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Nuclear effects in electron-nucleus and neutrino-nucleus scattering within a relativistic
quantum mechanical framework
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We study the impact of the description of the knockout nucleon wave function on electron- and neutrino-
induced quasielastic and single-pion production cross sections. We work in a fully relativistic and quantum
mechanical framework, where the relativistic mean-field model is used to describe the target nucleus. The focus
is on Pauli blocking and the distortion of the final nucleon; these two nuclear effects are separated and analyzed
in detail. We find that a proper quantum mechanical treatment of these effects is crucial to provide the correct
magnitude and shape of the inclusive cross section. Also, this seems to be key to predict the right ratio of
muon-neutrino to electron-neutrino cross sections at very forward scattering angles.
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I. INTRODUCTION

The main goals of the new generation of accelerator-based
neutrino oscillation experiments, DUNE [1] and T2HK [2],
are to measure the CP violating phase in the lepton sector,
improve the accuracy on the value of the mixing angle θ23,
and determine the neutrino mass ordering [3]. One of the main
problems in achieving the unprecedented level of accuracy
required by these programs is that the neutrino beams are
not monoenergetic. The reconstructed neutrino energy, the
main ingredient for the oscillation analysis, is known as a
broad distribution that ranges from tens of MeV to a few
GeV. This energy is reconstructed using Monte Carlo (MC)
simulations that rely not only on the available experimental
information in the detectors, but also crucially on the models
for neutrino-nucleus interactions that are implemented in the
MC event generators.

In recent years, important progress has been made on
the experimental side to increase the statistics and to reduce
systematic uncertainties; for instance, those related to the
normalization of the flux [4]. On the theoretical side, many
studies have been presented aiming at improving our knowl-
edge on lepton-nucleus scattering, and more specifically on
neutrino-nucleus scattering [5–16]. However, it is extremely
challenging to provide reliable and consistent predictions of
the diverse processes that can take place in the energy range
covered by the neutrino beams. All this, together with the
fact that the theoretical improvements, for one reason or
another, do not always readily find their way to generators,
has caused the neutrino-nucleus cross sections to be among
the major sources of uncertainties in the reconstruction of
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the neutrino energy and, as a consequence, in the oscillation
analysis [3].

Electron scattering studies over the last 50–60 years have
allowed us to identify the main reaction mechanisms driving
the lepton-nucleus interaction in the intermediate energy re-
gion [17]. The nuclear response obtained in inclusive (e, e′)
experiments is usually understood in terms of a few mecha-
nisms: discrete and collective nuclear excitations, quasielastic
(QE) scattering, multinucleon excitations, single-pion produc-
tion (SPP), and deep-inelastic scattering (DIS). Though this
is probably an oversimplified picture, it has proved to work
reasonably well, as shown, e.g., in Refs. [12,13,18,19].

In this work, we analyze nuclear effects that are important
to understand two of the main reaction mechanisms in the
intermediate energy region, namely, QE scattering and SPP.
We will show that the residual nucleus plays an important
role in the scattering process via Pauli blocking and distortion
of the outgoing nucleon. As will be shown, a proper quan-
tum mechanical treatment of these two effects is crucial to
provide the right magnitude and shape of the cross sections.
As recently shown in Ref. [20], this could influence the
reconstruction of the neutrino energy.

Our models are based on the impulse approximation, that
is, the lepton interacts only with the knockout nucleon in the
nucleus; and the first-order Born approximation, i.e., only one
boson is exchanged between the lepton and the hadron system.
This is depicted in Fig. 1. What makes our approach attractive
and different from others commonly used in neutrino nucleus
scattering is that we work in a fully relativistic and quantum
mechanical framework:

