
PHYSICAL REVIEW C 100, 045503 (2019)

Electroweak pion production on nuclei within the extended factorization scheme
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We have applied the extended factorization scheme to investigate the electroweak pion production on nuclei.
The ANL-Osaka model, which was obtained by analyzing the data of πN , γ N , N (e, e′π ), and N (ν, μπ )
reactions up to invariant mass W = 2 GeV, is used to generate the matrix elements of current operators relevant to
pion production off the nucleon. Medium effects on the � (1232) component of the meson-exchange current are
included by using a �-nucleus potential determined from the previous �-hole model studies of pion-nucleus
reactions. Nuclear correlations in the initial target state and in the spectator system(s) are modeled using
realistic hole spectral functions. As a first step, we show that the data of 12C(e, e′) up to the � (1232) region
can be described reasonably well. The interplay between the pion production and two-body meson-exchange
mechanisms is shown to be essential in improving the agreement with the data in the “dip” region, between
the quasielastic and the � (1232) peaks. Predictions for 12C(ν, μ π ) have also been made. They can be used
to estimate pion-emission rates in neutrino-nucleus cross section, which constitutes an important systematic
uncertainty to the reconstructed neutrino energy. With further improvements of the Metropolis Monte Carlo
techniques to account for final states comprised of more than two particles, our approach can be employed up
to W = 2 GeV, where two-pion production and higher mass nucleon resonances must be included for analyzing
the data from accelerator-based neutrino-oscillation experiments.
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I. INTRODUCTION

The development of the worldwide accelerator-based
neutrino-oscillation program has been a springboard for ad-
vancing the theoretical description of lepton interactions with
nuclei [1–3]. Oversimplified models of nuclear dynamics,
such as the relativistic Fermi gas, have proven to be inad-
equate to reproduce quasielastic charge-changing scattering
data on 12C [4,5]. As a result, more sophisticated approaches,
capable of providing a rather accurate description of available
inclusive neutrino scattering data, have been devised [6–14].
In particular, the Green’s function Monte Carlo (GFMC)
method [15] has been successfully applied to perform first
principle calculations of the neutral-current response func-
tions in the quasielastic (QE) region, up to moderate values
of the momentum transfer [16,17]. GFMC results have un-
ambiguously identified the role of nuclear correlations and
meson-exchange currents in providing the most accurate de-
scription of lepton-nucleus scattering. Although QE processes
dominate the total cross section for neutrino fluxes in the
sub-GeV region, as in T2K [18] and MicroBooNE [19] exper-
iments, pion production constitutes an important background.
A signal corresponding to a pion produced in the primary
vertex and later absorbed in the nucleus could be misiden-
tified with a QE event. Accurate predictions for inelastic
channels are fundamental for experiments characterized by
higher neutrino energies, such as MINERνA [20], NOνA

[21], and DUNE [22]. Extending the applicability of GFMC
to processes with energies higher than those corresponding
to the QE kinematics poses nontrivial difficulties. The use of
integral-transform techniques precludes a proper treatment of
the energy dependence of the current operators. In addition,
despite strategies to include the leading relativistic effects in
the kinematics exist, the explicit inclusion of pions, needed
for a proper description of the resonance region, is still in its
infancy [23].

The framework based on the impulse approximation (IA)
and realistic hole spectral-functions (SFs) is ideally suited to
combine a realistic description of the initial target state—
as in the GFMC a realistic phenomenological Hamiltonian
is employed—with a fully relativistic interaction vertex and
kinematics [24]. In its original formulation, this factorization
scheme relies on the assumption that lepton-nucleus scattering
reduces to the incoherent sum of elementary processes involv-
ing individual nucleons. Over the past few years, the IA was
generalized to include the excitation of two-particle–two-hole
final states induced by relativistic meson-exchange currents
[25]. This extended factorization scheme (EFS) has been
applied to calculate the electroweak inclusive cross sections
of carbon and oxygen [26,27].

Early investigations of real-pion emission in inclusive
12C(e, e′) scattering were carried out within the IA in
Refs. [28–30]. There, the elementary γ ∗N → πN cross
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sections, generated from tree-diagram models consisting of
the standard Born terms and the excitation of the �(1232)
resonance, were convolved with the nucleon momentum dis-
tributions. The two-nucleon mechanism γ ∗ + NN → �N →
NN was included [30] with the parameters determined by
fitting the total cross section data of γ + d → np reaction in
the � excitation region. Medium effects on the � propagation,
mainly due to the pion absorption within the nucleus [31] were
modeled using a �-nucleus potential, which was phenomeno-
logically determined within the isobar-hole model of π -
nucleus scattering [32–34]. The authors of Ref. [35] improved
upon the above procedure by considering the γ ∗N → πN
amplitudes generated from a dynamical model [36,37], known
as the Sato-Lee (SL) model, which provides a unified descrip-
tion of πN → πN , γ N → πN , and N (e, e′π )N reactions
up to the �-excitation region. The correlated-basis function
(CBF) hole-SF [38,39] was used to account for the nuclear
correlations in the initial target state. Predictions were also
made for neutrino-induced inclusive 12C(ν, μ) cross sections
using the extended SL model [40], which also contains axial
current contributions fit to N (ν, μπ )N reactions data. On the
other hand, two-nucleon γ ∗ + NN → NN mechanisms were
not considered in that analysis.

In this work, we have implemented into the EFS the elec-
troweak pion production amplitudes generated from the dy-
namical coupled-channel model [41–43] developed by the Ar-
gonne National Laboratory–Osaka University (ANL-Osaka)
collaboration. The ANL-Osaka model is an extension of the
SL model to include all important meson-baryon channels
and all nucleon resonances up to invariant mass W = 2 GeV.
The parameters of the ANL-Osaka model are determined
[41,43] by fitting about 26 000 data points of the πN, γ N →
πN, ηN, K�, K� data from the channel thresholds to W �
2.1 GeV. It had also been extended [42] to describe the data of
neutrino-induced N (ν, μπ )N transitions. The resulting model
contains about 20 nucleon resonances, which include all of the
four-star resonances listed by the Particle Data Group [44].
Clearly the use of the ANL-Osaka model makes this work
significantly different from the above-mentioned references.
It has to be noted that a more recent work [45] which utilized
the Paschos-Lalakuklich amplitudes [46–48] only includes
P33(1232), D13(1520), P11(1440), and S11(1535) resonances.

We have also significantly improved upon the treatment
of medium effects in the �-component of the two-body cur-
rent, whose importance was established in the investigation
of pion-nucleus reactions, as reviewed in Ref. [31]. On the
same line as Ref. [30], we introduce in the � propagator
of the two-body current a �-nucleus potential. To account
for the momentum-dependence of the medium effects, the
latter is generated [49,50] from a Brueckner-Hartree-Fock
calculation based on a coupled-channel NN ⊕ N� ⊕ πNN
model [51–54].

To test the reliability of our approach, we first calculate
the electron-12C inclusive cross sections for a variety of
kinematical setups, assessing the relative importance of the
different reaction mechanisms. We also present results for
neutrino and antineutrino-12C scattering, induced by both
neutral- and charged-current transitions. We refrain from
presenting flux-folded calculations, since the latter require a

more refined treatment of final-state interactions (FSI), for
both two-nucleon knockout and pion-production processes. In
particular, as far as the pion-production region is concerned,
the processes in which the pion produced in the interaction
vertex is absorbed in the nuclear medium should be accounted
for before meaningful comparison with data are made.

