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Thanks to Schwinger [Phys. Rev. 73, 407 (1948)], the process of elastic scattering of neutrons by nuclei is
known to depend on the interference between a nuclear amplitude and an electromagnetic one for small scattering
angles, resulting in spin asymmetries of a cross section or in polarization of the scattered neutrons. Although this
interference depends on the neutron’s transverse polarization and on an imaginary part of the nuclear amplitude,
this conclusion holds only for the incident plane-wave neutrons with a definite momentum. Here, we show that
this scattering is altered when the twisted neutrons, recently obtained experimentally, are used instead—that is,
neutrons with an orbital angular momentum. For bulk targets, the angular distributions of the scattered neutrons
get modified, whereas scattering of a superposition of states with the different angular momenta also reveals
dependence on the longitudinal polarization. For well-localized targets, the observables develop dependence on
the neutron’s helicity and on a real part of the nuclear amplitude, providing full access to its phase already in
the Born approximation. We argue that the corresponding spin asymmetries are measurable at existing neutron
facilities. Thus, scattering of the twisted neutrons by nuclei can provide means for quantum tomography of the
neutron states and become a useful tool for hadronic studies, low-energy nuclear physics, tests of fundamental
symmetries, and neutron optics.

DOI: 10.1103/PhysRevC.100.051601

Introduction. In 1948, Schwinger predicted that in a pro-
cess of elastic scattering of the nonrelativistic neutrons by
a nucleus with a charge Ze, the final neutrons become spin
polarized, thanks to the spin-orbit coupling [1]. Nowadays,
such a scattering is well studied, both theoretically [2] and ex-
perimentally [3], and the polarized cold and thermal neutrons
are needed for a number of standard model test measurements
(see, e.g., Ref. [4]).

The known properties of this scattering hold only for the
plane-wave neutrons with a definite momentum. The rapid
development of laser physics, of electron microscopy, and
neutron optics recently allowed one to generate photons,
electrons, and neutrons in the new quantum states [5–12],
one of which is a so-called twisted state with a phase vortex
and a corresponding orbital angular momentum projection
onto a propagation direction [6,8,11,12]. In particular, the
twisted cold neutrons with the energy of E = 11 meV and
the wavelength of 0.27 nm were experimentally obtained
at the Natural Institute of Standards and Technology [10],
and methods for their generation were further developed in
Ref. [13]. The twisted photons and electrons were shown
to interact with the atoms, bulk materials, electromagnetic
fields, and so on, different from the plane-wave beams due to
a number of spin-orbit coupling phenomena, providing new
tools for fundamental studies and applications [8,11,12]. It is
of fundamental interest for the physics at mesoscopic scales
to study new effects from the twisted neutrons, provided that
ultracold neutrons with the wavelengths of 10–100 nm can

be produced utilizing sequences of the magnetic quadrupoles
[13,14].

In this Rapid Communication, we study how the
Schwinger scattering is changed when the neutrons are
twisted and identify several effects, absent with the ordinary
neutron beams. Although the twisted neutron’s wave function
represents a superposition of plane waves, the resultant cross
section cannot generally be represented as an incoherent mix-
ture of the Schwinger cross sections. It is due to this quantum
self-interference of the scattering amplitudes that, for the spa-
tially localized targets, the observables develop dependence
on the neutron’s longitudinal polarization and on a real part of
the nuclear amplitude (and, hence, on its phase)—the effects,
inaccessible in the fully incoherent regime with a single beam
of the delocalized plane-wave neutrons.

Importantly, we show that the scattering cross section be-
comes dependent on the nuclear amplitude’s real part already
in the Born approximation, in contrast to the Schwinger case;
and this can be useful for studying the strong interaction at low
energies where the perturbative quantum chromodynamics is
not applicable. The use of the twisted neutrons for probing
the complex nuclear amplitude for nonvanishing (but small—
see below) scattering angles is complementary to such well-
known methods as the neutron interferometry and the neutron
gravity reflectometry, which result in similar phase sensitivity
(see Refs. [4,15] and references therein). These features are
somewhat analogous to those in scattering of the relativistic
twisted electrons [16,17] and reveal themselves in the spin
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asymmetries that can reach the values from 10−6 to 10−1,
which is detectable with the existing neutron facilities [2].