(1) Relativity: The degrees of freedom in a relativistic and
a nonrelativistic calculations are not fully equivalent.
Some ingredients of a relativistic calculations mimic
the effect of many-body interactions in a nonrelativis-
tic calculation [21]. For instance, in the relativistic
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FIG. 1. Representation of the SPP process within our approach.
Each particle is labeled by its four-vector. The incoming lepton
Kl (εi, ki ) goes to Kl ′ (ε f , k f ) by exchange of a boson Q(ω, q). The
boson couples to a bound nucleon P(E , p) in the target nucleus
PA(EA, pA). The nuclear volume where the interaction occurs is
represented by the red circle. Inside the nuclear volume the struck
nucleon Pin

N is affected by the residual nucleus PA−1(EA−1, pA−1).
Outside the nuclear volume one finds the nucleon PN (EN , pN ) and
the pion Kπ (Eπ , kπ ). The same picture is valid for the QE reaction
but without the pion line.

mean-field (RMF) model, in contrast to nonrelativistic
ones, there is no need of NN or NNN correlations
to get the saturation minimum for nuclear matter.
Related to this, the spectroscopic factors extracted
within independent-particle shell models from exclu-
sive (e, e′ p) experiments are systematically larger in
relativistic models than those in nonrelativistic ones
(approximately 0.75 compared to 0.55 for 40Ca and
208Pb) [22]. While nuclei are certainly strongly cor-
related systems, phenomenological mean-field models
could effectively incorporate some of these correla-
tions already at the mean-field level. The exclusive
nature of these experiments will maximize the overlap
of the measurement with the mean-field prediction.
The depletion of the spectroscopic factor indicates
the importance of the residual part of the interaction,
not taken into account at the mean-field level. The
larger spectroscopic factors derived from the relativis-
tic models seem to suggest that these models have a
better capacity to effectively incorporate correlations
within the mean-field calculation. Finally, it is worth
noting that the relativistic mean-field model employed
here [23,24] has only six free parameters: coupling
constants of the ω, ρ, and σ mesons and the mass
of the latter, and two additional coupling constants for
nonlinear terms.

More complete discussions about relativistic effects
and their relation to nonrelativistic calculations can be
found in Refs. [21,22,25] and references therein.

In our framework, both kinematic and dynamic
relativistic effects are naturally incorporated.

(2) Quantum mechanics: In a scattering process from
a quantum mechanical system, such as the nucleus,
the only available information is the initial and final
states, nothing is known about the intermediate steps.
Therefore, the classical description of the process as
a factorization of consecutive scatterings, e.g., the
treatment of final-state interactions in a cascade model,
is under some circumstances not constrained by reality.
This is especially relevant when the wavelength of the
scattering particle is larger than or of the same order
of magnitude as the size of the target, for instance,
for outgoing nucleons with low momenta. As will be
shown, when a low momentum nucleon is knocked out
in the QE process one finds a very particular shape for
the cross section, which can be partially understood
from the orthogonality of initial and final state wave
functions and is not reproduced in a factorized model.

We perform a quantum mechanical calculation of
the final-state interactions (FSI) by solving the Dirac
equation for the outgoing nucleon, which is under the
influence of relativistic mean-field potentials.

It is important to point out that, to our knowledge, the
distortion of the outgoing nucleon within the RMF model is
implemented for the first time in a pion-production calcula-
tion. In Refs. [26,27], and more recently in Refs. [28,29],
the relativistic plane wave impulse approximation (RPWIA)
was employed to make predictions on SPP on the nucleus.
Within RPWIA, the initial state is described by the relativistic
mean-field model while the pion and knocked out nucleon are
treated as plane waves, i.e., FSI are totally neglected. This is
obviously an extreme simplification of the problem. To amend
that, as mentioned, we have included the distortion of the
scattered nucleon in our SPP model. The effect of this will
be shown in this work. Finally, we want to point out that we
do not include the distortion or absorption of the pion; work
in that direction is in progress.

In Sec. II, we discuss the different approaches employed
in this work to describe the outgoing nucleon wave function.
Results for electron and neutrino QE and SPP cross sections
are shown and analyzed in Sec. III. Our conclusions are
presented in Sec. IV.