In Sec. III we report the expressions for the lepton-nucleus
inclusive cross sections in terms of the relevant response
functions. One- and two-body current reaction mechanisms
are reviewed in Secs. III A and III B, while Sec. III C is
devoted to pion-production processes. In Sec. IV we present
our results on leptons scattering off 12C and in Sec. V we state
our conclusions.

II. FORMULATION OF ELECTROWEAK
LEPTON-NUCLEUS INCLUSIVE CROSS SECTIONS

Let us consider a charge-changing process in which a neu-
trino (ν	) or an antineutrino (ν̄	) with initial momentum kμ =
(E , k) scatters off a nuclear target, the final hadronic state
being undetected. Denoting by k′μ = (E ′, k′) the momentum
of the outgoing lepton, the double-differential cross section in
the Born approximation can be written as [55,56]

( dσ

dE ′d�′
)

ν	/ν̄	

= G2
F cos2 θc

4π2
k′E ′ LμνW μν. (1)

We take cos θc = 0.97425 [44] and for the Fermi coupling
constant we adopt the value GF = 1.1803 × 10−5 GeV−2, as
from the analysis of 0+ → 0+ nuclear β decays of Ref. [57],
which accounts for the bulk of the inner radiative corrections
[58].

The leptonic tensor is fully determined by the kinematics
of the leptons in the initial and final states

Lμν = 1

EE ′ (kμk′
ν + k′

μkν − gμν k · k′ ± iεμρνσ kρk′ σ ), (2)

where the + (−) sign is for ν	 (ν̄	) initiated reactions.
The hadronic tensor, containing all information on strong-
interaction dynamics of the target nucleus, is defined in terms
of the transition between the initial and final nuclear states
|�0〉 and |� f 〉 with energies E0 and E f . For spin-zero nuclei
it can be cast in the form

W μν =
∑

f

〈�0| jμ †
CC |� f 〉〈� f | jνCC |�0〉δ(E0 + ω − E f ), (3)

where the charged-current operator is the sum of vector and
axial components jμV + jμA .

Taking the three-momentum transfer along the z axis and
the total three-momentum in the x-z plane

q = k − k′ = (ω, q), q = (0, 0, qz ),
(4)

Q = k + k′ = (�, Q), Q = (Qx, 0, Qz ),

performing the Lorentz contraction in Eq. (1) yields(
dσ

dE ′d�′

)
ν/ν̄

= G2
F cos2 θc

4π2

k′

2Eν

[L̂CCRCC + 2L̂CLRCL

+ L̂LLRLL + L̂T RT ± 2L̂T ′RT ′ ], (5)

045503-2



ELECTROWEAK PION PRODUCTION ON NUCLEI WITHIN … PHYSICAL REVIEW C 100, 045503 (2019)

where the kinematical factors are given by

L̂CC = �2 − q2
z − m2

	,

L̂CL = (−�Qz + ωqz ),

L̂LL = Qz
2 − ω2 + m2

	, (6)

L̂T = Qx
2

2
− q2 + m2

	,

L̂T ′ = �qz − ωQz,

and m2
	 = k′ 2 is the mass of the outgoing lepton. The five

electroweak response functions are expressed in terms of the
hadron tensor components as

RCC = W 00,

RCL = −1

2
(W 03 + W 30),

RLL = W 33,

RT = W 11 + W 22,

RT ′ = − i

2
(W 12 − W 21). (7)

Note that the inclusive cross section of an electron scatter-
ing off a nucleus in the one-photon exchange approximation
can be written in a similar fashion as in Eq. (1), provided
that G2/4π2 is replaced by 2α2/q4, where α � 1/137 is the
fine structure constant, and the contribution proportional to
the Levi-Civita tensor is dropped from the leptonic tensor of
Eq. (2). Hence, the double-differential cross section for this
process reads(

dσ

dE ′d�′

)
e

=
(

dσ

d�′

)
M

[ÂCC RCC + ÂT RT ], (8)

where

ÂCC =
(

q2

q2
z

)2

, ÂT = −1

2

q2

q2
z

+ tan2 θ

2
, (9)

θ being the lepton scattering angle and(
dσ

d�′

)
M

=
[

α cos(θ/2)

2E ′ sin2(θ/2)

]2

(10)

is the Mott cross section. The electromagnetic responses of
Eq. (8) are written in terms of the hadron tensor components
as in Eq. (7), provided that jμCC is replaced by the electro-
magnetic current jμEM , which is related to jμVC through the
conserved vector current (CVC) hypothesis. Because of their
striking similarities and common ingredients, it is evident
that a prerequisite for any reliable model of neutrino-nucleus
scattering is its capability of accurately describing the large
body of measured electron-scattering cross sections [59].

III. EXTENDED IMPULSE APPROXIMATION

The initial state of the target nucleus appearing in Eq. (3)
does not depend on momentum transfer and can be safely
treated within nuclear many-body theory (NMBT) regardless
of the kinematics of the scattering. Within this scheme, the

nucleus is viewed as a collection of A pointlike protons and
neutrons, whose dynamics are described by the nonrelativistic
Hamiltonian

H =
∑

i

p2
i

2mN
+

∑
j>i

vi j +
∑

k> j>i

Vi jk . (11)

In the above equation, pi is the momentum of the ith nu-
cleon of mass mN , while the potentials vi j and Vi jk model
the nucleon-nucleon (NN) and three-nucleon (3N) interac-
tions, respectively. Up to moderate values of the momentum
transfer, typically |q| � 500 MeV, NMBT can be applied
to compute the response functions of A � 12 nuclei using
initial- and final-state nuclear wave functions derived from the
Hamiltonian of Eq. (11). In particular, virtually exact Green’s
function Monte Carlo (GFMC) calculations have shown that
the strength and energy-dependence of two-nucleon processes
induced by correlation effects and interaction currents are
crucial in providing the most accurate description of electron-
and neutrino-nucleus scattering in the quasielastic regime
[17,60].

At large values of energy and momentum transfer, a calcu-
lation of the hadron tensor solely based on NMBT is no longer
reliable. In this regime, the final state includes at least one
particle carrying a large momentum ∼q, and fully relativistic
expressions of the transition currents need to be retained. The
impulse approximation (IA) scheme allows one to circumvent
the difficulties associated with the relativistic treatment of
|� f 〉 and of the current operator, while at the same time
preserving essential features (such as correlations) inherent to
a realistic description of nuclear dynamics.

