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Effects of nuclear symmetry energy and equation of state on neutron star properties
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We study the effects of nuclear symmetry energy on the mass-radius relation and tidal deformability of
neutron stars, considering the self-consistency of the equation of state (EOS). We first construct a set of unified
EOSs based on relativistic mean-field models with different density dependence of the symmetry energy. For
the description of pasta phases appearing in the inner crust of neutron stars, we perform a self-consistent
Thomas-Fermi calculation using the same nuclear interaction as that for the uniform matter in the core.
To examine possible effects from the self-consistency of the EOS on neutron star properties, we separately
investigate the impacts of crust and core segments. By matching the same core EOS to different crust EOSs, it is
found that neutron-star radii are significantly affected by the crust segment. On the other hand, the neutron-star
radii are also strongly dependent on the core EOS. However, the correlation between the radius and the symmetry
energy slope of the core EOS is opposite to that of the crust EOS. It is likely that the nuclear model with a small
slope parameter is favored by recent astrophysical observations.
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I. INTRODUCTION

The recent detection of gravitational waves from a binary
neutron-star merger, known as GW170817, provides an upper
limit on the tidal deformability of neutron stars [1,2], which
can be used to constrain the equation of state (EOS) of dense
matter. Another strong constraint on the EOS comes from the
observations of massive pulsars, PSR J1614–2230 [3,4], PSR
J0348+0432 [5], and PSR J0740+6620 [6], which requires
the maximum neutron-star mass to be larger than ≈2M�.
The EOS plays a decisive role in understanding various
properties of neutron stars [7–10]. Generally, the EOS used
for the calculations of neutron-star structure must cover a
wide density range that can be divided into three segments:
(a) the EOS of the outer crust below the neutron drip density;
(b) the EOS of the inner crust from neutron drip to crust-
core transition; (c) the EOS of the liquid core above the
crust-core transition. The outer crust, which extends from the
surface of the star to the neutron drip density, is composed
of spherical nuclei arranged in a lattice and a background
of relativistic electron gas. The behavior of the outer crust
is mainly determined by experimental nuclear masses, and
therefore no significant differences exist in the EOS of the
outer crust when using different nuclear-mass models [11].
With increasing depth in the neutron star, neutrons drip out of
nuclei and form a dilute neutron gas together with the electron
gas in the inner crust. As the density increases toward the
crust-core transition, spherical nuclei may become unstable
and nuclear shape is likely to change from droplet to rod, slab,
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tube, and bubble, known as nuclear pasta phases [12–14]. The
inner crust of neutron stars has received much attention due
to its complex structure and important role in astrophysical
observations [15–18]. The transition from the inner crust to
the core occurs at about 1/3 to 1/2 nuclear saturation den-
sity depending on the nuclear interaction used. The uniform
matter in the core consists of a mixture of neutrons, protons,
electrons, and muons in β equilibrium, which extends from
the crust-core transition to the center of the star. In the deep
interior of neutron stars, non-nucleonic degrees of freedom,
such as hyperons and quarks, may appear to soften the EOS,
as extensively discussed in the literature [10,19–22]. In the
inner core region of massive neutron stars, the baryon density
can reach higher than five times nuclear saturation density,
where the deconfinement hadron-quark phase transition prob-
ably occurs. The phase transition from hadronic matter to
quark matter is often assumed to proceed with the Gibbs or
Maxwell constructions, depending on the surface tension at
the hadron-quark interface [23]. In addition, the hadron-quark
pasta phases could be formed as a result of the competition
between the Coulomb and surface energies, as discussed in
Refs. [20,24–26]. The appearance of a hadron-quark phase
transition would lead to a reduction of the maximum neutron-
star mass, but it is still possible to be compatible with the
≈2M� constraint [24–26]. For simplicity, we do not include
non-nucleonic degrees of freedom in the present study.

It is important to investigate neutron-star properties using
the unified EOS, where both the core and the crust are based
on the same nuclear interaction model. There are several
works [27–32] on developing the unified EOS. A compress-
ible liquid drop model was used to describe the nuclei in the
crust in Ref. [27], whereas the parameterized Thomas-Fermi
method [28,29] and self-consistent Thomas-Fermi approxi-
mation [30–32] were employed for nonuniform matter in the
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crust region. The use of a unified EOS is important for the
description of the crust-core transition and detailed properties
of neutron stars. However, in most calculations, a nonunified
EOS is employed, i.e., the core EOS is matched to a crust
EOS obtained from different models. It was found in Ref. [32]
that the matching procedure could slightly affect the resulting
radius and crust thickness of neutron stars. It is often argued
that the crust EOS has less effect on the global properties
of neutron stars. Considering recent observational progress
related to neutron stars, we would like to quantitatively ex-
amine the effect of matching different crust EOSs to the core
EOS on neutron-star properties such as the radius and tidal
deformability. For this purpose, we construct a set of EOSs
for both the inner crust and the core, employing the relativistic
mean-field (RMF) model [33–35].

