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Background: Elastic electron scattering has been used for decades to paint the most accurate picture of the
proton distribution in atomic nuclei. This stands in stark contrast to the neutron distribution that is traditionally
probed using hadronic reactions that are hindered by large uncertainties in the reaction mechanism. Spurred by
new experimental developments, it is now possible to gain valuable insights into the neutron distribution using
exclusively electroweak probes.
Purpose: We aim to assess the information content and complementarity of the following three electroweak
experiments in constraining the neutron distribution of atomic nuclei: (a) parity-violating elastic electron
scattering, (b) coherent elastic neutrino-nucleus scattering, and (c) elastic electron scattering of unstable nuclei.
Methods: Relativistic mean-field models informed by the properties of finite nuclei and neutron stars are used
to compute ground state densities and form factors of a variety of nuclei. All the models follow the same
fitting protocol, except for the assumed—and presently unknown—value of the neutron skin thickness of 208Pb.
This enables one to tune the density dependence of the symmetry energy without compromising the success in
reproducing well known physical observables.
Results: We found that the ongoing PREX-II and upcoming CREX campaigns at Jefferson Lab will play a vital
role in constraining the weak form factor of xenon and argon, liquid noble gases that are used for the detection
of both neutrinos and dark matter particles.
Conclusions: Remarkable new advances in experimental physics have opened a new window into ground state
densities of atomic nuclei using solely electroweak probes. The diversity and versatility of these experiments
reveal powerful correlations that impose important nuclear structure constraints. In turn, these constraints provide
quantitative theoretical uncertainties that are instrumental in searches for new physics and insights into the
behavior of dense matter.
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Among the most basic properties of an atomic nucleus are
its mass and its radius. At a deeper level, one would like to
understand how the underlying nuclear dynamics determines
the spatial distribution of protons and neutrons in the nuclear
ground state. However, given the intrinsic quark substructure
of the nucleon, neither the proton nor the neutron densities
can be determined from experiment. Rather, it is the charge
distributions—both electric and weak—that are the genuine
physical observables that properly incorporate the finite nu-
cleon size [1]. In the particular case of the (electric) charge
density, elastic electron scattering experiments pioneered by
Hofstadter in the late 1950s [2], together with subsequent
refinements [3–5], have painted the most accurate picture of
the spatial charge distribution. For example, the charge radius
of 208Pb is known to about 0.02% or R208

ch = 5.5012(13) fm
[5]. Such impressive experimental success will culminate with
the commissioning of electron scattering facilities dedicated
to map the charge distribution of short-lived isotopes [6].
Given that the charge distribution of an atomic nucleus is
strongly dominated by the protons, elastic electron scattering
provides a powerful experimental tool for the determination
of the ground state proton density.

Unfortunately, mapping the experimental weak-charge dis-
tribution has not enjoyed the same success. The main diffi-

culty stems from the need for electroweak probes that require
the design of enormously challenging experiments, such as
parity-violating electron scattering or elastic neutrino scatter-
ing. Yet these experiments provide the cleanest determination
of neutron densities. Indeed, given that the weak charge
of the proton is strongly suppressed by the weak mixing
angle, i.e., Qp

W = 1 − 4 sin2 θW = 0.0719(45) [7], the weak-
charge distribution of a nucleus is dominated by neutrons
in a manner similar to how protons dominate the electric-
charge distribution. Of course, myriad of experiments have
focused on the determination of neutron densities. Indeed,
some of the premier experimental facilities throughout the
world were commissioned with the primary goal of map-
ping the neutron distribution of atomic nuclei throughout the
nuclear chart. Among the most widely used experimental
techniques to map the neutron distribution is elastic proton
scattering at intermediate energies (≈200–800 MeV) [8,9].
Given that protons couple strongly to both neutrons and
protons in the nuclear target, the extraction of the neutron
density often relies on prior knowledge of the proton density
distribution, which is obtained from “unfolding” the single
nucleon form factors from the charge density measured using
elastic electron scattering; for a recent implementation of this
technique, see Refs. [10,11] and references contained therein.

2469-9985/2019/100(5)/054301(15) 054301-1 ©2019 American Physical Society

https://orcid.org/0000-0003-0603-4482
https://orcid.org/0000-0002-6048-3986
https://orcid.org/0000-0003-4980-5670
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.100.054301&domain=pdf&date_stamp=2019-11-01
https://doi.org/10.1103/PhysRevC.100.054301


YANG, HERNANDEZ, AND PIEKAREWICZ PHYSICAL REVIEW C 100, 054301 (2019)

Although such experimental efforts are valuable, especially
with the commissioning of rare isotopes facilities around
the world [12]—the determination of neutron densities using
hadronic probes is plagued by significant model dependencies
and uncontrolled approximations. Although high statistics is
the hallmark of hadronic experiments, the cost for the high
efficiency is large systematic uncertainties associated with
the theoretical interpretation. For a recent review on the vast
arsenal of experimental techniques devoted to mapping the
neutron distribution of atomic nuclei, and their associated
uncertainties, see [13].

In an effort to mitigate hadronic uncertainties, a concerted
effort has been devoted to the use of electroweak probes to
determine neutron densities. These efforts have been inspired
by the 30-year-old realization that parity-violating electron
scattering (PVES) offers a uniquely clean probe of neutron
densities that is free from strong-interaction uncertainties
[14]. The pioneering Lead Radius EXperiment (PREX) at
the Jefferson Laboratory (JLab) has fulfilled this vision by
providing the first model-independent determination of the
weak-charge form factor of 208Pb, albeit at a single value of
the momentum transfer [15,16]. The weak-charge form factor
is connected to the associated spatial distribution by means
of a Fourier transform. In particular, knowledge of the entire
weak-charge form factor would enable the determination of
the neutron density in much the same way as the measurement
of the charge form factor determines the proton density. At the
time of this writing, the followup PREX-II campaign at JLab
was already underway. PREX-II will improve on the original
PREX by reaching a precision in the measured weak-charge
form factor that will translate into a ≈0.06 fm sensitivity on
the neutron radius of 208Pb. In turn, the brand new Calcium
Radius EXperiment (CREX) is scheduled to run immediately
after PREX-II. CREX will measure the weak-charge form
factor of 48Ca with a high enough precision to allow a
determination of its neutron radius to ≈0.02–0.03 fm [17].
Beyond JLab, the Mainz Energy recovery Superconducting
Accelerator (MESA), envisioned to start operations by 2023,
will pave the way for an era of high-precision parity-violating
experiments [18]. Within the scope of the P2 experiment,
aimed to measure the weak charge of the proton with an
unprecedented precision of 1.5%, the Mainz Radius EXper-
iment (MREX) will determine the neutron radius of 208Pb to
0.03 fm, which represents a factor of 2 improvement relative
to PREX-II. Finally, fruitful discussions have started on the
physics case for a measurement of the weak charge of 12C at
MESA [19].