A. One-body current processes

The IA scheme is based on the tenet that for |q| 
 1/d ,
d being the average nucleon-nucleon separation distance in
the target, the struck nucleon is largely decoupled from the
spectator (A − 1) particles [1,24]. Within the original imple-
mentation of the IA, the nuclear current operator reduces to a
sum of one-body terms

jμ =
∑

i

jμi (12)

and the nuclear final state factorizes as∣∣ψA
f

〉 → |p〉 ⊗ |ψA−1
f

〉
. (13)

In the above equation |p〉 denotes the final-state nucleon with
momentum p and energy e(p) =

√
p2 + m2

N , while |ψA−1
f 〉

describes the (A − 1)-body spectator system. Its energy and
recoiling momentum are fixed by energy and momentum
conservation

EA−1
f = ω + E0 − e(p), PA−1

f = q − p. (14)

Employing the factorized expression of the nuclear final state
in Eq. (3) and inserting a single-nucleon completeness rela-
tion, the incoherent contribution to the one-body (1b) hadron
tensor is given by

W μν
1b (q, ω) =

∫
d3k

(2π )3
dEPh(k, E )

m2
N

e(k)e(k + q)
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×
∑

i

〈k| jμi
†|k + q〉〈k + q| jνi |k〉

× δ(ω − E + mN − e(k + q)), (15)

where mN is the rest mass contribution to the energy of
the initial nucleon. The energy conserving δ function can
be rewritten as δ(ω̃ + e(k) − e(k + q)) with ω̃ = ω − E +
mN − e(k). Hence, the scattering on a bound nucleon carry-
ing momentum k is given in terms of the tensor describing
the scattering off a free nucleon where the four-momentum
transfer is replaced by q = (ω, q) → q̃ = (ω̃, q). The factors
mN/e(k) and mN/e(k + q) are included to account for the im-
plicit covariant normalization of the four-spinors of the initial
and final nucleons in the matrix elements of the relativistic
current. The hole spectral function

Ph(k, E ) =
∑

f

∣∣〈ψA
0

∣∣[|k〉 ⊗ ∣∣ψA−1
f

〉]∣∣2
δ
(
E + EA−1

f − EA
0

)
(16)

provides the probability distribution of removing a nucleon
with momentum k from the target nucleus, leaving the resid-
ual (A − 1)-nucleon system with an excitation energy E . Note
that in Eq. (15) we neglected Coulomb interactions and the
other (small) isospin-breaking terms and made the assump-
tion, largely justified in the case of symmetric isospin zero
(T = 0) nuclei, that the proton and neutron spectral functions
are identical.

Within the correlated-basis function theory (CBF), the hole
SF of finite nuclei is expressed as a sum of two contributions
[39], displaying distinctly different energy and momentum
dependences

Ph(k, E ) = P1h
h (k, E ) + Pcorr

h (k, E ). (17)

The one-hole term, corresponding to bound A − 1 states, is
obtained from a modified mean-field scheme

P1h
h (k, E ) =

∑
α∈{F}

Zα|φα (k)|2Fα (E − eα ) , (18)

where the sum runs over all occupied single-particle nuclear
states, labeled by the index α, and φα (k) is the Fourier
transform of the shell-model orbital with energy eα . The
spectroscopic factor Zα < 1 and the function Fα (E − eα ),
describing the energy width of the state α, account for the
effects of residual interactions that are not included in the
mean-field picture. In the absence of the latter, Zα → 1 and
Fα (E − eα ) → δα (E − eα ). The spectroscopic factors and the
widths of the s and p states of 12C used in this work are from
the analysis of (e, e′ p) data carried out in Refs. [61–63].

The correlated part of the SF for finite nuclei Pcorr
h (k, E )

corresponds to unbound |ψA−1
f 〉 states in Eq. (16), in which at

least one of the spectators is in the continuum. It is obtained
through the local density approximation (LDA) procedure

Pcorr
h (k, E ) =

∫
d3R ρA(R)Pcorr

h, NM (k, E ; ρA(R)). (19)

In the above equation, ρA(R) is the nuclear density distri-
bution of the nucleus and Pcorr

h ,NM (k, E ; ρ) is the correlation
component of the SF of isospin-symmetric nuclear matter

at density ρ, which vanishes if nuclear correlations are not
accounted for. The use of the LDA to account for Pcorr

h (k, E )
is justified by the fact that to a remarkably large extent
short-range nuclear dynamics is unaffected by surface and
shell effects. The energy-dependence exhibited by Pcorr

h (k, E ),
showing a widespread background extending up to large
values of both k and E , is completely different from that of
P1h

h (k, E ). For k > pF , Pcorr
h (k, E ) coincides with Ph(k, E )

and its integral over the energy gives the so-called continuous
part of the momentum distribution.

The distinct momentum dependences of the one-hole and
the correlated part of the hole SF can be appreciated by com-
paring the momentum distributions corresponding to Ph(k, E )
and P1h

h (k, E ), displayed in Fig. 1. In this figure we also show
the free Fermi gas momentum distribution for kF = 225 MeV
and the one computed within variational Monte Carlo (VMC)
using a Hamiltonian comprised of the Argonne v18 [64] and
the Urbana X [15] potentials. It is clear that the correlation
component enhances the high-momentum tail of the hole SF
bringing the corresponding momentum distribution in good
agreement with the VMC results [65]. On the other hand, the
differences with the free Fermi gas approximation are striking:
nFG(k) is flat for |k| < kF and vanishes for |k| > kF .

In the kinematical region in which the interactions between
the struck particle and the spectator system cannot be ne-
glected, the IA results have to be modified to include the effect
of FSI. Following Ref. [66], we consider the real part of the
optical potential U derived from the Dirac phenomenological
fit of Ref. [67] to describe the propagation of the knocked-out
particle in the mean-field generated by the spectator system.
This potential, given as a function of the kinetic energy of
the nucleon tkin(p) =

√
p2 + m2 − m, modifies the energy

spectrum of the struck nucleon as

ẽ(k + q) = e(k + q) + U (tkin(k + q)). (20)

The multiple scatterings that the struck particle undergoes
during its propagation through the nuclear medium are taken
into account through a convolution scheme. The IA responses

FIG. 1. Momentum distributions associated with the hole SF
[nh(k)], the mean-field component of the hole SF [n1h

h (k)], the free
Fermi gas at kF = 225 MeV [nFG(k)], and the VMC results of [65]
[nVMC

h (k)].
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are folded with the function fk+q, normalized as∫ +∞

−∞
dω fk+q(ω) = 1 . (21)

The one-body hadron tensor then reads

W μν
1b (q, ω) =

∫
d3k

(2π )3
dEPh(k, E )

∫
dω′ fk+q(ω − ω′)

× m2
N

e(k)e(k + q)

∑
i

〈k| jμi
†|k + q〉〈k + q| jνi |k〉

× δ(ω′ + E − ẽ(k + q))θ (|k + q| − pF ).
(22)

The folding function is computed within a generalization of
the Glauber theory [68]

fp(ω) = δ(ω)
√

Tp +
∫

dt

2π
eiωt

[
Ū FSI

p (t ) − √
Tp

]
= δ(ω)

√
Tp + (1 − √

Tp)Fp(ω). (23)

Full expressions for the nuclear transparency Tp and for the
finite width function Fp(ω) can be found in [24,69].

The one-body CC operator is the sum of a vector and axial
component

jμCC = jμV + jμA ,

jμV = F1γ
μ + iσμνqν

F2

2mN
, (24)

jμA = −γ μγ5FA − qμγ5
Fp

mN
,

where

F1 =FV
1 τ±.

F2 =FV
2 τ±, (25)

and τ± = (τx ± iτy)/2 is the isospin raising/lowering opera-
tor. The Dirac and Pauli form factors defining FV

1,2 = F p
1,2 −

F n
1,2 are usually written in terms of the Sachs form factors as

F p,n
1 =Gp,n

E + τGp,n
M

1 + τ
,

(26)

F p,n
2 =Gp,n

M − Gp,n
E

1 + τ

with τ = −q2/4m2
N . The axial term of the CC can be cast in

the form

FA =FAτ±,

FP =FPτ±. (27)

We employ the standard dipole parametrization for the axial
form factor

FA = gA(
1 − q2/m2

A

)2 , (28)

where the nucleon axial-vector coupling constant is taken to
be gA = 1.2694 [44] and the axial mass mA = 1.049 GeV.
Uncertainties in the Q2 dependence of the axial form fac-
tor impact neutrino-nucleus cross-section predictions. In this

regard, the dipole parametrization has been the subject of
intense debate: dedicated lattice-QCD calculations of GA(Q2)
have been carried out [70] and an alternative “z-expansion”
analysis [71] has been recently proposed.