Scattering off a macroscopic target. Let the initial neutron
first be in a plane-wave state with a momentum p and a
wave-function weipr/h̄ where the spinor w = w(λ)(n) with a
helicity λ is normalized as w†w = 1. The final neutron’s wave
function is w′eip′r/h̄. We neglect the target recoil so that p = p′
and introduce the unit vectors n = p/p and n′ = p′/p with the
angles θ, ϕ and θ ′, ϕ′. The corresponding scattering amplitude
is (see, for example, Ref. [18], Sec. 42)

fλλ′ (n, n′) = w′†
λ′ (a + iBσ)wλ, B = β

n × n′

(n − n′)2 ,

β = μnZe2

mpc2 = −Z × 2.94 × 10−16 cm, (1)

where σ are the Pauli matrices describing the neutron spin ŝ =
1
2σ, μn = −1.91, and mp is the proton mass. Here, a is the
nuclear amplitude whereas iBσ relates to the electromagnetic
interaction of the neutron’s anomalous magnetic moment with
a nucleus. For thermal neutrons with the energies near 25 meV
and an 197

79 Au nuclear target (a = 7.63 fm [19]), the relevant
parameters are

ε ≡ |β/a| ≈ 0.03, |(Im a)/a| ≈ 2 × 10−4. (2)

The standard (Schwinger) cross section summed over the
spin states of the final neutrons and for the vector n directed
along the z axis [i.e., n = e3 = (0, 0, 1)] is

dσ (st)(e3, n′, ζ)

d�′ = |a|2 + 1

4
[β cot(θ ′/2)]2

−βζ⊥(Im a) cot(θ ′/2) sin(ϕ′ − ϕζ ). (3)

The interference term depends on the transverse polarization
of the initial neutron ζ⊥ = ζ⊥(cos ϕζ , sin ϕζ , 0) but not on the
longitudinal spin-polarization ζz or the helicity λ. For small
scattering angles θ ′ → 0, the second term on the right-hand
side has a Coulomb-like singularity of (1/θ ′)2, whereas the
third term has a singularity 1/θ ′.

Due to the time-reversal invariance, this single-spin cor-
relation in (3) is the same for either initial or final neutron
polarization, and the spin correlation averages to zero after
the integration over the final neutron’s azimuthal angle ϕ′. For
higher energies at the Large Hadron Collider and Brookhaven
National Laboratory Relativistic Heavy Ion Collider hadron
colliders, a similar effect of the spin Coulomb-nuclear inter-
ference [20,21] provided a method to measure proton beam
polarization at multi-GeV energies [22], presently known as
“CNI polarimetry.”

Now, we proceed to the twisted neutrons and use an ap-
proach developed in Ref. [23] for the twisted spinor particles.
We assume that the incident twisted neutrons propagate along
the quantization (z) axis and have the well-defined values of:
(i) a longitudinal linear momentum pz, (ii) an absolute value
of a transverse momentum |p⊥| ≡ h̄κ, and (iii) a projection of
a total angular momentum Jz = m, where m is a half-integer.
Such a Bessel state has, moreover, a definite energy E =
(h̄2

κ
2 + p2

z )/(2mn) with mn being the neutron mass and the

helicity λ. The wave function is as follows:

ψκmpzλ(r) =
∫

d2p⊥
(2π )2

aκm(p⊥)iλw(λ)(n)eipr/h̄ . (4)

Clearly, the function ψκmpzλ(r) can be considered as a coher-
ent superposition of the plane-waves w(λ)(n)eipr/h̄, weighted
with the amplitude,

aκm(p⊥) = i−meimϕ 2π

p⊥
δ(p⊥ − h̄κ). (5)

The momenta of these plane-wave components,

p = (p⊥, pz ) = (h̄κ cos ϕ, h̄κ sin ϕ, pz ),

form a surface of a cone with an opening angle θ =
arctan(h̄κ/pz ).

Let us consider the scattering on a conventional thin-foil
target, which we describe as an ensemble of atoms uniformly
distributed over the large (compared to the beam’s width)
transverse extent; we call it a macroscopic target. If the target
is thin so that one can neglect the neutrons’ multiple scattering
and attenuation, the scattering cross section can be obtained
by the averaging over the atoms’ positions in the target with
respect to the beam axis. Such an averaged cross section
represents an incoherent superposition of the standard ones
(see Sec. B3 in Ref. [23]),

d σ̄ (θ, θ ′, ϕ′, ζ)

d�′ = 1

cos θ

∫ 2π

0

dσ (st)(n, n′, ζ)

d�′
dϕ

2π
. (6)

After the integration over the incoming neutron’s azimuthal
angle ϕ, we obtain [cf. Eq. (3)]

d σ̄ (θ, θ ′, ϕ′, ζ)

d�′ = 1

cos θ
[|a|2 + β2G(θ, θ ′)

−β(Im a)ζ⊥g(θ, θ ′) sin(ϕ′ − ϕζ )],

G(θ, θ ′) = 1

2| cos θ − cos θ ′| − 1

4
, (7)

g(θ, θ ′) =
{

cot(θ ′/2), at θ ′ > θ,

− tan(θ ′/2) at θ ′ < θ.

