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Comment on “Elimination of degeneracy in the γ-unstable Bohr Hamiltonian
in the presence of an extended sextic potential”
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We argue that the analytical approach of [Phys. Rev. C 98, 014312 (2018)] is incorrect. The authors obtain a
solution for a sextic potential through the truncation of the power series of the wave-function ansatz. We show
that the procedure should be equivalent to that of the quasiexactly solvable versions of the sextic potential used
previously and that the quantization of the total energy is not performed properly. Additionally, we question
the reliability of the transition probabilities calculated between states described by different collective potentials
and, respectively, belonging to distinct Hilbert spaces.
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The authors of Ref. [1] consider a γ -unstable version of the
Bohr Hamiltonian with a β potential,

v(L; β ) = η
L̂L̂

β2
+ κ4

β2
+ aβ2 + bβ4 + 4β6. (1)

The effect of the spin-dependent term was already studied in
Ref. [2], therefore, the original contribution is related to the
sextic potential. Making the correspondences,

α′ =
√

9

4
+ τ (τ + 3) + ηL(L + 1) + κ4,

(2)

β ′ = b

4
, γ ′ = 1

4

(
b2

16
− a

)
, δ′ = −ε

2
,

and using successive function changes as well as a new
variable y = β2, the β equation can be brought to a form
resembling the biconfluent Heun differential equation [3,4],
whose canonical form is

yh′′(y) + (1 + α′ − β ′y − 2y2)h′(y)

+ {
(γ ′ − α′ − 2)y − 1

2 [δ′ + β ′(1 + α′)]
}
h(y) = 0. (3)

L and τ index the γ -angular states which obey the SO(5)
symmetry. For non-negative and integer α′, its solution can
be written as a series [5],

h(y) =
∞∑

p=0

Cpxp =
∞∑

p=0

Ap

(1 + α′)p p!
yp, (4)

where (x)p is a Pochhammer symbol and A0 = 1. Plugging
this series expansion in Eq. (3), one obtains a recurrence
relation satisfied by the coefficients Ap,

Ap+2 − Ap+1
{
(p + 1)β ′ + 1

2 [δ′ + β ′(1 + α′)]
}

+ Ap(γ ′ − 2 − α′ − 2p)(p + 1)(p + α′ + 1) = 0, (5)

with the initial condition A−1 = 0. This equation shows
that (4) becomes a polynomial of degree n if γ ′ − 2 − α′ = 2n

with n = 0, 1, 2, . . ., and An+1 = 0. Depending on the initial
equation which is then brought to a form (3), the former
condition can lead to the quantization of the energy [6]. In this
case, however, it leads to a relation between the parameters of
the collective potential and rotational quantum numbers,

a = b2

16
− 4

[
2n + 2 +

√
9

4
+ τ (τ + 3) + ηL(L + 1) + κ4

]
.

(6)

This relation differs from that obtained in Ref. [1], which
seems to be obtained by considering n + 1 instead of n. Let
us turn now to the second condition, where An+1 is actually a
polynomial of degree n + 1 in A1 defined by the compatibility
condition of the system of n + 1 equations for An coeffi-
cients. For exemplification, let us write explicitly the first two
conditions (5),

− 1
2 [δ′ + β ′(1 + α′)]A0 + A1 = 0,

2n(1 + α′)A0 − {
β ′ + 1

2 [δ′ + β ′(1 + α′)]
}
A1 + A2 = 0. (7)

From the first equation, we obtain that A1 = 1
2 [δ′ + β ′(1 +

α′)]. As A1 contains the energy through δ′, solving the secular
equation An+1 = 0 will provide us with the eigenvalues εk

indexed by the solution’s order k = 1, n + 1. At this point,
it is important to note that n is not a quantum number but
rather an integer parameter which sets the truncation of the
polynomial solutions as well as the parameters of the solv-
able potential through (6). When n = 0, only the first condi-
tion remains together with A1 = 0. It can be easily checked
that now all coefficients Ap with p > 0 vanish, and the se-
ries (4) is truncated. It also leads to δ′ + β ′(1 + α′) = 0, and
consequently,

ε0 = b

2

[
1 +

√
9

4
+ τ (τ + 3) + ηL(L + 1) + κ4

]
, (8)
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where b is expressed through other parameters and rotational
quantum numbers as in (6) with n = 0.

The above equation resembles the energy obtained in
Ref. [1] but is quite different. Also, it is valid only for n = 0
truncation. Moreover, there is just a single solution for the
energy. Therefore, one cannot describe β excited bands with
only n = 0. For this purpose, we must take, at least, n = 1,
whose condition A2 = 0 will provide two energy solutions,

ε1
± = b

2

[
2 + α′ ±

√
1 + 128(1 + α′)

b2

]
, (9)

as roots of the compatibility condition of the system of
equations for A0 and A1. The lowest energy corresponds to
the ground band level, whereas the highest corresponds to the
β band state. Thus, different K = 0 states of the same τ and
L are distinguished by the order of the solution and not the
truncation degree n. This method was used to describe collec-
tive excitations with a quasiexactly solvable sextic potential
in Refs. [7–11]. The truncation of the power-series expansion
of ansatz (4) is the essence of quasiexact solvability of a
model [12]. The connection between polynomial solutions of
Heun equations of various types and quasiexact solvability is
well known [13–15].

In the applications of the quasiexactly solvable sextic
potential to various collective conditions [7–11], the authors
went to great effort for assuring that the potential to be state
independent. This was performed by a seesaw adjustment of
the truncation order and the rotational quantum numbers. In
the commented paper, the authors ignored this aspect. Such
that, states with different L and τ quantum numbers will be

actually described with different potentials. As can be seen
from (6), if one considers a as a constant parameter, then b
will depend on L and τ or vice versa. Therefore, either the
coefficient of β2 or β4 must be an operator in the γ -angular
variables, whose eigenvalues are the same SO(5) spherical
harmonics determined for the centrifugal term. The last part
is not true because of the rational form of the expression (6).
This problem can be analyzed also from another point of view
by considering that the potential depends on energy as in
Refs. [16–18]. The consequences of state dependence of the
potential include the violation of the continuity equation, the
loss of completeness property, and the noncommutativity of
the original coordinates and momenta [19]. The conservation
of the norm in time can be recovered by a change in the scalar
product by employing a correction to the integration metric.
Such a modification, however, reinstates the completeness
condition only in some particular cases of energy dependence.
Therefore, even with such an amendment the calculation of
averages and transition matrix elements within such a theory
is not reliable. In Ref. [1], neither of the presented approaches
were considered for the analytical formalism.

In conclusion, we have proved that the quantization con-
dition for the energy from Ref. [1] is incorrect on many
levels, and it should be similar to the exactly solvable ap-
proaches [7–11]. The formalism of Ref. [1] also suffers from
inconsistencies stemming from quantum theory. All these
issues were perpetuated from the previous papers [20,21].
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