Partially conserved axial current (PCAC) arguments con-
nect the pseudoscalar form factor to the axial one

FP = 2m2
N(

m2
π − q2

)FA, (29)

mπ being the pion mass. While FP can be safely neglected
when considering νe, νμ-induced processes, its contribution
cannot be ignored for a heavy τ lepton production and in the
analysis of muon-capture processes [72,73].

The conserved-vector-current (CVC) hypothesis allows
one to relate the vector component of the CC current to the
EM: jμEM = jμV , provided that

F1 = 1
2

[
F S

1 + FV
1 τz

]
,

F2 = 1
2

[
F S

2 + FV
2 τz

]
, (30)

where F S
1,2 = F p

1,2 + F n
1,2 is the single-nucleon isoscalar form

factor.

B. Inclusion of two-body currents

In the last few years, the IA scheme has been gener-
alized to include meson-exchange currents, which naturally
arise from the dynamics of the constituent nucleons. For
instance, the gauge invariance of the theory imposes that
the electromagnetic charge and current operators satisfy the
continuity equation q · jEM = [H, j0

EM]. Since the two- and
three-nucleon potentials of Eq. (11) do not commute with
the charge operator jμ must comprise two- and three-nucleon
contributions. Neglecting the latter, which have numerically
proven to be very small in A = 3 observables [74], we can
write the CC and EM currents as

jμ =
∑

i

jμi +
∑
i< j

jμi j . (31)

In Refs. [25–27] the factorization ansatz of Eq. (13) has
been extended to treat the amplitudes involving two-nucleon
currents consistently with the correlation component of the
hole SF ∣∣ψA

f

〉 → |pp′〉a ⊗ ∣∣ψA−2
f

〉
. (32)

where |p p′〉a = |p p′〉 − |p′ p〉. In infinite isospin-symmetric
nuclear matter, the pure two-body current component of the
hadron tensor turns out to be [25]

W μν
2b (q, ω)

= V

4

∫
dE

d3k

(2π )3

d3k′

(2π )3

d3 p

(2π )3

m4
N

e(k)e(k′)e(p)e(p′)

× PNM
h (k, k′, E )2

∑
i j

〈k k′| jμi j
†|p p′〉a〈p p′| jνi j |k k′〉

×δ(ω − E + 2mN − e(p) − e(p′)). (33)

In the above equation, the normalization volume for the
nuclear wave functions V = ρ/A with ρ = 3π2k3

F /2 depends
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on the Fermi momentum of the nucleus, which for 12C we take
to be kF = 225 MeV. The factor 1/4 accounts for the sum over
indistinguishable pairs of particles, while the factor 2 arises
from the fact that, renaming the dummy indexes, the product
of the two direct terms is equal to the one of the two exchange
terms [75]. In principle, the calculation of W μν

2b (q, ω) requires
the knowledge of the two-nucleon hole spectral function of
infinite nuclear matter PNM

h (k, k′, E ). Within the CBF theory,
it has been shown that, in absence of long-range correlations,
the two-body momentum distribution factorizes as∫

dEPNM
h (k, k′, E ) = n(k, k′) = n(k)n(k′) + O

(
1

A

)
.

(34)
Hence, the two-body current component of the hadron tensor
can be expressed as

W μν
2b (q, ω) = V

2

∫
dẼ

d3k

(2π )3
dẼ ′ d3k′

(2π )3

d3 p

(2π )3

× m4
N

e(k)e(k′)e(p)e(p′)
PNM

h (k, Ẽ )PNM
h (k′, Ẽ ′)

×
∑

i j

〈k k′| jμi j
†|p p′〉a〈p p′| jνi j |k k′〉

× δ(ω − Ẽ − Ẽ ′ + 2mN − e(p) − e(p′)).
(35)

In analogy with the one-body case, we can introduce ω̃ = ω −
Ẽ − Ẽ ′ + 2 mN − e(k) − e(k′). The resulting expression for
the energy conserving δ function,

δ(ω̃ + e(k) + e(k′) − e(p) − e(p′)), (36)

is the same as the one corresponding to the scattering on
two free nucleons, provided that q = (ω, q) → q̃ = (ω̃, q). In
order to treat atomic nuclei, following Ref. [27], we replace
the hole SF of infinite matter with the one of 12C,

PNM
h (k, E ) → k3

F

6π2
Ph(k, E ), (37)

where Ph(k, E ) is computed as in Eq. (17).
It has been argued that the strong isospin dependence

of the two-nucleon momentum distribution, supported by
experimental data, persist for nuclei even larger than 12C
[76–79], hence questioning the regime of applicability of
Eq. (34). A viable strategy to gauge the limitations of the
factorization of the two-body momentum distribution consists
in approximating the latter with the so-called two-body decay
function [80]

PNM
h (k, k′, E ) → n(k, k′)δ

(
E − ĒA−2

f

)
, (38)

ĒA−2
f being the average energy of the A − 2 spectator sys-

tem, and use variational Monte Carlo results for n(k, k′).
Explorative calculations in this directions are ongoing and
will be the subject of a dedicated work. In this regard, it
has to be noted that in this work the interference between
one- and two-body currents is disregarded. While in the two-
nucleon knockout final states this contribution is relatively
small [25,26], CBF calculations in infinite nuclear matter
suggest that nuclear tensor correlations strongly enhance the

interference terms for final states associated with single-
nucleon knock out processes [81]. This is compatible with the
Green’s function Monte Carlo results for the electromagnetic
[60] and neutral-current response functions [17], in which the
interference between one- and two-body currents dominates
the total two-body current contribution, significantly enhanc-
ing the quasielastic peak region.

Analogously to the one-body case, the two-body CC op-
erator is the sum of a vector and axial component. We use
the expressions derived in Ref. [82] by coupling the pion-
production amplitudes of Ref. [83] to a second nucleonic
line. They can be traced back to four distinct interaction
mechanisms, namely the pion in flight, seagull, pion-pole, and
� excitations

jμCC = (
jμpif

)
CC + (

jμsea

)
CC + (

jμpole

)
CC + (

jμ�
)

CC. (39)

The corresponding EM currents are obtained from the vector
components of the jμCC using CVC hypothesis. Detailed ex-
pressions for the first four terms of Eq. (39) can be found in
Refs. [27,82]. Here, we only focus on the diagrams reported
in Fig. 2 (and the corresponding two in which particles 1 and 2
are interchanged), which are associated with two-body current
terms involving a � resonance in the intermediate state. Be-
cause of the purely transverse nature of this current, the form
of its vector component is not subject to current-conservation
constraints and its expression is largely model dependent. We
adopted the parametrization of Ref. [83]. With the momentum
variables specified in Fig. 2, it is of the following form:

( jμ�)CC = 3

2

fπNN f ∗

m2
π

{
�(k2)(2)