It is well known that the nuclear symmetry energy and
its density dependence play an important role in understand-
ing many phenomena in nuclear physics and astrophysics
[9,10,36–38]. It has been found that various properties of
neutron stars, such as the radius and the crust structure,
are sensitive to the symmetry energy Esym and its slope
parameter L [9,15,17,39–41]. In recent decades, great efforts
have been devoted to constraining the values of Esym and
L at saturation density based on astrophysical observations
and terrestrial nuclear experiments [42–49]. In Ref. [10],
a sufficient number of constraints on the symmetry energy
parameters have been summarized, and the most probable
values for the symmetry energy and its slope at saturation
density were found to be Esym = 31.7 ± 3.2 MeV and L =
58.7 ± 28.1 MeV, respectively, with a much larger error for
L than that for Esym. To study the effect of the symmetry
energy on neutron-star properties, we employ a set of gener-
ated RMF models based on the TM1 parametrization, which
was described in our previous work [50]. The original TM1
model [35] could provide satisfactory description for finite
nuclei, and meanwhile it has also been successfully used to
construct the EOS for supernova simulations and neutron stars
[10,28,51]. We introduce an additional ω-ρ coupling term in
the TM1 model, which plays an essential role in controlling
the density dependence of the symmetry energy [40,41,50,52].
By adjusting simultaneously two parameters associated to the
ρ meson (gρ and �v), we can generate a model with a given L
at saturation density and a fixed Esym at a density of 0.11 fm−3.
The choice of fixing symmetry energy at 0.11 fm−3 is based
on the following consideration. The generated models with
different L should be able to provide results for finite nuclei
similar to the original TM1 model. It is well known that the
binding energy of finite nuclei is essentially determined by the
symmetry energy at ≈0.11 fm−3, not by the symmetry energy
at saturation density. Therefore, the value of the symmetry
energy at ≈0.11 fm−3 is well constrained by experimental
nuclear masses. By keeping Esym fixed at nb = 0.11 fm−3,
the resulting binding energies of finite nuclei are almost
unchanged within the set of generated models. This is because
the average value of the density in finite nuclei is about
0.11 fm−3. It is noteworthy that all models in this set have
the same isoscalar properties and fixed symmetry energy at
nb = 0.11 fm−3, but they have different density dependence of
the symmetry energy. Therefore, this set of models is suitable

for studying the correlations between the slope parameter L
and neutron-star properties. In the present work, we use RMF
models based on the TM1 parametrization for the calculations
of neutron-star properties, which may introduce some model
dependency in the results. Generally, the predicted properties
of neutron stars, such as gravitational masses and radii, are
model dependent, as can be found in Refs. [9,10,32,53]. As
an example, the radius of a canonical 1.4M� neutron star
(R1.4) varies between ≈11 and 15 km for some popular EOSs
supporting the ≈2M� maximum mass constraint [9,10,32,53].
Even for several models with a similar slope parameter L,
the difference in R1.4 can be as large as ≈1 km. Therefore,
the slope parameter L cannot be precisely constrained by
observations of neutron-star radii. However, a positive corre-
lation between the slope parameter L and neutron-star radius
is consistent among different models, which will be studied
using the RMF models in the present calculations.

We have two aims in this study. The first is to construct
a set of unified EOSs using the RMF models that have the
same isoscalar properties but different density dependence of
the symmetry energy, and then apply these EOSs to study
the effects of the symmetry energy on neutron-star properties.
The second is to examine separately the influences from the
crust and core segments on the radius and tidal deformability
of neutron stars. By matching different crust EOSs to a
fixed core EOS, the uncertainty induced by the crust segment
in a nonunified EOS can be estimated quantitatively. For
constructing a unified EOS, we perform the self-consistent
Thomas-Fermi calculations for pasta phases appearing in
the inner crust, and then judge the crust-core transition by
comparing the energy densities between pasta phases and ho-
mogeneous matter. Since the same nuclear model is employed
for the description of the two phases, the crust-core transition
is determined in a consistent manner and the resulting unified
EOS is quite smooth. In the present work, the Thomas-Fermi
approximation is used only for the inner crust but not for the
outer crust. This is because the shell effect is not considered
within the Thomas-Fermi approximation. In fact, when the
Baym-Pethick-Sutherland (BPS) EOS [54] for the outer crust
is replaced by the one obtained from the Thomas-Fermi calcu-
lation, no significant difference is observed in the star radius.
Therefore, we prefer to use the BPS EOS for the outer crust
below the neutron drip density in the present calculations.

The recent GW170817 event triggered extensive studies
for constraining the EOS from measurements of the tidal
deformability in a binary neutron-star system [55–65]. The
analysis of GW170817 data provides valuable constraints on
the tidal deformabilities of the binary neutron-star merger
[1,2]. The correlation between the symmetry energy and the
tidal deformability was recently investigated within various
frameworks [62–65]. In the present work, we use a set of
unified EOSs to compute the tidal deformability of neutron
stars and study its dependence on the symmetry energy slope
L. Furthermore, we match different crust and core segments
in order to examine their influence on the resulting tidal
deformability.

This article is organized as follows. In Sec. II, we briefly
describe the RMF model and the self-consistent Thomas-
Fermi approximation used for constructing the EOS. In
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Sec. III, we show the effects of the symmetry energy on
neutron-star properties using the unified EOS. Furthermore,
the influences from the crust and core segments are examined
separately using two sets of nonunified EOSs. Section IV is
devoted to the conclusions.