Besides its intrinsic value as a fundamental nuclear-
structure observable, knowledge of the neutron distribution
provides a powerful bridge to a diversity of physical phenom-
ena. For example, the neutron skin thickness of heavy nuclei,
defined as the difference between the neutron and proton
root-mean-square radii Rskin ≡ Rn − Rp, is strongly correlated
to the slope of the symmetry energy at saturation density
[20–23]—a fundamental parameter of the equation of state
that impacts the structure, composition, and cooling mecha-
nism of neutron stars [24–30]. In turn, important dynamical
signatures observed in the collision of heavy ions are encoded
in the density dependence of the symmetry energy [31–38].

Finally, neutron densities play an important role in atomic
parity-violating experiments that could provide a portal to new
physics [39]. As in any weak-interaction process, the signal is
inherently small and hindered by uncertainties in both atomic
and nuclear-structure theory. However, measuring ratios of
parity-violating observables along isotopic chains mitigates
the sensitivity to atomic theory [40]. As a result, nuclear-
structure uncertainties, primarily in the form of neutron radii,
remain the limiting factor in the search for new physics
[41–45].

Although there is little doubt that parity-violating electron
scattering experiments provide one of the cleanest probes
of neutron densities, the experimental challenges are enor-
mous (see Sec. I C). Two recent developments involving
electroweak processes may help mitigate some of the chal-
lenges and have opened new avenues of inquiry into the same
compelling physics [46,47]. Published within a week of each
other, one paper reported the first observation of coherent
elastic neutrino-nucleus scattering (CEνNS) [46], while the
second paper proposed the difference in the charge radii of
mirror nuclei as a complement to the neutron skin thickness
[47]. Shortly after the discovery of weak neutral currents in
1973, CEνNS was suggested as a mechanism with favorable
cross sections that could impact a variety of astrophysical
phenomena, such as neutrino transport in core-collapse super-
novae and neutron stars [48]. CEνNS is “favorable” because
the resulting (coherent) cross section is proportional to the
square of the weak charge of the nucleus, which is dominated
by the neutron number. As such, CEνNS becomes a powerful
tool in the determination of the weak form factor of the
nucleus, at least at low momentum transfers where the process
remains coherent. However, low momentum transfers produce
hard-to-detect low-energy nuclear recoils, a fact that hin-
dered experimental confirmation for over four decades [46].
Whereas the first observation of CEνNS benefited enormously
from the technology developed for dark-matter searches hav-
ing a similar recoil signature, CEνNS could ultimately cripple
direct dark-matter searches through an irreducible neutrino
background, the so-called neutrino floor. Thus, CEνNS has
applications in nuclear structure, fundamental symmetries,
dark-matter searches, and supernovae detection, among many
others [46].

The argument in favor of using the difference in the charge
radii of mirror nuclei as a complement to the neutron skin
thickness is both simple and elegant [47]: in the limit of
exact charge symmetry, the neutron radius of a given nucleus
(e.g., 48Ca) is identical to the proton radius of its mirror
partner (i.e., 48Ni). In this particular example, charge sym-
metry demands the strict equality between the neutron skin
thickness of 48Ca and the difference in proton radii between
48Ni and 48Ca. If true, this would imply that the sophisticated
machinery that has been developed over many decades to
probe the nuclear charge distribution via (parity-conserving)
elastic electron scattering could be brought to bear on this
fundamental problem. Although the basic idea is appealing,
charge symmetry is known to be broken due to both electro-
magnetic effects and quark-mass differences [49]. Thus, the
utility of the above argument relies on whether the correlation
survives in the face of charge-symmetry violations. Naturally,
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most of the work in Ref. [47] was devoted to show that the
differences in the charge radii of mirror nuclei, as predicted
by a set of Skyrme functionals, display a strong correlation
to the associated neutron skin thickness—and ultimately to
the density dependence of the symmetry energy—even in the
presence of Coulomb corrections. Shortly thereafter, these
conclusions were validated in the context of both relativistic
energy density functionals [50] and microscopic approaches
using chiral interactions [51]. Moreover, given that various
neutron-star properties are sensitive to the density dependence
of the symmetry energy, a “data-to-data relation” emerged
between the difference in charge radii of mirror nuclei and
the radius of low-mass neutron stars [50].

The main goal of this paper is to connect three electroweak
processes—parity-violating electron scattering, coherent elas-
tic neutrino-nucleus scattering, and parity-conserving electron
scattering—in the quest to determine ground state neutron
densities which would ultimately lead to powerful constraints
on the equation of state of neutron-rich matter. Although the
connection is compelling, each challenging experiment brings
its own strengths and weaknesses, and thus the need for a
concerted effort. With this goal in mind, the paper has been
organized as follows. In Sec. I we discuss briefly each of
the relevant electroweak processes and highlight their role
as clean and model-independent probes of ground state den-
sities. In turn, Sec. II discusses predictions and correlations
among various ground state properties within the framework
of covariant density functional theory. A summary of the
main results and perspectives for future work are provided in
Sec. III.

I. FORMALISM

In this section we describe briefly the three electroweak
processes that are relevant to this work, their intimate con-
nection to the neutron skin thickness, and ultimately to the
equation of state of neutron rich matter.

A. Elastic electron-nucleus scattering

Mapping the charge distribution of atomic nuclei has
been the source of intense experimental activity for over six
decades [2–5]. Carried primarily—but not exclusively—by
the protons, the nuclear charge distribution has been mapped
with exquisite accuracy using elastic electron scattering. For
the elastic scattering of an electron from a nuclear target, the
Lorentz invariant matrix element may be written as follows:

Fs′s(Q
2) = e2

q2
[U (k′, s′)γμU (k, s)]〈p′|Jμ

EM|p〉, (1)

where kμ = (E , k) is the four-momentum of the incoming
electron, k′μ = (E ′, k′) the corresponding four-momentum of
the scattered electron, and qμ = kμ − k′μ the four-momentum
transfer to the nucleus; see Fig. 1. For elastic scattering, the
four-momentum carried by the photon may related to the
nuclear momenta by energy-momentum conservation: qμ =
p′μ − pμ. In the particular case of elastic scattering, the four-

FIG. 1. Feynman diagram for the elastic scattering of electrons
from a spinless nuclear target. Information on the internal structure
of the nucleus is encoded in the charge form factor Fch(Q2).

momentum transfer qμ satisfies

q2 + 2p · q = 0
lab−→ Q2 = 2Mω, (2)

where M is the mass of the target, Q2 = −q2 > 0, and ω =
q0 is the energy of the virtual photon as measured in the
laboratory frame.