[(
− 2

3
τ (2) + IV

3

)
±

× FπNN (k2)FπN�(k2)( jμa )(1) −
(

2

3
τ (2) + IV

3

)
±

× FπNN (k2)FπN�(k2)( jμb )(1)

]
+ (1 ↔ 2)

}
, (40)

k k k’k’

p p p’p’

q

q

pΔ
pΔ k2 k2

FIG. 2. Feynman diagrams describing two-body currents contri-
butions associated to � excitation processes. Solid, thick, and dashed
lines correspond to nucleons, deltas, and pions, respectively. The
wavy line represents the vector boson.
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where k2 = p′ − k′ is the momentum of the π exchanged in
the two depicted diagrams, f ∗ = 2.14 and

�(k) = γ5/k

k2 − m2
π

, (41)

FπN�(k) = �2
πN�

�2
πN� − k2

, (42)

FπNN (k) = �2
π − m2

π

�2
π − k2

(43)

with �πN� = 1150 MeV and �π = 1300 MeV. The isospin
raising-lowering operator is given by

(IV )± = (τ (1) × τ (2) )± , (44)

where ± → x ± iy.
In Eq. (40), jμa and jμb denote the N → � transition

vertices of the left and right diagrams, respectively. They are
expressed as

jμa = (
jμa

)
V + (

jμa
)

A ,

(
jμa

)
V

= CV
3

mN

[
kα

2 Gαβ (p�)(gβμ
/q − qβγ μ)

]
γ5,(

jμa
)

A = CA
5

[
kα

2 Gαβ (p�)gβμ
]
, (45)

where k is the momentum of the initial nucleon which absorbs
the incoming momentum q̃ and p� = q̃ + k, yielding p0

� =
e(k) + ω̃, and

jμb = (
jμb

)
V + (

jμb
)

A ,

(
jμb

)
V = CV

3

mN
γ5

[(
gαμ

/q − qαγ μ
)
Gαβ (p�)kβ

2

]
,

(
jμb

)
A = CA

5

[
gαμGαβ (p�)kβ

2

]
, (46)

where p is the outgoing nucleon four-momentum and p� =
p − q̃. In the above equations all nucleons are on the mass
shell with the time component p0 =

√
m2

N + �p 2 .
The Rarita-Schwinger propagator

Gαβ (p�) = Pαβ (p�)

p2
� − M2

�

(47)

is proportional to the spin 3/2 projection operator

Pαβ (p�) = (/p�
+ M�)

[
gαβ − 1

3
γ αγ β − 2

3

pα
� pβ

�

M2
�

+ 1

3

pα
�γ β − pβ

�γ α

M�

]
. (48)

The possible decay of the � into a physical πN state is
accounted for by replacing the real resonance mass M� =
1232 MeV entering the free propagator of Eq. (47) by
M� − i�(p�)/2 [84,85]. The energy-dependent decay width
�(p�)/2, effectively describing the allowed phase space for
the pion produced in the decay, is given by

�(p�) = −2Im[�πN (p�)]

= (4 fπN�)2

12πm2
π

|k|3√
s

(mN + Ek )R(r2), (49)

where �πN (p�) is the � self-energy in vacuum. In the
above equation, (4 fπN�)2/(4π ) = 0.38, s = p2

� is the invari-
ant mass, k is the decay three-momentum in the πN center of
mass frame, such that

|k|2 = 1

4s
[s − (mN + mπ )2][s − (mN − mπ )2], (50)

and Ek =
√

m2
N + k2 is the associated energy. The additional

factor

R(r2) =
(

�2
R

�2
R − r2

)
(51)

depending on the πN three-momentum r with r2 = (Ek −√
m2

π + k2 )2 − 4k2 and �2
R = 0.95 m2

N , is introduced to im-
prove the description of the experimental phase-shift δ33 [84].

We now depart from the approach of Refs. [27,82,85,86] to
consider medium effects on the � propagators depicted in the
diagrams of Fig. 2. From the extensive study of pion-nucleus
reactions, it has been well established that the � width can be
modified by Pauli blocking of the � → πN decay in medium
and � can be annihilated by the nucleons in nuclei. A rigorous
account for these many-body effects can only be achieved
within the elaborated �-hole model [32–34] of pion-nucleus
reactions and is beyond the scope of this work. As a first
exploratory step, we will neglect the Pauli blocking effect and
follow Refs. [31,49,50] to account for the annihilation of the
� via �N → NN interactions by introducing a shift of the �

self-energy �πN (p�) in free space

�πN (p�) → �πN (p�) + U�(p�, ρ), (52)

where p� is the three-momentum of the � and ρ is the nuclear
density. We generate U�(p�, ρ) from a Brueckner-Hartree-
Fock calculation using a coupled-channel NN ⊕ N� ⊕ πNN
model [51–54]. Its real and imaginary parts, displayed in
Fig 3, exhibit a relatively strong momentum dependence. To
get a qualitative estimate of the medium effect, we will modify
the decay width of Eq. (49) by including the imaginary part of
U�(p�, ρ) as

��(p�) → ��(p�) − 2Im[U�(p�, ρ = ρ0)], (53)

where we fixed the density at the nuclear saturation value ρ0 =
0.16 fm3.

FIG. 3. Real and imaginary parts of the � potential in nuclear
matter at saturation density ρ = 0.16 fm−3.
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C. Pion-production mechanisms

The primary goal of this work consists in further gener-
alizing the factorization ansatz of Eq. (13) to accommodate
productions of real pions in the final state. To this aim, the
final state of the reaction can be cast into the form∣∣ψA

f

〉 → |pπ p〉 ⊗ ∣∣ψA−1
f

〉
, (54)

where pπ denotes both the four-momentum (p0
π , pπ ) and the

isospin tπ of the emitted pion. Following the same steps that
led to Eq. (15), the incoherent contribution to the one-body
one-pion (1b1π ) hadron tensor reads

W μν
1b1π (q, ω)

=
∫

d3k

(2π )3
dEPh(k, E )

d3 pπ

(2π )3

m2
N

e(k)e(k + q − pπ )

×
∑

i

〈k| jμi
†|pπ p〉〈pπ p| jνi |k〉

∣∣∣
p=k+q−pπ

×δ(ω − E + mN − e(k + q − pπ ) − eπ (pπ )), (55)

where eπ (pπ ) = √
p2

π + m2
π is the energy of the outgoing

pion. In this case the modified energy transfer is identical to
the one of one-body current processes ω̃ = ω − E + mN −
e(k). Besides the additional integration over pπ the main
difference between the above expression and Eq. (15) resides
in the elementary amplitude. To describe the pion-production
processes, we need matrix elements of the charged-current
operator causing the transition from a bound nucleon |k〉 to
a state with a pion and a nucleon |pπ p〉.

In this work, we employ the ANL-Osaka coupled-channel
model [41–43] to generate the current matrix elements
〈pπ p| jνi |k〉 of Eq. (55). The ANL-Osaka model is defined by
a Hamiltonian of the following form:

HAO = H0 +
∑
c,c′

vc,c′ +
∑
N∗

∑
c

[�N∗,c + �
†
N∗,c] , (56)

where H0 is the free Hamiltonian, �N∗,c is a vertex defining the
formation of a bare N∗ state from a meson-baryon channel c.
The channels included are c, c′ = γ N, πN, ηN, K�, K�, and
ππN with resonant π�, ρN , and σN components. The en-
ergy independent meson-exchange potentials vc,c′ are derived
from phenomenological Lagrangians by using the unitary
transformation method [36,92]. The parameters of the Hamil-
tonian HAO have been determined in Refs. [41,43] by fitting
about 26 000 data points of the πN, γ N → πN, ηN, K�, K�

data from the channel thresholds to W � 2.1 GeV. The re-
sulting model generates about 20 nucleon resonances which
include all of the four-stars resonances listed by the Particle
Data Group [44]. Here we note that the Hamiltonian in
Eq. (56) is consistent with the conventional nuclear Hamilto-
nian given in Eq. (11). Thus it can be used straightforwardly to
generate the current matrix elements 〈pπ p| jνi |k〉 of Eq. (55).