II. FORMALISM

We construct the EOS of neutron-star matter employing the
RMF model for nuclear interactions. In the RMF approach
[33–35], nucleons interact through the exchange of various
mesons, including the isoscalar-scalar meson σ , the isoscalar-
vector meson ω, and the isovector-vector meson ρ. For a
system consisting of neutrons, protons, electrons, and muons,
the Lagrangian density reads

LRMF =
∑

b=p,n

ψ̄b

{
iγμ∂μ − (M + gσ σ )

− γμ

[
gωωμ + gρ

2
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)
+

∑
l=e,μ

ψ̄l (iγμ∂μ − ml + eγμAμ)ψl , (1)

where W μν , Raμν , and Fμν are the antisymmetric field tensors
corresponding to ωμ, ρaμ, and Aμ, respectively. In a static
system within the mean-field approximation, the nonvanish-
ing meson mean fields are σ = 〈σ 〉, ω = 〈ω0〉, ρ = 〈ρ30〉, and
A = 〈A0〉. The chemical potentials of nucleons are given by

μp =
√(

kp
F

)2 + M∗2 + gωω + gρ

2
ρ + eA, (2)

μn =
√(

kn
F

)2 + M∗2 + gωω − gρ

2
ρ, (3)

where M∗ = M + gσ σ is the effective nucleon mass and
ki

F is the Fermi momentum of species i, which is related
to the number density by ni = (ki

F )3
/3π2. It is noteworthy

that the ω-ρ coupling term plays an important role in de-
termining the density dependence of the symmetry energy
[40,41,50,52]. The symmetry energy of nuclear matter is
expressed as

Esym = 1

2

[
∂2(ε/nb)

∂α2

]
α=0

= k2
F

6
√

k2
F + M∗2

+ g2
ρnb

8
(
m2

ρ + 2�vg2
ρg2

ωω2
) , (4)

with α = (nn − np)/nb being the asymmetry parameter. The
slope of the symmetry energy is given by

L = 3n0

[
∂Esym(nb)

∂nb

]
nb=n0

. (5)

We use a set of generated models based on the TM1
parametrization [50], where the coupling constants, gρ and
�v, are simultaneously adjusted so as to achieve a given sym-
metry energy slope L at saturation density n0 while keeping
the symmetry energy Esym fixed at a density of 0.11 fm−3. It
was shown in Ref. [50] that all models in the set could provide
the same isoscalar properties and similar binding energies of
finite nuclei as the original TM1 model, but have different
symmetry energy slope L. To make the paper self-contained,
we list in Table I the model parameters and saturation prop-
erties, while the calculated properties of 208Pb are shown in
the last three lines. It is found that the models with different L
predict very similar binding energy per nucleon and charge
radius for 208Pb, whereas the neutron-skin thickness �rnp

(208Pb) obviously increases with increasing L. We show in
Fig. 1 the symmetry energy Esym as a function of the baryon
density nb for all models listed in Table I. It is seen that the
set of models has the same Esym at a density of 0.11 fm−3, but
different values of Esym at lower and higher densities due to
different slope L. The behavior of Esym plays a crucial role in
determining several properties of neutron stars.

The npeμ matter in the neutron-star core has a uniform
density distribution under the conditions of β equilibrium and
charge neutrality. The dense core EOS can be achieved by
solving a set of coupled equations in the RMF model. As
the density decreases to about n0/2, the crust-core transition
occurs, where nucleons cluster into pasta phases or spherical
nuclei. This is because the uniform matter is energetically un-
stable against cluster formation at low densities. For nonuni-
form matter in the inner crust, we perform a self-consistent
Thomas-Fermi calculation as described in our previous work
[17]. The Wigner-Seitz cell approximation is adopted to sim-
plify the calculation of pasta phases. The stable cell shape,
which is determined by minimizing the energy density at a
given density nb, may change from droplet to rod, slab, tube,
and bubble as the density increases. For simplicity, we assume
the electron density is uniform throughout the Wigner-Seitz
cell. In the Thomas-Fermi approximation, the total energy per
cell is calculated from

Ecell =
∫

cell
εrmf (r)dr + εeVcell, (6)

where εrmf (r) is the local energy density at position r given
in the RMF model and εe is the kinetic energy density of
electrons. We consider different pasta configurations includ-
ing the droplet, rod, slab, tube, and bubble. The volume of the
Wigner-Seitz cell for different configurations is expressed as

Vcell =
⎧⎨
⎩

4
3πr3

ws (droplet and bubble),
lπr2

ws (rod and tube),
2rwsl2 (slab),

(7)

where rws is the radius of a spherical cell for the droplet and
bubble configurations, while the rod and tube have cylindrical
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TABLE I. Parameter sets used in this work and corresponding saturation properties. The quantities E0, K , Esym, and L are, respectively,
the energy per nucleon, incompressibility coefficient, symmetry energy, and symmetry energy slope at saturation density n0. The last three
lines show the neutron-skin thickness �rnp, charge radius rc, and binding energy per nucleon E/A of 208Pb. The models are generated from
the original TM1 model (L = 111) by tuning gρ and �v to achieve a given slope L at n0 and a fixed symmetry energy Esym = 28.05 MeV at a
density of 0.11 fm−3. Differences among these models are shown in bold. Nucleon and meson masses are given in Refs. [35,50].