In the particularly important case of elastic electron scat-
tering from a spinless targets, the entire nuclear dynamics is
encoded in a single Lorentz invariant charge form factor. That
is,

〈p′|Jμ
EM|p〉 = ZFch(Q2)(p + p′)μ, (3)

where Z is the electric charge of the nucleus and the form
factor has been normalized to 1 at zero momentum transfer.
As a result, the Lorentz-invariant cross section may be written
as

dσ

dQ2
= 1

4π

(
e2

Q2

)2[ (k · p)(k′ · p) − M2Q2/4

(k · p)2

]
Z2F 2

ch(Q2),

(4)
or, as commonly written in the laboratory frame [52],(

dσ

d�

)
EM

=
[

α2 cos2(θ/2)

4E2 sin4(θ/2)

(
E ′

E

)]
Z2F 2

ch(Q2), (5)

where α is the fine-structure constant. The expression in
brackets is the Mott cross section which represents the scat-
tering of a relativistic (massless) electron from a spinless
and structureless target. This term is given exclusively in
terms of kinematical variables and the fine structure constant.
Deviations from this structureless limit are imprinted in the
charge form factor of the nucleus. Given that the form factor
may be viewed as the Fourier transform of the spatial distribu-
tion, elastic electron scattering has painted the most accurate
picture of the distribution of charge in atomic nuclei [53].

B. Coherent elastic neutrino nucleus scattering

Unlike the long and successful history of elastic electron
scattering as a sensitive probe of proton densities, no elec-
troweak probe has been used effectively to map the neutron
distribution—at least not until very recently. Although the
small weak charge of the proton makes elastic neutrino scat-
tering a sensitive probe of neutron densities, the extremely
feeble weak interaction hinders the detection of the outgoing
neutrino; see Fig. 2. Thus, the detection of nuclear recoils

054301-3



YANG, HERNANDEZ, AND PIEKAREWICZ PHYSICAL REVIEW C 100, 054301 (2019)

FIG. 2. Feynman diagram for the elastic scattering of neutrinos
from a spinless nuclear target. Information on the internal structure
of the nucleus is encoded in the weak charge form factor Fwk(Q2).

of extremely low energy provides the sole alternative—an
enormously challenging task that delayed the experimental
confirmation of the coherent process [46] by more than four
decades since first suggested by Freedman [48]. Now that
the coherent process has been observed, the application of
CEνNS to the determination of neutron densities [54–56] and
supernovae detection has become a reality [57,58].

In analogy to Eq. (1), the Lorentz invariant matrix element
for the elastic scattering of a neutrino from a nuclear target
may be written as follows:

Fs′s(Q
2)

= M2
Z

16M2
W

g2

Q2 + M2
Z

[U (k′, s′)γμ(1−γ 5)U (k, s)]〈p′|Jμ
NC|p〉

Q2�M2
Z−−−−→ GF

2
√

2
[U (k′, s′)γμ(1 − γ 5)U (k, s)]〈p′|Jμ

NC|p〉,
(6)

where in the last line we have assumed that Q2 � M2
Z ,

we have introduced the dimensionful Fermi constant GF =
g2/4

√
2M2

W , and “NC” stands for weak neutral current. If the
neutrino scatters elastically from a spinless target, then, as
in the case of elastic electron scattering, the entire nuclear
contribution to the reaction may be subsumed in a single
Lorentz invariant weak form factor; that is,

〈p′|Jμ
NC|p〉 = QwkFwk(Q2)(p + p′)μ, (7)

where Qwk = −N + (1 − 4 sin2 θW)Z is the weak nuclear
charge and the form factor has been normalized to 1 at
zero momentum transfer. As noted earlier, because of the
suppression of the weak charge of the proton, most of the
weak charge of the nucleus is carried by the neutrons. After
carrying out the customary contraction between the leptonic
and hadronic tensors, one obtains the Lorentz-invariant cross
section

dσ

dQ2
= G2

F

8π

[
(k · p)(k′ · p) − M2Q2/4

(k · p)2

]
Q2

wkF 2
wk(Q2), (8)

where k (k′) is the four-momentum of the incoming (outgoing)
neutrino and p is the initial four-momentum of the target
nucleus of mass M. Finally, evaluating the above differential
cross in the laboratory frame in terms of the kinetic energy T

FIG. 3. Feynman diagram for the elastic scattering of longitudi-
nally polarized electrons from a spinless nuclear target. In the Born
approximation, information on the internal structure of the nucleus
is encoded in the ratio between the weak Fwk(Q2) and the charge
Fch(Q2) form factors.

of the recoiling nucleus, one obtains [59]
(

dσ

dT

)
NC

= G2
F

8π
M

[
2 − 2

T

E
− MT

E2

]
Q2

wkF 2
wk(Q2), (9)

where E is the incident neutrino energy and Q2 = 2MT . Note
that the differential cross section at forward angles is propor-
tional to the square of the weak charge of the nucleus, namely,
Q2

wk ≈ N2. This is the hallmark of the coherent reaction and
the main reason for the identification of CEνNS as having
favorable cross sections [48], even if it took more than four
decades for its experimental realization [46].

C. Parity-violating electron scattering

In an innovative paper written three decades ago, Don-
nelly, Dubach, and Sick proposed the use of parity-violating
electron scattering (PVES) as a clean and model-independent
probe of neutron densities [14]. Since then [60], many of the
experimental challenges have been met, leading to a mature
and enormously successful PVES program at JLab [7,15,61].
Moreover, the interest in measuring the neutron distribution of
heavy nuclei (specifically of 208Pb) was rekindled because of
the impact that such a measurement could have in constraining
the equation of state of neutron rich matter and ultimately the
structure of neutron stars [24].

As illustrated in Fig. 3, a parity-violating asymmetry de-
velops as a result of the quantum interference between two
Feynman diagrams: a large one involving the exchange of a
photon and a much smaller one involving the exchange of a
Z0 boson [53,62]. The parity-violating asymmetry is defined
as

APV =
(

dσ
d�

)
R − (

dσ
d�

)
L(

dσ
d�

)
R + (

dσ
d�

)
L

, (10)

where (dσ/d�)R/L is the differential cross section for the
elastic scattering of right/left-handed longitudinally polarized
electrons. Once electromagnetic and neutral-current matrix
elements have been evaluated, as in Eqs. (1) and (6), the
cross section for right/left-handed electrons can be readily
computed. One obtains

(
dσ

d�

)
R/L

=
(

dσ

d�

)
EM

(1 ± APV (Q2)), (11)
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where the parity-violating asymmetry is given by

APV (Q2) = GF Q2

4πα
√

2

QwkFwk(Q2)

ZFch(Q2)
. (12)

We have continued to assume that the four-momentum trans-
fer is negligible compared to the Z0 mass (Q2 � M2

Z ), and
Coulomb distortions have been ignored [23,63,64]. Note that
all information relevant to the spinless nuclear target is en-
capsulated in the ratio between the weak and the charge form
factors. Given that the distribution of charge is known accu-
rately for many nuclei—certainly in the case of 48Ca and 208Pb
[3]—measuring the parity-violating asymmetry provides vi-
tal and model-independent information on the weak form
factor. However, experiments of this kind are enormously
challenging because the scale of the asymmetry is set by the
dimensionless ratio Q2/M2

W , which at the JLab kinematics is
about 10−6.

