neutron ph-type configu-
rations in the low-E2qp part is 18.6%, and this is much larger
than 3.4% in 34Mg and 10.3% in 40Mg. In 44Mg, not only
the configuration from the weakly bound state [310]1/2 to the
resonant state [321]1/2 (4.35%) but also configuration from
the resonant state [321]1/2 to the resonant state [301]1/2
(7.83%) are involved.

Eventually, the large low-lying transition strength appears
by cooperative contributions of the pairing effect, the low-
energy ph configurations, and the coupling to the high-
frequency quadrupole mode.

Table I also displays the ratio of neutron to proton tran-
sition matrix elements (M (ph,n)

20 /M (ph,p)
20 )/(N/Z ). Because the

neutron two-quasiparticle configurations involving weakly
bound and continuum states have spatially extended structure,
the low-lying excitations become neutron dominant due to the
weak correlations between neutrons and protons around the
neutron drip line.

D. Summation of low-lying transition strength

The influence of dineutron correlation on low-lying dipole
excitations in spherical nuclei has been discussed extensively
in the light-mass region [3–6] and in the medium-heavy–mass
region [11,15]. In this subsection, I clarify the connection be-
tween the low-lying transition strength of Kπ = 0+ excitation
and the coherent contribution of nonresonant continuum states
in pairing. For this purpose, the summed transition strength up
to the cutoff energy E (cut)

QRPA,

SIS2
(
E (cut)

QRPA

) =
∑

Eν�E (cut)
QRPA

B
(
QIS2; ν

)
, (42)

is examined. I adopt the cutoff energy E (cut)
QRPA = 6 MeV that

covers the low-lying broad resonance in the neutron drip line
nucleus (see Figs. 6 and 7). The convergence of SIS2(6 MeV)
in k-space mesh will be checked in the Appendix.

Figure 9 shows the summed transition strengths
SIS2(6 MeV) obtained with the SkM* and the surface-type
pairing force. First, I consider the results of the RPA and the
QRPA without dynamical pairing effect. In these calculations,
the SIS2(6 MeV) increase abruptly in 40Mg due to the ph-type
configuration from the weakly bound state [310]1/2 to the
resonant state [321]1/2. In 44Mg with static pairing, due
to the nonzero occupation probability of the resonant state
[321]1/2, the ph excitation to the resonant state [301]1/2
enlarges the SIS2(6 MeV).

The coherent contribution of nonresonant continuum
states in pairing suggests the presence of dineutron corre-
lation [11,12,23,53]. In QRPA with dynamical pairing, the
SIS2(6 MeV) converges with the pairing cutoff energy E (+)

pair =
5 MeV around 34Mg, while the nonresonant continuum states
up to E (+)

pair = 10 MeV contribute and enhance the SIS2(6 MeV)
as it approaches the neutron drip line. This large SIS2(6 MeV)
could be a good experimental probe for exploring the novel
pairing correlations.

FIG. 9. Cutoff energy E (+)
pair dependence of summed transition

strength SIS2(6MeV) for the Kπ = 0+ excitations in Mg isotopes.
The SkM* and the surface-type pairing force are used. The results
of the RPA and the QRPA without dynamical pairing using E (+)

pair =
10 MeV are also shown.

E. Interaction dependence

The summed transition strength SIS2(6 MeV) is a quantity
that is sensitive to pairing properties around the neutron drip
line. Similar to the neutron pairing gap, the pairing force de-
pendence of SIS2(6 MeV) becomes sizable around the neutron
drip line as shown in Fig. 10. Here, the cutoff energy E (+)

pair =
10 MeV is used for the volume- and mixed-type pairing
forces. It should be noted that the volume- and mixed-type
pairing forces have weak continuum-coupling effect, and the
SIS2(6 MeV) almost coincides with that using the surface-type
pairing with E (+)

pair = 5 MeV.
In order to quantify the influence of pairing forces on the

strength distributions, the average excitation energy above the
neutron threshold energy Eth,

Ēcont =
∑

Eth�Eν�6 MeV Eν B(QIS2; ν)∑
Eth�Eν�6 MeV B(QIS2; ν)