Model

TM1(L = 40) TM1(L = 60) TM1(L = 80) TM1(L = 111)

gσ 10.0289 10.0289 10.0289 10.0289
gω 12.6139 12.6139 12.6139 12.6139
g2 (fm−1) −7.2325 −7.2325 −7.2325 −7.2325
g3 0.6183 0.6183 0.6183 0.6183
c3 71.3075 71.3075 71.3075 71.3075
gρ 13.9714 11.2610 10.1484 9.2644
�v 0.0429 0.0248 0.0128 0.0000

n0 (fm−3) 0.145 0.145 0.145 0.145
E0 (MeV) −16.3 −16.3 −16.3 −16.3
K (MeV) 281 281 281 281
Esym (MeV) 31.38 33.29 34.86 36.89
L (MeV) 40 60 80 111

�rnp (208Pb) (fm) 0.16 0.21 0.24 0.27
rc (208Pb) (fm) 5.56 5.55 5.54 5.54
E/A (208Pb) (MeV) 7.88 7.88 7.88 7.88

shapes with radius rws and length l and the slab has width l
and thickness 2rws. Actually, the energy density of the system
would not be affected by the choices of the length for a
cylindrical shape and the width for a slab. At a given average
baryon density nb, we minimize the total energy density ε =
Ecell/Vcell with respect to the cell size rws for each pasta
configuration, and then determine the energetically favored
state with the lowest energy density. The pressure is calculated
from the thermodynamic relation

P =
∑
i=b,l

μini − ε. (8)

FIG. 1. Symmetry energy Esym as a function of the baryon den-
sity nb for the generated TM1 models with different slope parameter
L. The symmetry energy is fixed at a density of 0.11 fm−3.

The crust-core transition occurs at the density where the
energy density of the homogeneous phase becomes lower than
that of the pasta phase. It is well known that the symmetry
energy slope L plays an important role in determining the
pasta phase structure and the crust-core transition [15,17,39].
In Table II, we present the onset densities of various non-
spherical nuclei and homogeneous matter for the generated
TM1 models with different L. It is seen that as L increases,
the crust-core transition density (i.e., the onset density of
homogeneous matter) significantly decreases and some pasta
phases disappear. The model with L = 40 MeV predicts the
transition from droplet to rod occurs at nb ≈ 0.049 fm−3,
then the pasta phases of slab, tube, and bubble appear one
by one, and finally transition to homogeneous matter occurs
at nb ≈ 0.099 fm−3. For the original TM1 model with L =
111 MeV, only the droplet configuration appears in the inner
crust, and the transition from droplet to homogeneous matter
occurs at nb ≈ 0.062 fm−3. We note that the inner crust are
calculated in the Thomas-Fermi approximation for the density
region between the neutron drip and the crust-core transi-
tion. For the outer crust, we use the well-known BPS EOS,

TABLE II. Onset densities given in the unit of fm−3 for various
nonspherical nuclei (rod, slab, tube, and bubble) and homogeneous
matter (HM) obtained in the generated TM1 models with different L.

Model Rod Slab Tube Bubble HM

TM1(L = 40) 0.049 0.064 0.082 0.089 0.099
TM1(L = 60) 0.066 0.076 0.081 0.083
TM1(L = 80) 0.072
TM1(L = 111) 0.062
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which is matched to the inner-crust EOS at the neutron drip
density.

We apply the EOS constructed above to calculate
the mass and radius of a neutron star by solving the
Tolman-Oppenheimer-Volkoff (TOV) equation in units of
G = c = 1,

dP(r)

dr
= −M(r)ε(r)

r2

[
1 + P(r)

ε(r)

]

×
[

1 + 4πr3P(r)

M(r)

][
1 − 2M(r)

r

]−1

, (9)

dM(r)

dr
= 4πr2ε(r), (10)

where P(r) and ε(r) are the pressure and energy density at
the radial coordinate r, respectively. M(r) is the gravitational
mass enclosed within the radius r. The dimensionless tidal
deformability of a neutron star is expressed as [66,67]

� = 2
3 k2C

−5, (11)

where C = M/R is the compactness parameter of the star with
mass M and radius R. The tidal Love number k2 is calculated
from

k2 = 8C5

5
(1 − 2C)2[2 − yR + 2C(yR − 1)]

×{2C[6 − 3yR + 3C(5yR − 8)]

+4C3[13 − 11yR + C(3yR − 2) + 2C2(1 + yR)]

+3(1 − 2C)2[2 − yR + 2C(yR − 1)]

× ln(1 − 2C)}−1, (12)

where yR = y(R) is obtained by solving the following differ-
ential equation:

r
dy(r)

dr
+ y(r)2 + y(r)F (r) + r2Q(r) = 0, (13)

with

F (r) = {1 − 4πr2[ε(r) − P(r)]}
[

1 − 2M(r)

r

]−1

, (14)

Q(r) = 4π

[
5ε(r) + 9P(r) + ε(r) + P(r)

∂P(r)/∂ε(r)
− 6

4πr2

]

×
[

1 − 2M(r)

r

]−1

− 4M(r)2

r4

[
1 + 4πr3P(r)

M(r)

]2

×
[

1 − 2M(r)

r

]−2

. (15)

In a binary neutron-star system, the tidal effect is given by the
combined dimensionless tidal deformability

�̃ = 16

13

(12q + 1)�1 + (12 + q)q4�2

(1 + q)5
, (16)

where �1 and �2 are the individual tidal deformabilities of
the two neutron stars with the mass ratio q = M2/M1 � 1.