D. Symmetrized Fermi function

Although theoretical predictions will be provided in Sec. II
using a modern set of accurately calibrated relativistic density
functionals [30], these predictions are generated numerically.
Often, a simple analytic form is desirable to compare against
experimental results, especially at low momentum transfers
where only a few moments of the density distribution are suffi-
cient to constrain the experimental results. This is particularly
true in the case of CEνNS or with experiments designed to
probe physics beyond the standard model [65]. Assuming that
the form factor F (q) may be related to the spatial distribution
ρ(r) through a Fourier transform, the low momentum-transfer
behavior of the form factor may be written as follows:

F (q) = 1 − q2

3!
R2 + q4

5!
R4 − q6

7!
R6 + . . . , (13)

where q ≡
√

Q2 and the various moments of the spatial distri-
bution are defined by

R2n ≡ 〈r2n〉 =
∫

r2nρ(r)d3r∫
ρ(r)d3r

. (14)

Of particular interest is the mean square radius of the spatial
distribution R ≡

√
R2, a quantity that in the case of the charge

density often serves to calibrate energy density functionals
[29]. As indicated above, the mean square radius may be
computed from either the slope of the form factor at the
origin or, alternatively, from the second moment of the spatial
distribution.

In a recent publication we introduced [66], or rather rein-
troduced [67], the symmetrized Fermi density defined by the
following expression:

ρSF(r)≡ρ0
sinh(c/a)

cosh (r/a) + cosh(c/a)

where ρ0 ≡ 3A

4πc(c2 + π2a2)
and

∫
ρSF(r)d3r =A, (15)

where c is the “half-density radius” and a the “surface
diffuseness.”

Although practically indistinguishable from the conven-
tional and universally adopted Fermi density, the lesser known
symmetrized version displays unique analytical properties
that—unlike the conventional density—has a form factor that
can be evaluated in closed analytic form [67]:

FSF(q) = 1

A

∫
e−iq·rρSF(r)d3r

= 3

qc[(qc)2 + (πqa)2]

(
πqa

sinh(πqa)

)

×
[

πqa

tanh(πqa)
sin(qc) − qc cos(qc)

]
, (16)

with FSF(q = 0) = 1. Among the many desirable features
of an analytic form factor is that all the moments of the
distribution can be evaluated exactly. That is,

R2 ≡ 〈r2〉 = 3
5 c2 + 7

5 (πa)2, (17a)

R4 ≡ 〈r4〉 = 3
7 c4 + 18

7 (πa)2c2 + 31
7 (πa)4, (17b)

R6 ≡ 〈r6〉 = 1
3 c6 + 11

3 (πa)2c4 + 239
15 (πa)4c2 + 127

5 (πa)6.

(17c)

Note that all these expressions are exact as they do not rely
on a power series expansion in terms of the “small” parameter
πa/c. Finally we have the highly insightful behavior of the
symmetrized Fermi form factor in the limit of high momentum
transfers:

FSF(q) → −6
πa√

c2+π2a2

cos(qc + δ)

qc
e−πqa, tan δ ≡ πa

c
.

(18)

This expression encapsulates many of the insights developed
more than three decades ago in the context of the conventional
Fermi function: diffractive oscillations controlled by the half-
density radius c and an exponential falloff driven by the
diffuseness parameter a (or rather πa) [68,69].

II. RESULTS

We start this section by introducing the five relativistic
mean-field (RMF) models that will be used in this work. The
models, falling under the general rubric of relativistic energy
density functionals, are based on an underlying Lagrangian
density containing an isodoublet nucleon field interacting via
the exchange of various mesons and the photon [70,71]. Later
on, various nonlinear terms were added to the Lagrangian
density in an effort to improve the predictive power of the
model [24,72–74]. Once all physics insights (and biases) have
been incorporated into the Lagrangian density, one proceeds
to determine the parameters of the model by adopting a fitting
protocol. In our case the calibration of the parameters is
informed by ground state properties of finite nuclei, their
collective response, and constraints on the maximum neutron-
star mass [29]. The outcome of the calibration procedure is an
optimal set of parameters together with a covariance matrix
that properly accounts for statistical uncertainties and correla-
tions. The fitting protocol for all the models used in this paper
is identical save one important distinction: the assumed value
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FIG. 4. (a) The charge form factor of 208Pb as predicted by the set of relativistic mean-field models introduced in the text; the experimental
data is from Ref. [3]. Given that all models are informed by the charge radius of 208Pb, there are no visible differences in their predictions up
to a momentum transfer of q � 2 fm−1, thus the “RMF” label in the figure represents the collection of all RMF models. Predictions from a
symmetrized Fermi function are also included to illustrate the characteristic diffractive oscillations and exponential falloff of the form factor;
see Sec. I D. (b) The corresponding figure but now for the weak form factor of 208Pb. In this case the experimental information is reduced to
the single point measured by the PREX collaboration at the momentum transfer of q = 0.475 fm−1 [15].

for neutron skin thickness of 208Pb (R208
skin). Indeed, the neutron

skin thickness of 208Pb is allowed to vary over the relative
wide range of R208

skin = (0.12–0.32) fm [29,30]. The need to
adopt such a prescription stems from the fact that the existent
database of experimental observables is inadequate to con-
strain the isovector sector of the nuclear density functional—a
fact that is reflected in our poor knowledge of the density
dependence of the symmetry energy. By incorporating the
neutron skin thickness of 208Pb—an observable recognized
as a strong isovector indicator [20–23]—one can successfully
mitigate the problem.

In Fig. 4 we display predictions for the charge (left panel)
and weak (right panel) form factors of 208Pb as predicted
by the five models calibrated in Ref. [30]. The experimental
charge form factor is obtained from a Fourier-Bessel fit to
the elastic electron scattering data [3]. The theoretical band
(labeled “RMF”) contains the predictions of all five models.
Although all models are informed by the charge radius of
208Pb, the agreement with experiment extends well beyond the
curvature at q ≡

√
Q2 = 0. An analytic symmetrized Fermi

function fitted to the first two moments of the theoretical
distribution is also included for comparison. The unmistak-
able diffractive oscillations and exponential falloff suggested
by Eq. (18) are clearly discernible in the figure. Moreover,
although simple, the symmetrized Fermi function accurately
reproduces the experimental cross section for nearly three
diffraction minima. Unfortunately, the experimental situation
concerning the weak form factor is diametrically opposed; see
Fig. 4(b). Indeed, the determination of the weak form factor
of 208Pb at the single momentum transfer of q = 0.475 fm−1

by the PREX Collaboration represents the sole electroweak
measurement available today [15,16]. Although countless
hadronic experiments that probe the neutron distribution have
been conducted for decades, they are plagued—unlike elec-

troweak measurements—by considerable model dependen-
cies and uncontrolled approximations [13]. Alongside the sole
experimental point, predictions are displayed for the rela-
tivistic mean-field models and a symmetrized Fermi function.
Although it is difficult to appreciate using a logarithmic scale,
the PREX error bar is simply too large to discriminate among
the various theoretical models, even when their weak (or neu-
tron) radii differ by about 3%. Indeed, given that model depen-
dences become discernible only at large momentum transfers,
and these high-momentum components dictate the structure of
the density in the nuclear interior, it is preferable to examine
the spatial distribution of both electric and weak charges.