This cross section is still independent of ζz, and it coincides
with Eq. (3) in the limit θ → 0. Unlike the Schwinger cross-
section (3), Eq. (7) has an angular singularity of 1/|θ ′ − θ |
at θ ′ → θ . This shift to the nonvanishing scattering angles
can be useful for experimental analysis of the small-angle
scattering. Indeed, thanks to this property the singular region
is shifted from the small angles θ ′ → 0, which are difficult to
access experimentally to the larger ones θ ′ → θ , which can be
controlled by the conical angle θ of the incoming neutrons.

In Fig. 1, we present the functions,

Rem = ε2G(θ, θ ′), Rint = εg(θ, θ ′), (8)

where Rem corresponds to a relative contribution of the elec-
tromagnetic interaction and Rint describes interference of the
electromagnetic amplitude and the nuclear one. The magni-
tude of the asymmetry in this case is determined by an imag-
inary part of the nuclear amplitude Im(a) as in the original
Schwinger’s result, but the angular distribution is altered: The
asymmetry experiences a steplike drop for the angles θ ′ � θ .
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FIG. 1. The functions Rem (black dashed line) and Rint (blue solid
line) from Eqs. (8) plotted vs the neutron-scattering angle θ ′ for θ =
0.03 rad and ε = 0.03.

A macroscopic target, a superposition of two Bessel beams.
Let us take now a coherent superposition of two Bessel states
with the different projections m1 and m2 but with the same
helicity λ and the same beam axis. Such a superposition can
be generated experimentally [10,13], and it is described by the
following wave function:

ψ (2 tw)(r) = c1ψκm1 pzλ(r) + c2ψκm2 pzλ(r),

cn = |cn|eiαn , |c1|2 + |c2|2 = 1. (9)

With the help of this expression, we find

d σ̄ (θ, θ ′, ϕ′, ζ)

d�′ = 1

cos θ
{A+ |c1c2|[β2B+ 2(Im a)β(ζC)]},

A = |a|2 + β2G(θ, θ ′) + (Im a)β(ζe2)g(θ, θ ′),

B = cos γ

|c − c′| [T (θ, θ ′)]|�m|,

C =
[

�m

|�m|
(

−c′

s′ e1 + e3

)
sin γ

+ c − c′

|c − c′|e2 cos γ

]
[T (θ, θ ′)]|�m|, (10)

where s ≡ sin θ, c ≡ cos θ, s′ ≡ sin θ ′, c′ ≡ cos θ ′, and

γ = (ϕ′ − π/2)�m + �α,

T (θ, θ ′) =
(

tan(θ/2)

tan(θ ′/2)

)±1

for θ ′ ≷ θ,

e1 = (cos ϕ′, sin ϕ′, 0), e2 = (− sin ϕ′, cos ϕ′, 0),

e3 = (0, 0, 1), eiek = δik . (11)

In contrast to Eq. (7), derived for a single-m incident beam,
this cross section depends on the differences of the total an-
gular momenta �m = m2 − m1 �= 0 and of the states’ phases
�α = α2 − α1. This �m and �α dependence translates di-
rectly into the angular and polarization properties of the
scattered neutrons. In particular:
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FIG. 2. The function Zζ defined from |〈ζ′〉| = |Im a|
|a| Zζ [cf.

Eqs. (15) and (2)] plotted vs the neutron-scattering angle θ ′ for ε =
0.03, 2|c1c2| = 1, �m = 1, θ = 0.03 rad (blue solid line), and
θ = 0.02 rad (black dashed line).