The ANL-Osaka model was then extended to the electron-
and neutrino-induced reactions [42,96]. The Q2 dependence
of the vector current has been determined by analyzing
data for single-pion electroproduction and inclusive electron
scattering. As an example, we show in Figs. 4 and 5 that
the ANL-Osaka model can reasonably describe the data
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FIG. 4. Virtual-photon cross section dσT /d�∗ + εdσL/d�∗

(μb/sr) calculated with the DCC model; p(e, e′π 0)p. The top,
middle, and bottom rows present the cross sections at Q2 = 0.4
(GeV/c)2, Q2 = 1.76 (GeV/c)2, and Q2 = 2.95 (GeV/c)2, respec-
tively. In each panel, the number indicates the invariant mass W
(MeV), and the cross sections are scaled by the factor in the paren-
thesis. Experimental data are from Refs. [87,88].

of p(e, e′π0)p and p(e, e′π+)n reactions, respectively, for
Q2 = 0.40 (GeV/c)2 (top), Q2 = 1.76 (GeV/c)2 (middle),
Q2 = 2.95 (GeV/c)2 (bottom). On the other hand, the
axial current associated with nucleon resonances cannot be
determined very well because the neutrino-induced meson
production data are scarce except in the �(1232) region. Thus
we determined the axial couplings using the PCAC relation
to the πN reaction amplitudes, and assumed the dipole Q2

dependence with the cutoff of �1 GeV. For the bare axial
nucleon-to-�(1232) coupling, we weaken the PCAC-based
strength by 10% to better reproduce the neutrino data. In
Figs. 6 and 7, we show that the neutrino data for the total
cross sections and the Q2 dependence of the single pion pro-
duction can be described very well by the ANL-Osaka model.
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FIG. 5. Same as Fig. 4 but for the p(e, e′π+)n reaction. Experi-
mental data are from Refs. [89–91].
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FIG. 6. Total cross sections of (a) νμ p → μ−π+ p; (b) νμn →
μ−π 0 p; (c) νμn → μ−π+n. The solid red curves are from the DCC
model. The data are from Ref. [93] where the ANL [94] and BNL
[95] data have been corrected for the flux uncertainty.

Here, we note that the PCAC relation with the πN ampli-
tudes, and in particularly with their phases, is not taken into
account in other pion production models, such as the Rein-
Sehgal model [97]—commonly used in analyzing neutrino
experiments—and the LPP model [46–48] recently employed
to calculate inclusive processes [45] within the CBF hole SF
formalism. This inconsistency leads to significant differences
in the structure function F2 at Q2 ∼ 0 [42].
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FIG. 7. Flux-averaged (0.5 GeV � Eν � 6 GeV) dσ/dQ2 for
νμ p → μ−π+ p. The solid red curves are from the DCC model. The
data are from ANL [94] and BNL [95].

Prior to the present work, the ANL-Osaka DCC model
has been applied to electroweak reactions on the simplest
nucleus, the deuteron [98–101]. Predictions from the DCC-
based model, which includes the impulse as well as NN and
meson-nucleon rescattering mechanisms, agree reasonably
well with the data on γ d → πNN [99,101] and γ d → ηNN
[98]. The model was also used to study final state interaction
(FSI) effects on νμd → μ−πNN [101], leading to the FSI
corrections to the ANL [94] and BNL [95] data for νμN →
μ−πN which had been extracted from the deuteron target data
without correcting for the significant FSI effects.
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Analogously to these studies on the deuteron, in this work
the DCC amplitudes in the laboratory frame are obtained by
boosting the corresponding ones in the center-of-mass frame,
where the DCC model was originally developed. Here, we
briefly describe the procedures for calculating the current ma-
trix elements 〈pπ p| jνi (q)|k〉 in Eq. (55) from those evaluated
in the center of mass (c.m.) frame of πN . Including explicitly
the nucleon spin quantum numbers ms, we can write

〈p ms′ , pπ | jνi (q)|k ms〉

=
√

Eπ (kc)EN (−kc)

Eπ (pπ )EN (p)

√
|qc|EN (−qc)

|q|EN (k)

∑
μ

�ν
μ(pt )

×
⎡
⎣ ∑

m′
sc ,msc

R∗
ms′c ,ms′

(p, pt )Rmsc ,ms (k, pt )

×〈π (kc), N (−kc m′
sc

)| jμi (qc)|N (−qc msc )〉
⎤
⎦, (57)

where the suffixes ‘c’ indicate quantities in the c.m. system
of πN , pt = p + pπ = q + k is the total four-momentum of
the πN system, defined by pt = p + pπ = q + k, and p0

t =
EN (p) + Eπ (pπ ) = ω + EN (k). The c.m. matrix elements of
the current operator, 〈π (kc), N (−kc m′

sc
)| jμi (qc)|N (−qc msc )〉,

from the ANL-Osaka model are calculated following the
procedure detailed in Appendix D of Ref. [41].

In Eq. (57), the quantity �ν
μ(pt ) boosts any momentum

ac = (a0
c , ac) in the c.m. of the considered πN system to

the momentum aL = (a0
L, aL ) in the laboratory frame by the

following Lorentz transformation:

a0
L =

∑
ν

�0
ν (pt )a

ν
c = a0

c p0
t + pt · ac

mt
,

(58)

ai
L =

∑
ν

�i
ν (pt )a

ν
c = ai

c + pi
t

[
pt · ac

mt (mt + p0
t )

+ a0
c

mt

]
,

where the index i = 1, 2, 3 is a spatial component and mt ≡√
pt · pt .
The spin rotation matrix Rsc̄,s(p, pt ) in Eq. (57) is given

[102–104] explicitly as

Rmsc ,ms (p, pt ) = 〈msc |B−1(pc/mN )B−1(pt/mt )B(p/mN )|ms〉,
(59)

where |ms〉 is the nucleon spin state, pc is obtained from the
nucleon momentum p in the laboratory frame by the Lorentz
transformation of Eq. (58), and

B(p/m) = 1√
2m (p0 + m)

((p0 + m)I + p · σ ) ,

(60)
B−1(p/m) = 1√

2m (p0 + m)
((p0 + m)I − p · σ ),

where σ is the Pauli operator and I is the unit matrix.
We note that because of the nuclear binding, the initial

γ N energy q0 + EN (k) can be different from the final πN en-
ergy EN ((p) + Eπ (pπ ). Following Refs. [99,101], we choose

pt = (EN (p) + Eπ (pπ ), p + kπ ) in evaluating Eqs. (57)–(60),
and neglect the off-shell effects from the initial state in
〈π (kc), N (−kc m′

sc
)| jμi (qc)|N (−qc msc )〉.