Theoretical predictions for the charge and weak-charge
densities of 208Pb are displayed in Fig. 5(a) alongside the
experimental charge density [3]. Now the model dependence
is evident: models predicting a small weak (or neutron) radius
must be enhanced in the interior as they all must integrate to
the same weak charge. In contrast, all theoretical predictions
for the charge density fall within a single narrow band, as a
natural consequence that all were fitted to the experimental
charge radius of 208Pb. The various models displayed in the
figure have been labeled according to the value predicted for
the neutron skin thickness. In turn “point” proton and neutron
densities, shown by the dashed lines in Fig. 5(b), as predicted
by the model with the smallest neutron skin, have been
included for comparison. This comparison underscores that,
whereas the charge distribution follows closely the proton
density, the weak-charge density is mostly sensitive to the
neutron distribution.

A. PREX and CREX

Having introduced the various theoretical models and their
impact in predicting ground state densities and form factors
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FIG. 5. (a) The charge density of 208Pb as predicted by the set of relativistic mean-field models introduced in the text; the experimental data
(shown in thick black) is from Ref. [3]. Given that all models are informed by the charge radius of 208Pb, there are no significant differences in
their predictions, even in the nuclear interior. In contrast, differences in the weak charge density are clearly visible as a result of the calibration
procedure, where the curves from top to bottom correspond to ascending Rskin. (b) “Point” proton and neutron densities (dashed) as predicted
by one of the five models are compared against the corresponding charge and weak charge densities (solid). The figure illustrates that, whereas
the charge density follows closely the proton distribution, the weak charge density is largely driven by the neutron distribution.

of 208Pb, we now turn our attention to the upcoming PREX-II
and CREX campaigns at JLab. In this context it is particularly
useful to frame the discussion in terms of the “weak-skin”
form factor, defined as the difference between the correspond-
ing charge and weak form factors [13]:

FWskin(q) ≡ Fch(q) − Fwk(q) with q ≡
√

Q2. (19)

Although not as physically intuitive as the neutron skin thick-
ness, the weak-skin form factor has the virtue of being both
a strong isovector indicator and a model-independent observ-
able. Following the low-q expansion outlined in Eq. (13), the
leading behavior of the weak-skin form factor is given by

FWskin(q) ≈ q2

6

(
R2

wk − R2
ch

) = q2

6
(Rwk + Rch )(Rwk − Rch )

≡ q2

6
(Rwk + Rch )RWskin. (20)

Thus the leading behavior of the weak-skin form factor is
determined by the “weak-skin thickness” RWskin ≡ Rwk − Rch,
a quantity that incorporates information about single-nucleon
(both charge and weak-charge) form factors. Hence RWskin,
unlike the neutron skin thickness, is a genuine physical ob-
servable that may in principle be extracted from experiment.
In practice, however, both PREX-II and CREX measurements
are carried out at a single value of the momentum transfer
that is sufficiently large to invalidate the low-q expansion.
Thus, some model-dependent assumptions, although mild, are
required to extract the weak skin and ultimately the neutron
skin.

To illustrate these ideas we display in Fig. 6 (borrowed
from Ref. [13]) predictions for the weak-skin form factor of
208Pb and 48Ca using the same five models introduced in the
previous subsection. Also shown is the original PREX result
and a tentative CREX point placed at an arbitrary central

value but with a realistic experimental error bar [17]. The big
model spread near the momentum transfer of the experiment
(q = 0.475 fm−1 for PREX and q = 0.778 fm−1 for CREX)
is easy to understand: given the model independence of the
charge form factor, models with thicker neutron skins (or
equivalently larger weak radii) predict a weak form factor
that falls faster with momentum transfer, resulting in a larger
FWskin at the momentum transfer of the experiment. In the
case of 208Pb, we are confident that the improved PREX-II
measurement that aims to reduce the error bars by at least a
factor of 3 will provide stringent constraints on the isovector
sector of the nuclear density functional. Note that at the
time of this writing the PREX-II campaign was already in
progress. Figure 6(b) shows the corresponding plot but for
the case of 48Ca. Together with our theoretical predictions we
also include predictions from theoretical models with a more
microscopic underpinning. These are the dispersive optimal
model (DOM) of Ref. [75] and the chirally inspired NNLOsat

model of Hagen and collaborators [76]. As is clearly evident
in the figure, the discrepancy between the two microscopic
models is fairly large and spans the entire range of mean-
field models. Indeed, the values reported for the neutron
skin thickness of 48Ca are 0.12 � R48

skin � 0.15 fm [76] and
R48

skin = 0.249(23) fm [75], respectively. As mentioned earlier,
the momentum transfer of the experiment is too large to
justify the Taylor series expansion carried out in Eq. (13).
Nevertheless, as displayed in the inset, the correlation between
the neutron skin thickness of 48Ca and the weak form factor at
the experimental momentum transfer is strong for the limited
set of models considered here. Values for the correlation
coefficient ρ, slope b, and intercept a ≈ 0 are listed in the
figure, while the blue region encompasses the one-sigma
uncertainty band. In the case of 208Pb, a similar correlation
was found using an even larger set of models; see Fig. 3 in
Ref. [21].
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FIG. 6. (a) The weak-skin form factor of 208Pb as predicted by the set of relativistic mean-field models introduced in the text is
compared against the PREX measurement [15,16], where the curves at maximum from top to bottom correspond to descending Rskin. (b) The
corresponding figure for 48Ca, but now including the predictions from the dispersive optical model (top dashed line) [75] and the NNLOsat

interaction (bottom dashed line) [76], where the solid curves follow the same trend as part (a). The location of the CREX point is arbitrary
but includes realistic experimental errors. Finally, the inset displays the correlation between the neutron skin thickness and the weak-skin form
form factor at the CREX momentum transfer of qCREX = 0.778 fm−1.

B. Coherent elastic neutrino-nucleus scattering

Given the imminent start of both the PREX-II and CREX
campaigns at JLab, it is timely to explore the insights that
one may gain from such compelling experiments. Specifi-
cally, we want to explore the limits that PREX-II and CREX
may impose on the weak form factor of 132Xe and 40Ar
at low momentum transfer. Both liquid noble gases, xenon
and argon, are currently being used as active targets for the
detection of neutrinos as well as dark matter particles. In
the context of CEνNS, the coherent cross section at forward
angles is dominated by the weak charge of the nucleus—
a quantity that may provide a portal to new physics due
to its dependence on sin2 θW. Away from Q2 = 0, but still
at low momentum transfers, nuclear-structure corrections to
the coherent cross section are dominated by the weak ra-
dius. This “loss of coherence,” namely, the weakening of
the cross section due to the deviations from the quadratic
enhancement with the number of target neutrons (Q2

wk ≈ N2),
is a natural consequence of the finite nuclear size. As such,
CEνNS also provides fundamental information on the neutron
distribution.