FIG. 2. Pressure P as a function of the energy density ε obtained
using the set of generated TM1 models with different L for the inner
crust and core. The BPS EOS is adopted for the outer crust and
the matching point is marked by the filled square. The crust-core
transition is indicated by the filled circles in the inset.

III. RESULTS AND DISCUSSION

We present numerical results for neutron-star properties
using the EOSs obtained with the set of RMF models. To
examine the effects of the symmetry energy, we apply the
unified EOS to compute various properties of neutron stars. In
order to separately investigate the influence of crust and core
segments, nonunified EOSs are used by matching different
crust and core EOSs.

A. Neutron-star properties with unified EOSs

The unified EOS used in this work is obtained by perform-
ing a self-consistent Thomas-Fermi calculation for the inner
crust, which is smoothly connected to the core EOS based
on the same nuclear model. We use the BPS EOS for the
outer crust below the neutron drip density. In Fig. 2, we plot
the pressure P as a function of the energy density ε obtained
using the set of generated TM1 models with different slope
parameters L. The crust-core transition is indicated by the
filled circles. It is shown that the model with a small value
of L predicts a large crust-core transition and relatively small
pressures at high densities. In the Thomas-Fermi approxima-
tion, the phase transition is determined by minimizing the
energy density. As a result, the energy density is a smooth
function of the baryon density, but the pressure as the first
derivative of the energy may exhibit a weak discontinuity of
first-order phase transition [68]. In Fig. 2, a clear kink in the
TM1(L = 40) EOS is observed at the crust-core transition,
whereas it is invisible in other cases. This is because the
TM1(L = 40) EOS has relatively small pressure and large
crust-core transition density.

It is well known that the most efficient mechanism for
neutron-star cooling is the direct Urca (dUrca) process, i.e.,
the electron capture by a proton and the beta decay of a
neutron. The threshold for the dUrca process is mainly de-
termined by the proton fraction Yp in the cores of neutron
stars, where the proton fraction is large enough to allow for
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FIG. 3. Proton fraction Yp of the unified EOSs as a function of
the baryon density nb for the set of generated TM1 models. The filled
circles indicate the threshold for the dUrca process.

momentum conservation. In simple npe neutron-star matter,
the dUrca process can occur for Yp � 1/9. When muons are
included under the equilibrium condition μe = μμ, the critical
Yp for the dUrca process is in the range of (11.1–14.8)% [69].
In fact, the proton fraction Yp of neutron-star matter is strongly
dependent on the symmetry energy. In Fig. 3, the proton
fraction Yp of the unified EOSs is plotted as a function of the
baryon density nb for the set of generated TM1 models, and
the corresponding threshold for the dUrca process is indicated
by the filled circles. These models show different behaviors
of the symmetry energy due to different slope parameters
L. The model with L = 40 MeV predicts a small Yp at high
densities and a large threshold density of 0.67 fm−3 for the
dUrca process. In contrast, the original TM1 model (L =
111 MeV) gives a much higher Yp and small threshold density
of 0.21 fm−3. It has been reported in Ref. [70] that neutron-
star cooling observations are more compatible with an EOS
having a smaller value of L. Therefore, the TM1(L = 40)
model is more favored by the cooling observations than the
TM1(L = 111) model.

We present, in Fig. 4, the resulting mass-radius rela-
tion with the set of unified EOSs. It is found that the
maximum mass of neutron stars lies in the range of
2.12–2.18 M�, which is compatible with the observational
constraints of PSR J1614–2230 (M = 1.928 ± 0.017M�)
[3,4], PSR J0348+0432 (M = 2.01 ± 0.04M�) [5], and PSR
J0740+6620 (M = 2.14+0.10

−0.09M�) [6]. It is shown that the
maximum mass is not very sensitive to the slope parameter
L, but the radius obviously depends on the value of L. We
find that the radius of a canonical 1.4M� neutron star (R1.4) is
≈14.21 km using the TM1(L = 111) model, while it reduces
to ≈13.12 km with the TM1(L = 40) model. So far, the
precise measurement of neutron-star radii is still a challenge
for astrophysical observations, and no stringent constraints on
the radius R1.4 can be derived [44,71]. The recent analysis
of GW170817 data provides a constraint on the radius of
a 1.4M� neutron star of R1.4 < 13.6 km [1]. Many studies
based on different approaches for the GW170817 event sug-
gested a consistent upper limit for the radius of a 1.4M�

FIG. 4. Mass-radius relations of neutron stars obtained using the
unified EOSs shown in Fig. 2. The horizontal bars indicate the recent
neutron-star mass measurements of PSR J1614–2230 [3,4], PSR
J0348+0432 [5], and PSR J0740+6620 [6].

neutron star as R1.4 < 13.8 km [56,57,61–63]. Our resulting
R1.4 with a smaller L is compatible with this constraint. It
is noteworthy that the calculations of neutron-star radii are
model dependent, as can be found in Refs. [9,10,32,53]. In
Ref. [53], quantum Monte Carlo calculations predict R1.4 <

12 km for L � 45 MeV, which are much smaller than our
results. Therefore, the slope parameter L cannot be precisely
constrained by observations of neutron-star radii due to the
model dependency. On the other hand, the positive correlation
between L and R1.4 is consistent among different models.