, (43)

is considered. In the same way, the average excitation energy
Ēdisc below the neutron threshold energy Eth is defined. Here,

FIG. 10. Same as Fig. 9 but results using the surface-, mixed-,
and volume-type pairing forces with E (+)

pair = 10 MeV are compared.
The results of the RPA and the QRPA using the surface-type pairing
with E (+)

pair = 5 MeV are also shown.
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FIG. 11. Average excitation energies Ēdisc and Ēcont below and
above the neutron threshold energy of the QRPA strength distribu-
tions. The SkM* is used. The results using the surface-, mixed-, and
volume-type pairing forces with E (+)

pair = 10 MeV and the surface-

type pairing force with E (+)
pair = 5 MeV are compared.

the Ēdisc corresponds the energy of the first excited state in the
case of 34,38,40Mg (except 40Mg using the UNEDF0).

Figure 11 shows the average excitation energies Ēdisc and
Ēcont. One notices that they are insensitive to the treatment of
the pairing force in 34,36,38Mg, because the strength distribu-
tions are almost unchanged.

On the other hand, the results of 40,42,44Mg are sensitive
to the treatment of the pairing force. To see this more pre-
cisely, the strength distributions in 40Mg obtained by using the
surface- and volume-type pairing forces with E (+)

pair = 10 MeV
are compared in Fig. 12. The excitation energy of the first
excited state goes down to Eν = 0.90 MeV and the transition
strength decreases by 42.9% to B(QIS2) = 30.81 fm4 due
to the smaller pairing correlation in calculation using the
volume-type pairing force. The results using the surface-type
pairing force with E (+)

pair = 5 MeV and the mixed-type pairing
force are almost the same as that using the volume-type
pairing force and are not shown here.

Compared to the summed transition strengths over the in-
terval Eth � Eν � 6 MeV in the calculation using the surface-

(Surface pairing)

FIG. 12. QRPA strength distributions for the Kπ = 0+ isoscalar
quadrupole excitations in 40Mg and 44Mg. The SkM* is used. The
results using the surface-type and volume-type pairing forces with
E (+)

pair = 10 MeV are compared. The arrow indicates the neutron
threshold energy.

FIG. 13. Summed transition strengths SIS2(6 MeV) of the Kπ =
0+ excitations in Mg isotopes are shown as a function of the neutron
chemical potential λn. The surface-type pairing force with E (+)

pair =
10 MeV is used for both the SkM* and the UNEDF0. The result of
RPA is also shown.

type pairing force with E (+)
pair = 10 MeV, it is reduced by

11.2% in 40Mg, 17.7% in 42Mg, and 31.9% in 44Mg when the
volume-type pairing force is used.

Although the average excitation energy Ēcont is insensitive
to the treatment of the pairing force, the resonance shape may
have information about pairing properties such as dineutron
correlation. For example, as shown in Fig. 12, it seems that the
one broad resonance appears in 44Mg when the surface-type
pairing force with E (+)

pair = 10 MeV is used. On the other hand,
one may notice the two peaks at Eν ≈ 1 and 3 MeV in the
case of the volume-type pairing force. This two-peak-like
structure also appears in calculations using the surface-type
pairing force with E (+)

pair = 5 MeV and the mixed-type forces.
However, the resolution of the discretized-continuum strength
distributions is not enough to extract a clear conclusion. I
defer this analysis for future investigations, because it requires
the much smaller mesh spacing �k in k space or the exact
treatment of the asymptotic form of wave functions in the
QRPA calculation.

I expect that the discussion can hold with other EDFs. In
Fig. 13, the results with the SkM* and UNEDF0 are com-
pared. The surface-type pairing force with E (+)

pair = 10 MeV
is used. Because of the different neutron drip lines, the
SIS2(6 MeV) is plotted as a function of the neutron chemical
potential λn.

One finds that the SIS2(6 MeV) have same tendency in
spite of the different EDFs, and both the weakly bound effect
and the pairing correlation due to the coupling to nonresonant
continuum states enhance the SIS2(6 MeV) around the neutron
drip line.