Possible constraints on the neutron skin thickness of 40Ar
deduced from the upcoming CREX measurement are depicted
in Fig. 7(a). Based on the particular set of energy density func-
tionals used in this work, we found an extremely strong corre-
lation (ρ ≈ 1) between the neutron skin thicknesses of 48Ca
and 40Ar. Theoretical errors were computed from the cor-
responding covariance matrix extracted from the calibration
procedure [29]. In turn, the optimal straight line and the asso-
ciated error band depicted in the figure were obtained from a
linear regression analysis. Assuming, as in Fig. 6(b), a central
CREX value placed arbitrarily at R48

skin ≈ 0.2 fm—but accu-
rately reflecting the anticipated experimental error—results in
a neutron skin thickness for argon of R40

skin = 0.097(14) fm.

The rectangular section attached to the figure reflects predic-
tions from microscopic models of the neutron skin thickness
of 48Ca [76] and 40Ar [77]. These predictions suggest a
fairly soft symmetry energy; indeed, the predicted value for
the slope of the symmetry energy falls in the fairly narrow
range of L = 37.8–47.7 MeV [76]. The associated weak form
factor of 40Ar is displayed in Fig. 7(b) as a function of
momentum transfer. Recall that, for spinless nuclei, the weak
form factor encodes the entire nuclear-structure contribution
to the coherent cross section. The momentum-transfer range
extends up to a maximum value of qmax = 0.5 fm−1 which,
in turn, corresponds to a maximum incoming neutrino energy
of Emax 
 qmax/2 ≈ 50 MeV and a maximum recoil energy
of Tmax ≈ 130 keV. Although the weak form factor falls off
to almost half of its maximum value, resulting in a significant
quenching of the coherent cross section from its Q2 = 0 value,
differences in the model predictions amount to less than 2%
over the entire—yet relatively modest—momentum-transfer
range. This mild model dependence stands in stark contrast to
the large spread displayed by the neutron skin thickness, an
isovector quantity that emerges as the small difference of two
large numbers. The insensitivity of the coherent cross section
to nuclear-structure effects—especially for nuclei with a small
neutron excess—makes CEνNS an ideal probe of new physics
[19]. Although compelling, it is essential to validate this claim
against a set of theoretical models that rely on a different
protocol. Finally, we display in the inset of Fig. 7(b) a compar-
ison between a symmetrized Fermi function [66,67] informed
by the “stiffest” density functional and the corresponding
self-consistent mean-field model. Encapsulated in the shape
of the form factor are the characteristic diffractive oscillations
driven by the half-density radius c and the exponential falloff
controlled by the diffuseness parameter a; see Eq. (18). By
adjusting c and a to reproduce the first two moments of the
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FIG. 7. (a) Data-to-data relation between the neutron skin thickness of 48Ca and the correspondent skin thickness of 40Ar. Theoretical
error bars are displayed for each model together with error bands for the optimal linear fit: R40

skin = −0.015 + 0.572 R48
skin. Note that whereas

the CREX error bar is realistic, the central value is arbitrarily placed at R48
skin ≈ 0.2 fm. The rectangular section includes the predictions from

Refs. [76,77]. (b) The weak form factor of 40Ar as predicted by the set of relativistic mean-field models introduced in the text. Given that the
form factor at low momentum transfers is sensitive to the weak radius, and not to the weak skin, differences in the model predictions are very
small. The inset shows a comparison between one of the self-consistent mean-field models and the corresponding symmetrized Fermi function.

selected density functional, good agreement is obtained for
momentum transfers q � 2 fm−1.

The analogous plot, but now displaying the correlation
between 208Pb and 132Xe, is shown in Fig. 8. The PREX
Collaboration’s main goal is to determine the neutron skin
thickness of 208Pb in order to constrain the density dependence
of the symmetry energy and ultimately the structure of neutron
stars. Qualitatively, 208Pb is as efficient in constraining the
neutron skin thickness of 132Xe as 48Ca is in constraining

the corresponding skin thickness of 40Ar. This result could
have been anticipated given the strong correlation found in
Ref. [78] between the neutron skin thicknesses of 208Pb
and 132Sn, where a much larger set of both relativistic and
nonrelativistic density functionals was used to validate the
correlation. Quantitatively, however, the anticipated ≈0.06 fm
from the PREX-II measurement translates into a larger error
for 132Xe than for 40Ar; that is, assuming a central PREX-II
value arbitrarily placed at R208

skin ≈ 0.22 fm yields a neutron

FIG. 8. (a) Data-to-data relation between the neutron skin thickness of 208Pb and the correspondent skin thickness of 132Xe. Theoretical
error bars are displayed for each model together with error bands for the optimal linear fit: R132

skin = 0.017 + 0.793 R208
skin. Note that whereas the

PREX-II error bar is realistic, the central value is arbitrarily placed at R132
skin ≈ 0.22 fm. (b) The weak form factor of 132Xe as predicted by the set

of relativistic mean-field models introduced in the text. Given that the form factor at low momentum transfers is sensitive to the weak radius,
and not to the weak skin, differences in the model predictions are very small. The inset shows a comparison between one of the self-consistent
mean-field models and the corresponding symmetrized Fermi function.

054301-9



YANG, HERNANDEZ, AND PIEKAREWICZ PHYSICAL REVIEW C 100, 054301 (2019)

FIG. 9. (a) Point proton and neutron densities for 50Ti as predicted by the set of relativistic mean-field models introduced in the text. Given
that the charge radius of neighboring 48Ca was included in the calibration of the models, we see a small spread in the predictions of the proton
density. However, since these models include different predictions for the neutron radius of 208Pb, the neutron distribution of 50Ti shows a
significantly larger spread. (b) In contrast, the corresponding plot for the neutron deficient 50Ni nucleus displays the opposite trend, namely, a
large spread in the proton density and a small spread in the neutron distribution.

skin thickness for xenon of R132
skin = 0.188(55) fm. Yet, in the

case of the weak form factor of 132Xe displayed in Fig. 8(b),
the weak model dependence found in 40Ar still persists—a
fact that reinforces CEνNS as a powerful tool for the search
for new physics [65]. In addition, we continue to find excellent
agreement between the (analytic) two-parameter symmetrized
Fermi function and the numerically generated weak form
factor over a significant momentum-transfer range.

We conclude by underscoring the solid underpinning of
the mild model dependence of the weak form factor. Within
the scope of density functional theory, the calibration of the
functional is informed by both binding energies and charge
radii of a variety of spherical nuclei. Hence, although some
flexibility remains in the determination of the neutron (or
weak) skin thickness because of uncertainties in the isovector
sector, this flexibility is not without limits. Indeed, the quality
of the fit deteriorates considerably once an overly thin or
thick neutron skin in 208Pb is assumed. In other words, the
distribution of electric charge informs, to some extent, the cor-
responding distribution of weak charge. Nevertheless, given
the enormous precision demanded to uncover new physics, it
becomes imperative to minimize the theoretical uncertainties
in the determination of the weak form factor [65]. Both CREX
and PREX-II will be instrumental in realizing this goal.