It is interesting to examine the correlation between the tidal
deformability of neutron stars and the density dependence of
nuclear symmetry energy. The tidal deformability is deter-
mined by the EOS through both the tidal Love number k2 and
the compactness parameter C = M/R, as shown in Eq. (11).
We plot in Fig. 5 the tidal Love number k2 (left panel) and the
dimensionless tidal deformability � (right panel) as a function
of the neutron-star mass M. One can see that k2 increases with
the neutron-star mass and reaches its maximum value around
0.7–0.9 M�, and then decreases rapidly in the large-mass
region. We find that there are significant differences in k2 for
a fixed M between the EOSs with different slope parameters
L, especially for smaller neutron-star masses. The model
with a small L predicts a small value of k2, and therefore a
small tidal deformability � is achieved due to their relation
in Eq. (11). It is shown that a clear L dependence of the
tidal deformability � is observed, which comes from the L
dependence of both the tidal Love number k2 and the radius
R. The value of � is very large for a small neutron-star mass
due to its small compactness parameter. As the star mass
increases, the tidal deformability � decreases rapidly. For
the canonical 1.4M� neutron star, we obtain � = 652 using
the TM1(L = 40) model, while it increases to � = 1047 for
the TM1(L = 111) model. The analysis of GW170817 data
has placed a constraint on the tidal deformability of a 1.4M�
neutron star, i.e., �1.4 < 800 [1]. Hence, an EOS with a small
symmetry energy slope like L = 40 MeV is more favored than
one with a large slope like L = 111 MeV.
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FIG. 5. Love number k2 and tidal deformability � as a function of the neutron-star mass M obtained using the unified EOSs shown in
Fig. 2.

In Fig. 6, we plot the tidal deformabilities �1 vs �2 of
the two neutron stars in GW170817, using the unified EOSs
with different slope parameters. �1 and �2 are the individual
tidal deformabilities associated with the high-mass M1 and
low-mass M2 components of the binary, respectively. The
curves are obtained by varying independently the high-mass
component in the range 1.365 � M1/M� � 1.60, whereas
the low-mass component is determined by keeping the chirp
mass fixed at the observed value of M = (M1M2)3/5(M1 +
M2)−1/5 = 1.188M� [1]. The 90% and 50% credible con-
straints from the latest analysis of GW170817 by LIGO and
Virgo Collaborations [2] are shown by thin dashed and dash-
dotted lines, respectively. Compared to the 90% confidence
limit reported in the initial analysis of GW170817 [1], the
present 90% credible constraint is considerably reduced. We
can see that the curve obtained by the TM1(L = 40) model is
compatible with the 90% credible constraint, but other curves
with larger L are almost ruled out. The correlation between
the tidal deformability and the slope parameter suggests that
large values of L are not favored by GW170817.

FIG. 6. Tidal deformabilities �1 vs �2 of the two neutron stars in
GW170817, using the unified EOSs with different slope parameters
L. The 90% and 50% credible constraints from the latest analysis
of GW170817 [2] are shown by thin dashed and dash-dotted lines,
respectively.

B. Effects of the crust EOS

We separately investigate the effects of crust and core
EOSs on neutron-star properties. To examine the effect of the
crust, we construct a set of nonunified EOSs by matching the
same core EOS to different crust segments. The crust-core
transition is determined by the crossing point of the two
segments, where the crust and core have equal pressure and
energy density. In Fig. 7, we display the pressure P as a
function of the energy density ε for the set of nonunified
EOSs, where the TM1(L = 40) model is used for the core
and the inner crust is described by the models with different
slope parameter L. It is shown that there are obvious differ-
ences in the inner crust region among these EOSs, whereas
no difference exists both in the outer crust BPS EOS and
in the core TM1(L = 40) EOS. The model with a large L
predicts a soft EOS of the inner crust, which is opposite to the
behavior at high densities (see Fig. 2). Therefore, the softest
EOS considered here is the combination of the crust with

FIG. 7. Pressure P as a function of the energy density ε obtained
using the generated TM1 models with different L for the inner crust
and the TM1(L = 40) model for the core. The crust-core transition is
indicated by the filled circles in the inset. The BPS EOS is adopted
for the outer crust and the matching point is marked by the filled
square.
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FIG. 8. Mass-radius relations of neutron stars obtained using the
nonunified EOSs shown in Fig. 7. The horizontal bars indicate the
recent neutron-star mass measurements of PSR J1614–2230 [3,4],
PSR J0348+0432 [5], and PSR J0740+6620 [6].