II. MODELS

We describe the QE scattering cross section as

d5σ

dε f d� f d�N
= F pN EN k f ε f

(2π )5 frec
lμνhμν

QE, (1)

with frec = |1 + EN

p2
N EA−1

pN · (pN − q)|. The factor F and the
leptonic tensor lμν , which depend on the type of interaction
(electromagnetic, charged current, or weak neutral current),
were defined in Ref. [30]. The kinematical variables are
introduced in Fig. 1.
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For the SPP process, represented in Fig. 1, we work with
the cross section [28,31]1

d8σ

dε f d� f dEπd�πd�N
= F k f ε f pN EN Eπkπ

(2π )8 frec
lμνhμν

SPP (2)

with frec = |1 + EN
EA−1

(1 + pN ·(kπ −q)
p2

N
)|.

More inclusive results, e.g., (e, e′) cross sections, are ob-
tained by summing in Eqs. (1) and (2) over all occupied shells
and integrating over the variables of the undetected particles.

The hadronic tensor for the scattering off a nucleon from a
given shell is given by

hμν
X = 1

2 j + 1

∑
mj ,sN

(
Jμ

X

)†
Jν

X , (3)

where X denotes the type of process (QE or SPP), j the total
angular momentum of the bound nucleon, mj its third compo-
nent, and sN the spin projection of the outgoing nucleon. We
average over initial bound states for a given shell ( 1

2 j+1

∑
mj

)
and sum over final states (

∑
sN

).
In coordinate space, the hadronic current Jμ

X reads

Jμ
X = C

∫
V

dr 

sN (r, pN ) Oμ

X eiq·rψmj
κ (r), (4)

with V the nuclear volume and C the coupling constant of
the hadronic vertex, defined in Ref. [30]. Thoughout this
work, the bound state wave function ψ

mj
κ (r), labeled with

the quantum numbers κ and mj [32], is always computed
in the same way, i.e., within the RMF model [21,24]. This
accounts for Fermi motion and binding energy in a consistent
way. 
sN (r, pN ) is the wave function of the outgoing nucleon
which has asymptotic momentum pN and spin projection sN .
In Fig. 2 we represent the vector and scalar RMF potentials
used in our calculations. Notice that the Coulomb potential
that affects the nucleons is included in our calculations but
not in the figure.

The transition between the initial and final states is given
by the relativistic operator Oμ

X . For QE scattering we use the
usual CC2 operator (see, e.g., Ref. [33]). For SPP we use the
operator described in Ref. [30], that contains the delta, D13,
S11, and P11 resonances, and background terms (first-order
contributions of the χPT Lagrangian for the pion-nucleon
system [34]). At large invariant mass (W ), the background
terms are replaced by a Regge inspired operator that provides
the correct W behavior of the amplitude [30].

The goal of this work is to illustrate how the interaction
between the outgoing nucleon and the residual nucleus affects

1In Eqs. (1) and (2), the degree of freedom linked to the excitation
energy of the residual system has already been integrated out. In
our shell model, the missing energy Em, defined as the part of the
energy transferred ω that transforms into internal energy of the
residual system, is a constant value for each shell. This produces
an energy conservation Dirac delta that can be trivially integrated.
We have checked that the replacement of this delta function by a
distribution does not introduce any significant effect in the inclusive
cross sections studied here.

0 2 4 6 8
r (fm)

-600

-400

-200

0

200

400

P
ot

en
ti

al
 (

M
eV

)

Vector
Scalar

FIG. 2. RMF vector and scalar potentials as a function of the
position r in the 12C nucleus.

the predicted QE and SPP cross sections. For that, we present
results from several approaches corresponding to different
treatments of the final state nucleon 
sN (r, pN ). These are
described in what follows.