C. Charge radii of mirror nuclei

We conclude this section by examining correlations be-
tween the neutron skin thickness of 48Ca and the difference
in proton radii of mirror nuclei. The underpinning of the
correlation is compelling: in the limit of exact charge sym-
metry, the neutron skin of a given nucleus is identical to the
difference in proton radii between the nucleus of interest and
its mirror nucleus [47]. Indeed, in the absence of charge-
symmetry violations the entire neutron density of the given
nucleus must be identical to the proton density of its mirror

nucleus. Given the long and successful history of electron
scattering experiments in mapping the proton distribution,
perhaps this connection can help constrain the neutron distri-
bution. Naturally, charge symmetry is broken at the most fun-
damental level by quark-mass differences and electromagnetic
effects [49]. As we have done in our earlier work [50], we
limit ourselves here to studying charge-symmetry violations
induced by the Coulomb interaction, which, although critical,
is well understood. Not included in our description, however,
are explicit manifestations of charge symmetry violations in
the nuclear force—known to be responsible for residual dif-
ferences in the binding energy of mirror nuclei, the so-called
Okamoto-Nolen-Schiffer anomaly [79,80].

Ideally, one would like to explore correlations between
the two doubly-magic mirror nuclei 48Ca and 48Ni. How-
ever, given that 48Ni is unstable against two-proton decay,
we concentrate instead on the neighboring 50Ti-50Ni mirror
pair. In Fig. 9(a) we display proton and neutron densities
for 50Ti as predicted by the same five relativistic density
functionals employed throughout this work; Coulomb effects
are fully incorporated into these calculations. Having six
excess neutrons, 50Ti develops a neutron skin that is slightly
smaller than 48Ca. Even so, the theoretically- induced spread
in the neutron density is clearly discernible. The situation
is drastically different for the proton density, which, being
informed by the charge radius of neighboring 48Ca, displays
a modest model dependence. Indeed, charge (or proton) radii
differ from each other by at most 0.3% and by less than 2%
from the experimental value [5]. As anticipated, Fig. 9(b)
is—at least qualitatively—the “mirror” image of Fig. 9(a).
Now the theoretical spread in the neutron density is barely
noticeable while the large model spread has shifted to the
proton density. Interestingly, the size of the “proton skin” in
50Ni is significantly larger than the corresponding neutron skin
in 50Ti. This is because in the neutron deficient 50Ni isotope
both the Coulomb repulsion and the symmetry energy work in
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FIG. 10. (a) Point proton and neutron densities for both 50Ti and 50Ni using (for simplicity) only one of the theoretical models introduced
in the text. Shown in the inset is the “running sum” defined in Eq. (21) for Ni(p), Ti(n), Ti(p), and Ni(n), respectively from top to bottom.
Note that the mean square radii of the minority species (i.e., protons for 50Ti and neutrons for 50Ni) are practically indistinguishable. (b) The
corresponding plot for the point proton and neutron form factors. The figure underscores the excellent agreement between the form factors,
especially for the case of the minority species, i.e., protons in titanium and neutrons in nickel.

tandem in pushing protons out to the surface, thereby creating
a larger proton skin.

To further strengthen the connection between mirror nu-
clei, we display together in Fig. 10(a) proton and neutron
densities for both 50Ti and 50Ni; for clarity we employ only
one of the models. Although the matching appears far from
ideal, most of the differences are confined to the nuclear
interior, which is known to be sensitive to the behavior of
the associated form factor at high momentum transfers. In-
stead, the agreement in the tails of the spatial distribution—
associated with the low momentum behavior of the form
factor—is significantly better. To fully appreciate this point,
we display in the inset the “running sum” associated to the
mean square radius. Taking the charge radius as an example,
the running sum is defined as

R2
ch(r) = 1

Z

∫ r

0
4π x4ρch(x)dx

r→∞−−−→ R2
ch. (21)

There is a fairly good agreement between the root-mean-
square neutron radius in titanium (Rn = 3.572 fm) and the
corresponding proton radius in nickel (Rp = 3.654 fm). In
both cases the symmetry pressure pushes the “majority”
species (protons in nickel and neutrons in titanium) to the
surface. However, in the case of nickel the additional Coulomb
repulsion pushes the protons even further out to the surface.
Whereas such a modest ≈2% disagreement may have been
expected, the minute 0.6% discrepancy in the radii of the
“minority” species is better than anticipated: Rp = 3.419 fm
for titanium against Rn = 3.397 fm for nickel. One would
have expected that, because of the Coulomb repulsion, the 22
protons in titanium would be pushed farther out than the 22
neutrons in nickel; and they are, but only by a mere ≈0.02 fm.
That the neutrons’ distribution in nickel is more extended

than anticipated may be due to their tendency to track the
28 protons. More remarkable is that this level of agreement
extends to the form factors over a significant range of mo-
mentum transfers; see Fig. 10(b). Although in the interest
of clarity our results are displayed for only one model, the
same level of agreement is observed for all the other models
considered in this work. Indeed, so far we have found this
behavior to be universal, independent of both the model and
the mirror partners under consideration. And while we believe
that there are compelling theoretical arguments underpinning
this behavior, it would be valuable for our results to be tested
against alternative approaches.

Having established the close connection between the
ground state form factors of mirror nuclei—even in the pres-
ence of Coulomb interactions—we now define the “mirror
skin” form factor in complete analogy to the weak-skin form
factor introduced in Eq. (19). That is,

FMskin(Z, N ; q)

≡ Fch(Z, N ; q) − Fch(N, Z; q)

≈ q2

6

(
R2

ch(N, Z ) − R2
ch(Z, N )

)

= q2

6
(Rch(N, Z ) + Rch(Z, N ))(Rch(N, Z ) − Rch(Z, N ))

≡ q2

6
(Rch(N, Z ) + Rch(Z, N ))RMskin(Z, N ), (22)

where we have defined the “mirror skin thickness” as
RMskin(Z, N ) ≡ Rch(N, Z ) − Rch(Z, N ).

The mirror skin form factor for the A = 50 (Ti-Ni) mirror
pair is displayed in Fig. 11(a). The uncanny resemblance
between this figure and Fig. 6(b) for the weak-skin form factor
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FIG. 11. (a) The “mirror skin” form factor of the A = 50 mirror nuclei titanium and nickel, where the curves at maximum from top to
bottom correspond to descending RMskin; this plot should be compared against the corresponding weak-skin form factor of 48Ca displayed
in Fig. 6(b). (b) Data-to-data relation between the neutron skin thickness of 48Ca and the mirror skin thickness of the A = 50 mirror nuclei.
Theoretical error bars are displayed for each model together with error bands for the optimal linear fit R50

Mskin = 0.079 + 0.615 R48
skin. Note that,

whereas the CREX error bar is realistic, the central value is arbitrarily placed at R48
skin ≈ 0.2 fm.

of 48Ca is no accident and serves to reinforce the notion
that the mirror skin serves as a reliable proxy for the weak
skin [47,50,51]. Moreover, the resemblance between the two
figures indicates that this intimate connection extends beyond
Q2 = 0 (i.e., skins) to the entire form factor. To conclude, and
to further reinforce the connection, we display in Fig. 11(b)
the correlation between mirror skins and neutron skins. As we
have done in Fig. 7(a) for the case of 40Ar, we show the error
that could be inferred in R50

Mskin from the upcoming CREX
measurement. Assuming a central CREX value at R48

skin ≈
0.2 fm, we deduce a corresponding value for the difference in
charge radii of mirror nuclei of R50

Mskin = 0.201(15) fm. This
suggests that a measurement of the charge radius of 50Ni to
0.01 fm could provide important theoretical constraints.