VI. CONCLUSION

In order to investigate the nature of collective excitations in
weakly bound nuclei with deformation and superfluity, I have
developed a new method for the QRPA calculation with the
Skyrme EDF in three-dimensional wave-number space.
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The wave functions with spatially extended structure in r
space translate into a narrow distribution, and the multipole
operators of the radial dependence rL (r2 for L = 0) are
decreasing functions of |k| in k space. Eventually, the dom-
inant contribution to the ph-type matrix element comes from
the low-|k| region, and the QRPA calculation requires much
smaller mesh space than that in r-space mesh. This advantage
allows one to perform the QRPA calculation without assuming
axial symmetry and time-reversal symmetry on wave func-
tions by using a single-core CPU with 3.5 GB memory. The
QRPA code can be applied to various collective dynamics
in unstable nuclei; for example, rotating nuclei [80] and the
microscopic construction of the collective Hamiltonian based
on the local QRPA approach [81].

I discussed the role of continuum states for pairing correla-
tion in neutron-rich Mg isotopes. The coherent contribution
of nonresonant continuum states up to E (+)

pair = 10 MeV is
sizable around the drip line when the surface-type pairing
force is used. This suggest the presence of dineutron corre-
lation [11,15,53]. On the other hand, the continuum effect is
weak with the volume- and mixed-type pairing forces, and
the neutron pairing gap decreases as it approaches the neutron
drip line.

The Skyrme HFB calculation with the surface-type pair-
ing force gives almost constant neutron pairing gaps and
quadrupole deformations β2 ≈ 0.3 from 34Mg to 40Mg. This
is consistent with the recent observations of the first excita-
tion energies in 34,36,38,40Mg [65–68], that suggest the nearly
constant normalized MOI Ī = I /A5/3 [53].

I also clarified the pairing effect on the Kπ = 0+ isoscalar
quadrupole excitation in neutron-rich Mg isotopes. The dy-
namical pairing correlation plays the essential role for the
existence of low-lying Kπ = 0+ excitations. The cooperative
role of the pairing correlation and the low-energy ph con-
figurations involving weakly bound and continuum states is
discussed. Especially, I emphasized that the coherent contri-
bution of nonresonant continuum states in pairing enhances
the low-lying strengths around the neutron drip line. This
fact could be a good experimental probe to explore the novel
pairing properties such as dineutron correlation.
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FIG. 14. Summed transition strengths SIS2(6 MeV) in 34,42,44Mg
as a function of �k. The SkM* and the surface-type pairing force
with E (+)

pair = 10 MeV are used. The Nmax = 12 is fixed.

APPENDIX: CONVERGENCE IN k SPACE

The ph excitations involving the spatially extended wave
functions such as halo states require the accurate description
of the low density region outside the nuclear surface in r
space. For example, the up-to-date QRPA in the axially sym-
metric r-space mesh used the large box size Rb = 27.6 fm and
the mesh spacing 0.6 fm (46 grid points for both z and r axis
directions) for description of the pygmy dipole excitations in
40Mg [38]. If it is directly extended to the three-dimensional
r-space mesh with parity and signature symmetries, the esti-
mated number of mesh points is about (46)3 = 97336.

In marked contrast to the r-space mesh, the main contri-
bution to the ph-type matrix elements OLK,kk′ comes from
low-|k| region in k-space mesh (see discussion in Secs. III B
and V A). In my calculations, the model space parameters
Nmax = 12 and �k = 0.38 fm−1 for kmax = 4.56 fm−1 are
adopted. If the Nmax increases to 13, for example, the summed
transition strength SIS2(6 MeV) in 44Mg changes 0.21% in the
calculation using the SkM* and the surface-type pairing force.

The mesh spacing �k should be chosen carefully for
description of wave functions in the low-|k| region. In Fig. 14,
the summed transition strengths SIS2(6 MeV) in 40,42,44Mg
are shown as a function of �k. Here, 44Mg is unbound for
�k > 0.42 fm−1. One notices that the �k = 0.38 fm−1 gives
a reasonable result even for the neutron drip line nucleus
44Mg. The number of mesh points is 455 for Nmax = 12 and
�k = 0.38 fm−1. This number is 214 times smaller than the
number of mesh points in r space.
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