L = 111 MeV and the core with L = 40 MeV. The L de-
pendence of the EOS can be understood from the density
dependence of the symmetry energy Esym shown in Fig. 1.

It is interesting to examine quantitatively the effect of
the inner crust on neutron-star properties. In Fig. 8, we plot
the mass-radius relation obtained using the set of nonunified
EOSs. It is noticed that almost no difference is found for
massive neutron stars when using different EOSs, which
indicates the crust contribution is unimportant for a large mass
star. On the other hand, the difference in the radius becomes
more pronounced as the mass decreases. For the canonical
1.4M� neutron star, the radius R1.4 changes from ≈13.12 km
using the unified TM1(L = 40) EOS to ≈12.82 km when
replacing the crust EOS with TM1(L = 111). This means
that the difference in the crust EOS may lead to ≈0.3 km
difference in R1.4. Furthermore, it is found that a small L of
the crust corresponds to a large neutron-star radius, which is
opposite to the L dependence shown in Fig. 4. This is because
the model with a small L results in a hard EOS at subnuclear
densities and a soft EOS at supernuclear densities. In the

FIG. 10. Pressure P as a function of the energy density ε obtained
using the generated TM1 models with different L for the core
and TM1(L = 40) for the inner crust. The crust-core transition is
indicated by the filled circles in the inset. The BPS EOS is adopted
for the outer crust and the matching point is marked by the filled
square.

case of the unified EOS, the neutron-star radius is determined
dominantly by the core EOS, where the crust EOS is less
important. When the nonunified EOSs shown in Fig. 7 are
employed, the differences in the radii come only from the
inner crust segments. Therefore, the sensitivity of the radius to
the crust EOS can be examined by using this set of nonunified
EOSs.

To study the influence of the crust EOS on the tidal
deformability of neutron stars, we show in Fig. 9 the tidal
Love number k2 (left panel) and the dimensionless tidal de-
formability � (right panel) as a function of the neutron-star
mass M, using the set of nonunified EOSs shown in Fig. 7.
The behavior of k2 in this case is very similar to that using
unified EOSs, as shown in the left panel of Fig. 5. The
maximum values of k2 obtained using the nonunified EOSs are
somewhat higher than corresponding results of unified EOSs.
Although the same core EOS is adopted for all nonunified
EOSs considered, significant differences are found in k2 due

FIG. 9. Love number k2 and tidal deformability � as a function of the neutron-star mass M obtained using the nonunified EOSs shown in
Fig. 7.
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FIG. 11. Mass-radius relations of neutron stars obtained using
the nonunified EOSs shown in Fig. 10. The horizontal bars indicate
the recent neutron-star mass measurements of PSR J1614–2230
[3,4], PSR J0348+0432 [5], and PSR J0740+6620 [6].

to the difference of the inner crust. This implies that the
tidal Love number k2 is rather sensitive to the crust EOS.
However, the tidal deformability � shown in right panel of
Fig. 9 is not so sensitive to the crust EOS. Comparing to �

obtained by the unified EOSs (see Fig. 5), the differences
in � when using the nonunified EOSs are much smaller.
This is because � depends on both the tidal Love number k2

and the compactness parameter C = M/R. Due to opposite
L dependence of the radius R shown in Figs. 4 and 8, the
enhancement of � with L contributed by k2 is counteracted
by the decrease of R (equal to the increase of C) in the case
of nonunified EOSs, but it is enhanced by the increase of R
for unified EOSs. Therefore, the L dependence of � shown in
Fig. 5 is more pronounced than the one in Fig. 9.

C. Effects of the core EOS

To examine the effect of the core EOS on neutron-star
properties, we construct another set of nonunified EOSs by
matching the same crust EOS to different core segments.

Again, the crust-core transition is determined by the crossing
point of the two segments. In Fig. 10, we display the pressure
P as a function of the energy density ε for the set of nonunified
EOSs using the BPS EOS for the outer crust, the TM1(L =
40) model for the inner crust, and the TM1(L = 40, 60, 80,
111) models for the core. It is shown that differences appear
only in the core segments among these EOSs. The model with
a large L predicts a stiff EOS at high densities.

In Fig. 11, we plot the mass-radius relation obtained using
the nonunified EOSs with different core segments. It is seen
that the impact of the slope parameter L of the core is
rather obvious, especially on the radii of small mass neu-
tron stars. For the canonical 1.4M� neutron star, the radius
R1.4 is ≈14.53 km in the case of nonunified EOS with
the TM1(L = 40) crust matching the TM1(L = 111) core,
whereas it is reduced to ≈13.12 km when the TM1(L = 40)
core is adopted. The difference between these two cases is
even larger than the one of unified EOSs shown in Fig. 4.
This is because the combination of the TM1(L = 40) crust
matching the TM1(L = 111) core predicts the stiffest EOS
among all combinations considered in this work. This can
be understood from the density dependence of the symmetry
energy, as shown in Fig. 1. We find that both the core and crust
EOSs can significantly affect the neutron-star radii, as shown
in Figs. 8 and 11, but their L dependences are opposite.