We close this section with a provocative question: Could
one provide a theoretical estimate for R50

Mskin? In the case of
50Ti, an experimental determination of its charge radius al-
ready exists [5]. In contrast, 58Ni—eight neutrons away from
50Ni—is the most neutron-deficient nickel isotope with a well
measured charge radius. At present, very few experimental
alternatives exist to measure the internal structure of short-
lived radioactive nuclei. Laser spectroscopy is a mature ex-
perimental field that has been used effectively throughout the
years to provide accurate measurements of charge radii along
isotopic chains; see for example Ref. [81] and references
contained therein. As an alternative, the brand-new SCRIT
electron scattering facility at RIKEN is the world first facility
of its kind dedicated to the study of short-lived isotopes [6].
Although it would be enormously challenging, if the physics
case is strong enough one could envision measuring the charge
radius of 50Ni at such a facility [82]. Theoretically, however,
one may try to overcome the intrinsic limitations of existing
theoretical descriptions by using machine learning. Indeed,
an approach based on the construction of a “Bayesian neural
network” (BNN) has been successfully implemented in the
refinement of nuclear masses [83–87] and charge radii [88].
The BNN paradigm is implemented in two steps. First, one

starts with an accurate model that provides a good description
of the desired observable. Then, one refines the model by
training an artificial neural network on the “small” residuals
between the theoretical predictions and the experimental data.
Note that, besides improved predictions, the Bayesian nature
of the approach provides reliable estimates of the theoretical
uncertainties. In the near future one could revisit the BNN
refinement of charge radii introduced in Ref. [88] to examine
whether reliable predictions could be made for the charge
radius of 50Ni, in spite of the large extrapolation that this
entails.

III. CONCLUSIONS

Where do the neutrons go? As recently articulated in
Ref. [89], the elusive answer to such a deceptively simple
question provides fundamental new insights into the structure
of both atomic nuclei and neutron stars. Although vast experi-
mental resources have been devoted for decades to measure
the neutron density of atomic nuclei, a model-independent
determination remains elusive [13]. Although valuable, these
experiments involve hadronic reactions that are hindered by
major uncertainties and uncontrolled approximations. Yet,
with recent experimental developments the possibility of mea-
suring the neutron distribution using exclusively electroweak
probes has become a reality. In this contribution we have
examined the information content of the following three elec-
troweak experiments: (a) parity-violating elastic electron scat-
tering [15,16], (b) coherent elastic neutrino nucleus scattering
[46], and elastic electron scattering from unstable nuclei—
particularly of the neutron-deficient member of a mirror
pair [6]. None of these enormously challenging experimental
techniques are likely to provide a complete picture of the
neutron distribution; although parity-violating elastic electron
scattering has evolved into a mature field, it is unrealistic
to expect that it will determine the weak form factor at
several values of the momentum transfer. In the case of
CEνNS and elastic electron scattering from exotic nuclei,
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both experimental programs are still in their infancy, despite
having already reached impressive milestones [6,46]. Yet the
immense value of the various electroweak experiments is that
they provide model-independent information that could both
inform theoretical models and provide powerful anchors to
guide future experiments with hadronic probes at rare isotope
facilities.

Following Ref. [13] and motivated by the ongoing PREX-
II and imminent CREX campaigns, we affirmed the value of
the “weak-skin form factor” as a model-independent observ-
able that provides powerful constraints on both the neutron
distribution and ultimately on the density dependence of the
symmetry energy. Assuming realistic experimental errors, we
then examined the impact of PREX-II and CREX on CEνNS.
For the set of accurately calibrated models employed in this
work, we observed a very strong correlation between the
neutron skins of 208Pb and 132Xe; an equally strong correlation
was seen between 48Ca and 40Ar. Both xenon and argon
are liquid noble gases currently used for the detection of
neutrinos and dark-matter particles. In particular, CEνNS
provides an irreducible background to dark-matter searches,
therefore documenting nuclear-structure uncertainties is of
utmost importance. Besides defining the “neutrino floor” in
the direct searches for dark-matter particles, CEνNS may also
provide a portal to new physics. Indeed, the coherent cross
section is proportional to the square of the product of the weak
nuclear charge with the weak nuclear form factor. Imposing
stringent constraints on the weak form factor at low momen-
tum transfers [65] may help isolate sin2 θW [19]. Although the
theoretical models explored in this work are flexible enough to
allow tuning of the (yet undetermined) neutron skin thickness
of 208Pb, the flexibility is not without limits, primarily because
the calibration of the models is informed by the binding
energies and charge radii of a variety of nuclei. As a result,
we found a very small spread in the predictions of the weak
form factor at low momentum transfers. Whether the spread
is small enough to provide meaningful constraints on sin2 θW

is currently under investigation.
Finally, we examined correlations between the neutron skin

thickness of 48Ca and differences in the charge (or proton)
radii of the A = 50 mirror nuclei titanium and nickel; such
a correlation emerges in the limit of exact charge symmetry.
Indeed, in this limit the neutron radius of 48Ca would be

identical to the proton radius of 48Ni. As documented earlier
[47,50,51], we observed that the strong correlation remains
valid even after restoring Coulomb effects. Note, however,
that we have not tested the impact of explicit charge symmetry
violations in the nuclear interaction, which could become
important given that the difference in charge radii emerges
from the cancellation of two “large” numbers. Of course,
exact charge symmetry is not restricted to nuclear radii, but
extends to the entire distributions. In this sense, the neutron
distribution of a given nucleus should be identical to the pro-
ton distribution of its mirror partner. Surprisingly, we found
that the agreement between the form factors of the minority
species—protons in titanium and neutrons in nickel—was
significantly better than anticipated, even after restoring the
Coulomb interaction. Although not discussed explicitly here,
the connection among the minority species seems robust, as
also observed in other mirror pairs. It would be interesting
to test whether this robust connection also holds under other
theoretical paradigms.

In summary, remarkable new experimental advances are
starting to provide new insights into the neutron distribution
using solely electroweak probes. A model-independent deter-
mination of neutron densities and their associated form factors
has far-reaching implications. For example, a highly accu-
rate determination of the weak-charge form factor—which is
closely related to the neutron form factor—provides a portal
to new physics. Further, knowledge of the neutron distribution
helps improve the isovector sector of nuclear energy density
functionals. In turn, refinements to the isovector sector trans-
late into powerful constraints on the density dependence of the
symmetry energy and ultimately on the equation of state of
neutron-rich matter. Finally, constraining the equation of state
of neutron-rich matter is essential to fully capitalize on new
discoveries in this new era of gravitational wave astronomy.
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