A. RPWIA model

The outgoing nucleon is a relativistic plane wave. A well-
known problem of this model, when the initial nucleus is
described by any realistic nuclear model beyond the free
Fermi gas, is that in this approach the orthogonality between
initial and final nuclear states is not fulfilled [35,36]. This is,
within RPWIA one has

〈I|1|F 〉 �= δI,F , (5)

with |I, F 〉 the full (leptonic and hadronic) initial and final
states and 1 the unit operator. This is due to the fact that the
initial and final hadronic states are eigenstates of different
Hamiltonians: the free one for the outgoing nucleon and
the RMF for the bound state, in our case. Nonorthogonality
effects would be more conspicuous when the momenta of the
initial and final nucleons are close, and thus they are irrelevant
for high values of the momentum of the final nucleon [35,37].
Indeed, the pathologies related to nonorthogonality will show
up in the cross sections when the momentum of the outgoing
nucleon pN is small, i.e., when the overlap between the initial
and final state wave functions is important. This will be shown
in Sec. III.

B. Pauli-blocked RPWIA model

With this model, the idea is to make the initial and final
states orthogonal, thus restoring the equality in Eq. (5). To
make the relativistic plane wave orthogonal to the initial state
we define the wave function 
sN (r, pN ) for the knocked out
nucleon [37]:

|
sN (pN )〉 = ∣∣ψ sN
pw(pN )

〉 − ∑
κ,mj

[
C

mj ,sN
κ (pN )

]† ∣∣ψmj
κ

〉
�

(
ω − Eκ

m − TA−1
)
, (6)
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with ψ sN
pw(r, pN ) a plane wave with momentum pN and spin

projection sN . The projection coefficient is

C
mj ,sN
κ (pN ) ≡ 〈

ψ sN
pw(pN )

∣∣ψmj
κ

〉
. (7)

The sum in Eq. (6) runs over all bound states ψ
mj
κ (r). The

analytic expressions of the projection coefficients are given in
Appendix A. In Appendix B we show that the wave function
in Eq. (6) is normalized to 1.

Proper orthogonalization in the mean-field formalism em-
ployed here means that all the single-particle states, both for
the bound nucleons as well as the continuum states, should
be orthogonal. This is automatically obtained if these single-
particle states, discrete and continuum, were computed with
the same potential, as in the RMF approach (Sec. II C). When
using free states for the final state, orthogonalization must be
restored with a constructive Gram-Schmidt procedure [37].
We refer to it as PB-RPWIA.

On top of that, we have introduced the step function �(ω −
Eκ

m − TA−1) in Eq. (6). Here, Eκ
m is the missing energy for the

κ shell and TA−1 is the kinetic energy of the residual nucleus,
which for the SPP process is given by TA−1 = ω − TN − Eπ −
Em (in the QE case, one simply removes Eπ ), with TN the
kinetic energy of the outgoing nucleon and Em the missing
energy. This is done to ensure that only those contributions
allowed by the kinematics are subtracted to the plane wave.
For example, let us consider that ω = 30 MeV; then the
nucleons from the 1s1/2 shell cannot be knocked out (the
binding energy is around 40 MeV). This means that for that
kinematics the initial state for our scattering problem is just
made of the nucleons in the 1p3/2 shell, so we do not subtract
the s-wave contribution from the plane wave in the final state.
The introduction of this ad hoc prescription is guided by
the better agreement with the “full,” properly orthogonalized,
RMF results (Sec. II C). Some results computed within this
approach were recently shown in Ref. [38].

The effects on the cross sections derived from the lack of
orthogonality in the hadronic current have been previously
studied for the one-nucleon knockout reactions (γ , p) and
(e, e′ p) (see [35–37] and references therein). In particular,
Eq. (6) (without the step function), was used in Ref. [37].