To study the impact of the core EOS on the tidal deforma-
bility of neutron stars, we plot in Fig. 12 the tidal Love number
k2 (left panel) and the dimensionless tidal deformability �

(right panel) as a function of the neutron-star mass M, using
the set of nonunified EOSs shown in Fig. 10. It is found
that k2 is insensitive to the slope parameter L of the core,
which is different from the behavior shown in Figs. 5 and
9. This indicates that the tidal Love number k2 is mainly
determined by the crust EOS. On the other hand, the tidal
deformability � shown in right panel of Fig. 12 is clearly
dependent on the slope parameter L of the core. The behavior
of � in this case is very similar to that using unified EOSs,
as shown in the right panel of Fig. 5. With increasing L of
the core, the enhancement of � shown in Fig. 12 is mostly
contributed from the decrease of the compactness parameter
C, because k2 is insensitive to the slope parameter L of the

FIG. 12. Love number k2 and tidal deformability � as a function of the neutron-star mass M obtained using the nonunified EOSs shown
in Fig. 10.
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TABLE III. Properties of neutron stars for different combinations of the crust and core EOSs. Mmax is the maximum mass of neutron stars.
R1.4 and �Rcrust

1.4 denote respectively the radius and crust thickness of a canonical 1.4M� neutron star. k1.4
2 , C1.4, and �1.4 are the Love number,

the compactness parameter, and the tidal deformability for a 1.4M� neutron star, respectively.

EOS Combination Mmax R1.4 �Rcrust
1.4

TM1 crust+core (M�) (km) (km) k1.4
2 C1.4 �1.4

unified (L = 40) + (L = 40) 2.12 13.12 1.25 0.095 0.158 652
unified (L = 111) + (L = 111) 2.18 14.21 1.27 0.103 0.145 1047

nonunified (L = 40) + (L = 111) 2.18 14.53 1.44 0.092 0.142 1050
nonunified (L = 111) + (L = 40) 2.12 12.82 0.84 0.110 0.161 671

core. This is different from the case of unified EOSs, where
the L dependence of � shown in Fig. 5 is determined by both
C and k2. To analyze the effects of the crust and core EOSs
in more detail, we present in Table III some basic properties
of neutron stars obtained using different combinations of the
crust and core segments. It is found that Mmax are determined
by the core EOS, whereas the properties of a canonical 1.4M�
neutron star are affected by both the crust and core EOSs.
It is noticeable that the crust with different L may result
in ≈0.3 km difference in the radius R1.4 and ≈0.2–0.4 km
difference in the crust thickness �Rcrust

1.4 . Although k1.4
2 and

C1.4 are affected by the crust EOS, the calculated �1.4 is not
so sensitive to the crust EOS.

IV. CONCLUSIONS

In this work, we constructed a set of unified EOSs based
on RMF models with different slope parameters L. We
performed the self-consistent Thomas-Fermi calculations for
pasta phases appearing in the inner crust and then determined
the crust-core transition by comparing the energy densities be-
tween pasta phases and homogeneous matter. It was found that
the model with a small L predicts a large crust-core transition
density. By applying the set of unified EOSs in neutron-star
calculations, some correlations between the symmetry energy
slope L and neutron-star properties were observed. It was
found that a small L corresponds to a small neutron-star radius
and therefore a small tidal deformability, which is favored by
the recent analysis of the GW170817 event.

To separately investigate the effects of crust and core
EOSs on neutron-star properties, we constructed two sets of
nonunified EOSs: (1) the same core EOS matching different
crust EOSs; (2) the same crust EOS matching different core
EOSs. It was observed that different crust EOSs could lead to
significant difference in neutron-star radii. For the canonical
1.4M� neutron star, the radius R1.4 changes from ≈13.12 km

with the unified TM1(L = 40) EOS to ≈12.82 km when
replacing the crust EOS with TM1(L = 111). Therefore, the
uncertainty in R1.4 induced by different crust EOSs considered
here is ≈0.3 km. On the other hand, the influence of the core
EOS on neutron-star radii is more pronounced than the one
of the crust EOS. The uncertainty in R1.4 induced by different
core EOSs is ≈1.4 km. We noticed that the L dependence of
neutron-star radii obtained using the two sets of nonunified
EOSs is opposite, which could be understood from the density
dependence of the symmetry energy.

We studied the tidal deformability of neutron stars using
the two sets of nonunified EOSs, in order to examine the
effects of crust and core EOSs separately. It was found that
the effect of the core EOS on the tidal deformability � is
more significant than the one of the crust EOS. In fact, the
tidal Love number k2 is mainly determined by the crust EOS
and is insensitive to the slope parameter L of the core. With
increasing L of the core, the enhancement of � is mostly
contributed from the increase of the neutron-star radius R.
On the other hand, the crust EOS could significantly affect
both the Love number k2 and the radius R. However, the
enhancement of k2 with L is largely counteracted by the
decrease of R. Therefore, the resulting tidal deformability �

is not so sensitive to the crust EOS. We concluded that both
the crust and core EOSs could significantly affect neutron-star
properties such as the radius and tidal deformability. It is
likely that the nuclear model with a small symmetry energy
slope is favored by various observational constraints.
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