(i) The cross section (10) depends not only on the neu-
tron’s transverse polarization ζ⊥, but also on the lon-
gitudinal one ζz. It leads to the following longitudinal
polarization asymmetry:

Aζz = d σ̄ (ζz = +1) − d σ̄ (ζz = −1)

d σ̄ (ζz = +1) + d σ̄ (ζz = −1)

= 2|c1c2|(Im a)β(Ce3)

|a|2 + β2[G(θ, θ ′) + |c1c2|B]
, (12)

which is on the order of Aζz ≈ 0.01 Im(a)/|a| for the
scattering angles θ ′ ≈ θ . For thermal neutrons and
a gold target [see Eq. (2)], the predicted asymmetry
amounts to a few parts per 106, which is in a range
currently accessible for experiments on the hadronic
parity violation [24] for which the above asymmetry
may be a source of unwanted systematics, provided
that the neutron beam becomes twisted due to uncon-
trolled interactions. However, as we show below, aver-
aging over the azimuthal scattering angle ϕ′ eliminates
the dependence on ζz, which provides an approach to
correct for this kind of systematics. Azimuthal angular
coverage for the neutron-scattering detectors would be
essential to deal with this systematic effect in parity-
violation measurements.

(ii) The differential cross-section (10) averaged over the
azimuthal angle ϕ′ of the final neutron depends on ζ⊥
and on Im a at �m = ±1, but it is independent of the
longitudinal polarization. It looks as follows:〈

d σ̄ (θ, θ ′, ϕ′, ζ)

d�′

〉
= 1

cos θ
[|a|2 + β2G(θ, θ ′)

+2|c1c2|(Im a)βζ〈C〉], (13)

where

〈C〉 = 1

2

(
c′

s′ − c − c′

|c − c′|
)

T (θ, θ ′)(cos �α,∓ sin �α, 0)

(14)
for �m = ±1 and 〈C〉 = 0, otherwise. If the initial
neutron is unpolarized, then its polarization after the
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scattering is

〈ζ′〉 = 2|c1c2| (Im a)β

|a|2 + β2G(θ, θ ′)
〈C〉. (15)

In Fig. 2, one can see that |〈ζ′〉| ≈ 0.1 |Im a|
|a| for θ ≈ ε,

i.e., the predicted effect amounts to tens of parts per
106 for the thermal neutrons and the gold target [see
Eq. (2)].

A single nucleus and a mesoscopic target. Let the single-m
neutrons be scattered by a nucleus located on the transverse
(xy) plane at a definite impact parameter b = (bx, by, 0) =
b(cos ϕb, sin ϕb, 0). Using the neutron’s wave-function (4)

and Eq. (1), we find the following scattering amplitude:

F (m)
λλ′ (θ, θ ′, ϕ′, b) = iλ−me−ip′

⊥b/h̄
∫ 2π

0

dϕ

2π
eimϕ+ip⊥b/h̄ fλλ′ (n, n′),

(16)

where the factor exp(ip⊥b/h̄) specifies the lateral position of
the nucleus with respect to the beam. The angular distributions
of the scattered neutrons can be obtained by squaring this
amplitude; when summed up over the helicities and aver-
aged over the azimuthal angle of the final neutrons, they

can be expressed via the quantities B(σ )(m, κ, b) = ∫ 2π

0
dϕ
2π

,

B exp{i[(m − σ )ϕ + κb cos(ϕ − ϕb)]} and the Bessel func-
tion Jn(z) as follows:

W (m)
λ (θ, θ ′, b) =

∑
λ′

〈∣∣F (m)
λλ′ (θ, θ ′, ϕ′, b)

∣∣2〉 = 1

2
�(m) + λ�(m),

�(m) = |a|2[J2
m−1/2(κb) + J2

m+1/2(κb)
] +

∑
σ

〈(B(σ )∗B(σ ) ) − 2σ Im(B(σ )∗ × B(σ ) )z〉,

�(m) = [|a|2 cos θ − (Re a)βg(θ ′, θ ) sin θ
][

J2
m−1/2(κb) − J2

m+1/2(κb)
]+ cos θ

∑
σ

〈2σ (B(σ )∗B(σ ) ) − Im(B(σ )∗×B(σ ) )z〉

− sin θ〈Im(B(1/2)∗ × B(−1/2))x − Re(B(1/2)∗ × B(−1/2))y〉, (17)

where 〈F 〉 = ∫ 2π

0
dϕ′
2π

F (ϕ′). As a result, we obtain a nonvan-
ishing helicity asymmetry,

Aλ = W (m)
λ=1/2 − W (m)

λ=−1/2

W (m)
λ=1/2 + W (m)

λ=−1/2

= �(m)

�(m) . (18)

In contrast to Eq. (3), the interference term in (17) depends
on the initial neutron’s helicity and on the real part of the
nuclear amplitude (and, therefore, on its phase Arg a), even