IV. RESULTS

In the same manner as Ref. [27], the numerical integra-
tion of Eqs. (15), (35), (55) are carried out by means of
a dedicated Metropolis Monte Carlo algorithm. Since the
integrands extend up to large momentum and removal energy,
when evaluating W μν

1b and W μν
1b1π it is convenient to employ

a normalized hole-SF as the importance-sampling function.
Analogously, the importance-sampling function of choice for
W μν

2b is proportional to the product PNM
h (k, Ẽ )PNM

h (k′, Ẽ ′).
Figure 8 shows the MEC contribution to the double-

differential electron-12C cross section for Ee = 730 MeV and
θe = 37◦. The solid (black) line corresponds to the full cal-
culation in which the in-medium �-potential U� has been
included in the propagator, as explained in Sec. III B. On the
other hand, the short-dashed (red) line is obtained disregard-
ing this contribution. The comparison between the two curves
clearly shows that accounting for the in-medium decay of the
� leads to a visible quenching of the MEC contribution to the
inclusive cross section. In Fig. 9 we show the effects of the in-
medium potential of the � in the CC νμ-12C scattering cross
section for a beam energy Eν = 1 GeV and scattering angle
θμ = 30◦. In this particular kinematical setup, including U�

brings about a �15% depletion of the MEC strength. While
the results shown in Figs. 8 and 9 exhibit similar trends, we
observe that two-body currents play a more important role in
neutrino reactions than in electron scattering. Most likely this
is due to the difference between the V and V − A vertex in-
teractions with the �. The five electroweak nuclear responses
displayed in Fig. 2 of Ref. [27] and Fig. 7 of Ref. [82] show
that the vector contribution to the transverse response is twice
as large as the electromagnetic term. This feature is ascribed
to the traces of the two-body isospin operator entering the

FIG. 8. Two-body current contribution to the double-differential
electron-12C cross section for Ee = 730 MeV and θe = 37◦. The
solid (black) line corresponds to results in which the in-medium
corrections to the � decay are included, while the short-dashed (red)
line is obtained neglecting this contribution. The dashed (blue) line
displays the two-body current contribution in which only the real part
of the � propagator is retained.
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FIG. 9. Same as Fig. 8 but for CC νμ-12C scattering at Eνμ
=

1 GeV and θμ = 30◦.

meson-exchange currents. Furthermore, the axial component
of the currents leads to an enhancement of the longitudinal
responses, as opposed to the electromagnetic case.

We also emphasize that the MEC contributions shown in
Figs. 8 and 9 strongly depend on the parameters of � current
illustrated in Fig. 2. In this work, we adopt the parameters
used in the previous investigations [24,69]. This choice needs
to be refined by developing a consistent approach to relate the
� current operator to the ANL-Osaka model. Work in this
direction is ongoing.

The way we include medium effects on the � propagation
is significantly different from the prescription of keeping only
the real part of � propagator [82,85,86], leading to the dashed
(blue) lines of Figs. 8 and 9. Disregarding altogether the
imaginary-part of the � propagator brings about a stronger
reduction of the strength than including U�. In addition, the
position of the peak is shifted to lower energy transfers.

In Fig. 10 we compare the results obtained for the electron-
12C scattering double differential cross section for Ee =
730 MeV and θe = 37◦ employing different approximations
to describe the nuclear target and the final state interactions. It
has to be noted that, when computing the MEC contribution,

FIG. 10. Electron-12C double-differential cross section. The
dashed (blue) line has been obtained within the GRFG model. The
short-dashed (red) and solid (black) curves have been obtained using
the SF of Ref. [39] within the PWIA and IA with FSI corrections,
respectively.

the two-body hole SF is approximated by the product of two
one-body hole SF, as in Eq. (35). The cross sections with a
real pion in the final state are computed convoluting the DCC
elementary amplitudes with the one-nucleon SF, as discussed
in Sec. III C, and a cut on invariant energies W � 2.0 GeV has
been applied.

The dashed (blue) curve has been obtained using the global
relativistic Fermi gas (GRFG) model, which only entails
statistical correlations, to determine the hole SF

PGRFG
h (k, E ) = θ (kF − |k|)δ

(
E + k2

2m

)
. (61)

As for the Fermi momentum, we take kF = 225 MeV and
no binding energy is introduced. The short-dashed (red) line
displays the plane wave impulse approximation (PWIA) result
in which the excitation energies of the (A − 1)-body spectator
system are assumed to be constant, EA−1

f = ĒA−1. Hence, the
hole SF reduces to

PPWIA
h (k, E ) = nh(k)δ

(
E + ĒA−1 − EA

0

)
, (62)

thereby losing information on the removal-energy distribution
of the target. The momentum distribution employed in the
PWIA calculations, represented by the black solid line of
Fig. 1, is derived by integrating over the removal energy of
the CBF hole SF of Ref. [39].

The solid (black) line in Fig. 10 is obtained using the
full CBF hole SF to describe the quasielastic peak and the
π -production regions. For this most sophisticated treatment
of the target nucleus, we also show results in which the
impulse approximation is corrected by including FSI. In
single-nucleon knockout processes, this is achieved following
Eqs. (21)–(23), i.e., employing the real part of an optical
potential derived from the Dirac phenomenological fit of
Ref. [67] and the folding function of Refs. [24,69]. The
main two consequences of including FSI are a shift of the
quasielastic peak and a redistribution of the strength towards
lower values of ω. In two-nucleon emission processes, FSI are
effectively accounted by including in their energy spectrum
a momentum-independent binding of 60 MeV per particle.
Treating FSI with the same level of sophistication as for the
one-nucleon knockout requires the knowledge of the optical
potential associated to the removal of two-nucleons from 12C
and the corresponding folding functions. In addition, single-
charge exchange processes [105] and interactions taking place
within the pair of struck nucleons should also be properly
modeled. FSI between the π -nucleon state and the A − 1
spectator system are not addressed in this article. For ex-
clusive single pion production processes from neutrino-12C
scattering in the �(1232) region, it has been shown that
pion absorptions and redistribution of the pion momentum
spectrum are important FSI effects [106,107]. However, by
definition, the (semi)classical treatments of the FSI therein
employed do not modify the inclusive observables analyzed
in the present work. A more systematic treatment of FSI in
processes with both two outgoing nucleons and a pion and a
nucleon in the final state is currently being investigated and
will be the subject of a forthcoming work.

By comparing the solid with the dashed and short-dashed
lines it clearly emerges that an accurate treatment of nuclear
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FIG. 11. Electron- 12C inclusive cross sections for different combinations of Ee and θe. The short-dashed (blue) line and dashed (red) line
correspond to one- and two-body current contributions, respectively. The dash-dotted (magenta) lines represent π production contributions.
The solid (black) line is the total results obtained summing the three different terms.

dynamics in the initial state and the inclusion of FSI consid-
erably improve the agreement with experimental data in the
whole energy-transfer region. For this particular kinematical
setup, neglecting the correlations between the removal energy
and momentum, as in the PWIA, leads to an overshooting of
the quasielastic peak, even compared to the crudest GRFG
model. This is consistent with Ref. [108] where the use of
a realistic hole SF was found to produce noticeably different
scaling features of the nucleon-density response from those
obtained within the simple PWIA.

Figure 11 displays the double-differential electron-12C
cross sections in four kinematical setups, corresponding to:
Ee = 620 MeV, θe = 60◦ (upper-left panel), Ee = 730 MeV,
θe = 37◦ (upper-right panel), Ee = 961 MeV, θe = 37.5◦
(lower-left panel), and Ee = 1650 MeV, θe = 11.95◦ (lower-
right panel). The total cross section, represented by the solid
(black) line, is obtained as in Fig. 10 using the CBF hole-
SF of Ref. [39] and including FSI as discussed above. The
breakdown of the contributions associated with the different
reactions mechanisms is also shown. The dashed (blue) line
is the quasielastic peak obtained including the one-body cur-
rent only, while the short-dashed (red) line corresponds to
two-nucleon knockout final states induced by MEC reaction
mechanisms. The cross section associated with the emission
of a real pion and a nucleon is represented by the dot-dashed
(magenta) line.

In all kinematical setups, MEC enhance the cross section
primarily in the dip region, between the quasielastic and the

� peaks. Their strength exhibits a strong dependence on
the electron scattering angle; it increases relatively to the
one of one-body processes for larger values of the scattering
angle. This is consistent with the findings of Ref. [27] and
can be traced back to the fact that two-body currents are
most effective in transverse responses. Note that, as discussed
in Sec. III B, the interference between one- and two-body
currents is not included in our calculations. Although it was
argued in Ref. [25] that this leads to a small enhancement in
the dip region within the factorization scheme, GFMC calcu-
lations have demonstrated that the interference contribution
significantly increases the transverse electroweak responses
[17,60].

There is an overall good agreement between theoretical
results and experimental data in all the kinematical setups
we considered. In particular, the inclusion of realistic pion
production mechanism turns out to be essential to reproduce
the data in the �-production region. Comparing our findings
with those of Ref. [26], it appears that the DCC model
largely overcomes the limitations of the structure functions
of Ref. [109] in describing the region of Q2 � 0.2 GeV2. The
remaining discrepancies between our theoretical calculations
and experiments are most likely due to the in-medium broad-
ening of the �(1232) [110], which is missing in the present
version of the DCC model. The MEC may also need to be
refined by, for example, carefully analyzing the γ d → pn
reaction, as has been done in Ref. [30]. Finally, the afore-
mentioned missing interference between one-and two-body
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FIG. 12. Double-differential cross section for the νμ + 12C →
μ− + X process at Eν = 1 GeV, θμ = 30◦ (upper panel), and Eν =
1 GeV, θμ = 70◦ (lower panel). The different curves are the same as
in Fig. 11.

currents, together with a full account of FSI in two-nucleon
knockout and pion-production processes are all needed to
further improve the agreement with experiment. All these
points will be addressed in future work.

The results obtained for the double-differential CC νμ-12C
scattering cross sections are shown in Fig. 12 for Eν = 1 GeV,
θμ = 30◦ (upper panel), and Eν = 1 GeV, θμ = 70◦ (lower
panel). The calculations have been carried out within the same
framework employed in the electromagnetic case. The only
additional ingredients are the axial terms in the current oper-
ators and in the π -production amplitudes. Consistently with
the results of Fig. 11 and with Ref. [27], the relative strength
of the MEC contribution increases with the scattering angle,
reflecting the primarily transverse nature of this term even
when axial terms are present. To the best of our knowledge,
precise inclusive neutrino double-differential cross section
data covering the �(1232) region are not available, yet.
Comparing our theoretical calculations with such data re-
quires a convolution with the neutrino energy spectrum of the
experiments. In this work, primarily aimed at demonstrating
the possibility of including relativistic one- and two-body
current together with reliable pion-production amplitudes, we
refrain from presenting flux-folded results. To this aim, a more
sophisticated treatment of FSI, for both two-nucleon knockout
and pion-production processes is required.

V. CONCLUSIONS

We have carried out calculations of electron- and neutrino-
scattering off 12C in the broad kinematical region of inter-
est for current and planned neutrino-oscillation experiments.
The EFS has allowed us to combine a realistic description
of nuclear dynamics in both the initial target state and the
spectator system—achieved by employing a SF computed
within the CBF theory [24]—with an interaction vertex, suit-
able to include different reaction mechanisms. The QE and
“dip” regions are investigated by including one- and two-
body currents. In-medium modification of the � propagator
is accounted for by a phenomenological potential derived
within BHF [51–54]. The consequent reduction of the MEC
strength is less important than the one resulting from the ad
hoc prescription of disregarding the imaginary part of the �

propagator [82,85,86]. The elementary amplitudes relevant
for pion-production processes are obtained within the ANL-
Osaka DCC model [41–43], which contains about 20 nucleon
resonances, can be reliably utilized up to an invariant mass of
W � 2.1 GeV. Their numerical implementation has required a
further development of our highly-parallel Metropolis Monte
Carlo integration technique.

To quantitatively assess the role of realistic hole-SF and
FSI effects, we first computed the electron-12C double-
differential cross sections for incoming energy Ee = 730 MeV
and scattering angle θe = 37◦. An accurate treatment of nu-
clear dynamics in both the initial and final states is required
to reproduce experimental data. In particular, both the GRFG
model and the simplest version of the PWIA—in which
the excitation energies of the spectator system are assumed
to be constant—noticeably overestimate the strength of the
quasielastic peak. We have carried out calculations for the
electron-12C cross sections for three additional kinematical
setups, corresponding to incoming energies Ee = 620 MeV,
Ee = 960 MeV, Ee = 1650 MeV and scattering angles θe =
60◦, θe = 37.5◦, and θe = 11.95◦, respectively. In all cases,
we observe an overall good agreement between data and our
full theoretical model. Analyzing the separate contributions
of the different elementary reaction mechanisms it clearly
emerges that including the ANL-Osaka DCC pion-production
amplitudes is crucial to reproduce experimental data in the
resonance region. Consistently with Ref. [27], MEC are of
primarily transverse nature and are needed to fill the missing
strength between the � and the QE peaks. There are three
main missing ingredients in our framework that are respon-
sible for the relatively small discrepancies with experimental
data. In this work we have neglected the interference between
one- and two-body currents, which has been proven to en-
hance the QE peak of the transverse response function [25,60].
In addition, the treatment of FSI in two-nucleon emission
processes is not as accurate as in the one-nucleon knockout
case, whereas for real-pion production they are neglected
altogether. Finally, at variance with the MEC, the ANL-
Osaka DCC amplitudes do not encompass any in-medium
modifications of the �(1232). More generally, it has to be
noted that the MEC employed in this work were derived in
Ref. [82] based on the HNV weak pion-production model
[83]. As found in Ref. [111], the bulk of the ANL-Osaka DCC
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model predictions for electro-production of pions in the �

region could be reproduced by the simpler HNV model. A
reasonable agreement is also found for the total cross section
of CC processes. Nevertheless, efforts to employ MEC that are
consistent with the ANL-Osaka DCC amplitudes are ongoing.

Within the same framework adopted to study inclusive
electromagnetic scattering, we have carried out calculations
of the double-differential CC νμ-12C scattering cross sections
for Eν = 1 GeV, θμ = 30◦ and Eν = 1 GeV, θμ = 70◦. As ex-
pected, real-pion emission provides significant excess strength
in the � peak, while MEC primarily contribute in the dip
region. In view of the above-mentioned limitations, we refrain
from computing the flux-folded differential cross sections,
which could be readily compared to experimental data. Work
in this direction is underway, and, together with a further

extension of the factorization scheme to account for two-pion
emission processes will be the subject of future works.
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