FIG. 3. The probability (17) as a function of the 197
79 Au nucleus

position κb for m = 1/2, λ = −1/2, θ ′ = 0.03, θ = 0.06 rad, and
ε = 0.03. The separate contributions from the nuclear amplitude
(black dotted line) from the electromagnetic one (dashed red line),
and the full result (solid blue line) are shown. The full result with
an opposite sign of the strong amplitude (green dot-dashed line)
demonstrates the role of its real part.

after the azimuthal averaging. The angular distributions (17)
are plotted in Fig. 3 for a 197

79 Au nucleus as a function of its
position κb. The scattering angle is chosen as θ ′ = 0.03 rad
for which the electromagnetic and strong amplitudes equally
contribute to the cross section for the plane-wave neutrons.
One can see that the former contribution dominates in the
beam center (b → 0) where the interference between two am-
plitudes is most pronounced. The asymmetry Aλ is a periodic
function of κb and of the amplitude’s phase Arg a; it can reach
tens of percent even for a wider range of parameters than is
shown in Fig. 4. Note that outside the cone opening angle, at
θ ′ > θ , the sensitivity to the phase practically vanishes so that
in order to probe both the real and the imaginary parts of the

FIG. 4. The helicity asymmetry (18) for θ ′ = 0.03, θ =
0.06 rad, and ε = 0.03. Black line: m = 1/2, κb = 0, blue dashed
line: m = 1/2, κb = 1, red dotted line: m = 1/2, κb = 2, green
dot-dashed line: m = 5/2, κb = 1.
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amplitude, one needs to perform measurements at the small
angles θ ′ < θ , which is feasible.

When averaging over the impact parameters b, all the
above features survive when the target is subwavelength sized
or even if its width does not exceed that of the beam 1/κ

much (mesoscopic), whereas, for the macroscopic target, they
vanish, see Eq. (7). Although for a single nucleus, the role
of the amplitude’s real part can be seen in Figs. 3 and 4
with the naked eye, the effect is additionally attenuated by
the small parameter 1/(κσt ) < 1 for the mesoscopic target
with the width σt > 1/κ. For the Gaussian target with σt ≈
1/κ − 10/κ and the angles θ ′ < θ ≈ 1◦–10◦, the asymmetry
reaches the values of

|Aλ| ≈ 10−3–10−1 (19)

for a wide range of parameters.
Thus, scattering off the well-localized targets—say, of

σt � 10–100 nm in width for the neutron wave packets with
the wavelength of 0.1–100 nm and the transverse coherence
length of 1/κ � 1 nm − 10 μm [13]—reveals dependence on
the neutron’s helicity and allows one to probe the nuclear
amplitude’s real part already in the Born approximation,
whereas with a single beam of the delocalized plane-wave
neutrons such a dependence arises beyond the tree level only.
This method for high-precision measurements of the complex
amplitude for nonvanishing scattering angles is alternative
and complementary to the neutron interferometry and to the
neutron gravity reflectometry.

Conventional Schwinger asymmetry can be enhanced for
thermal neutrons due to the presence of nuclear resonances as
was shown experimentally [25]. Extension of our formalism
to the nuclear resonance region is straightforward in which

case, we have to use appropriate parametrization for the nu-
clear amplitude a and use partial-wave expansion and angular
integration in Eq. (16) in order to account for non-S-wave
resonances.

Conclusion. Scattering outcomes generally depend on the
projectiles’ quantum states and their spatial profiles. The use
of the twisted neutrons in the Schwinger process makes the
observables dependent on the neutron’s transverse momentum
and—for well-localized targets—on its orbital momentum,
the helicity, and on the phase of the nuclear amplitude. These
spin-orbit-induced effects, absent with the ordinary neutrons
in the Born approximation, allow one to develop tools for
quantum tomography of the neutron beams and to study the
complex nuclear amplitude as a function of the scattering
angle and of the neutron energy. The predicted spin asymme-
tries range from 10−6 to 10−1 for realistic parameters and are
detectable for existing neutron experiments aiming at much
smaller numbers up to 10−8 [2].

The helicity asymmetries for the scattering of the plane-
wave neutron (or electron) beams are used to study parity
violation in the nuclear force [24]. The asymmetries pre-
dicted here do not violate parity as they correlate with the
angular momentum, but the experimental methodology for
studying the parity-violating scattering can also be used for
the spin effects in the twisted-neutron scattering. Reliable
estimates of these effects for specific experimental conditions
require inclusion of the electron screening of the nuclear
Coulomb field, similar to Ref. [2], which will be presented
elsewhere.
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