C. RMF model

The wave function of the knockout nucleon is given by
the solution in the continuum of the Dirac equation in the
presence of the same RMF potentials used to obtain the bound
state. In this way, orthogonality is ensured while distortion of
the outgoing nucleon is accounted for by propagating it with
the self-energy computed within the mean-field approach,
with the same potential as for the bound nucleons. In a process
for which nucleon propagation can be reasonably described by
this model, such as inclusive reactions at moderate values of
transferred momentum, this is expected to be a good approxi-
mation. It has been compared to (e, e′) data and other models
in Refs. [39–42] and with CC neutrino-nucleus scattering data
in Refs. [8,40,43,44]. Indeed, in Ref. [25], it was shown that
the longitudinal scaling function of the RMF model follows
the scaling behavior extracted by the analysis of experimental

data [45], while other nonrelativistic shell models do not show
this.

On the other hand, if the experiment obtains additional
information, that is, it is not a fully inclusive experiment, we
would need to account for effects such as absorption of the
nucleons during propagation, explicit multinucleon emissions,
other channels involving production of particles, etc. In the
case of fully exclusive reactions, where the experiment selects
just the elastic propagation of the nucleon in the residual nu-
cleus, a phenomenological optical potential can be employed
instead of the RMF to describe the nucleon propagation. This
is done, for instance, in Refs. [46,47] by using an optical
potential with an imaginary part and correcting for the spec-
troscopic factors.

D. Energy-dependent RMF potentials

Even for inclusive experiments, the pure RMF approach
where the nucleon in the final state is described with an
energy-independent potential is bound to fail as the momen-
tum of the final nucleon increases. Unitarity demands that the
potentials get softer with increasing nucleon energies. Indeed,
in a consistent treatment of bound and scattering states in
the framework of dispersion-relation approaches [48–50] or,
in general, nonlocal schemes, one can build a mean-field po-
tential smoothly evolving from a purely real strong potential
for the bound states, and, as the energy increases, weaker and
weaker potentials, with increasing imaginary contributions,
depending on the actual scattering states considered. These
approaches may preserve orthogonality, unitarity and disper-
sion relations. In order to describe inclusive processes, the flux
lost in inelasticities can be summed out in every channel by
means of Green’s function approaches [51–54].

Thus, it comes as no surprise that when the energy-
independent RMF is employed to describe FSI for every
kinematics, and when the momentum of the knockout nucleon
reaches 400–500 MeV, the QE cross sections computed within
the RMF model depart from the (e, e′) data [41,42]. In partic-
ular, one observes too much reduction of the QE peak, with
the strength moved to the high-ω tail, and a large shift of the
distributions towards higher ω values.
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FIG. 3. Function that scales the RMF potentials. The crosses are
adapted from Ref. [18].
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Based on this idea, the SuSAv2 model, presented in
Ref. [41], builds a tradeoff between RMF and RPWIA results.
It uses a linear combination of the RPWIA and RMF scaling
functions, with the weight of each contribution given by a
transition function that depends on the momentum transfer
q. In Ref. [18], the parameters of the SuSAv2 were fitted to
12C(e, e′) data. The agreement with inclusive data achieved
by the SuSAv2, for ω values above approximately 50 MeV is
outstanding, including the comparison with (e, e′) data from
different nuclei [42,55] and neutrino-induced reactions [56].

Inspired by the success of this approach, here we introduce
an energy-dependent potential that keeps the RMF strength
and proper orthogonalization for slow nucleons, but the poten-
tial becomes softer for increasing nucleon momenta. Instead
of microscopic calculations to derive the evolution of the
potential with energy, we rely on the comparison to inclusive
electron scattering data, as done in the SuSAv2 fit. For that,
we scale the scalar and vector RMF potentials of Fig. 2 by
multiplying them with the function f (TN ) shown in Fig. 3.
This function results from a fit to the weight of the RMF
contribution in the SuSAv2 model (see Fig. 10 in Ref. [18]).2

Notice that f (TN ) follows SuSAv2 behavior (purple crosses)
from approximately TN � 100 MeV. For TN < 100 MeV, the
RMF model agrees with data well; therefore, we make the
function f (TN ) close to 1 in this region. In this way, we also
avoid orthogonality issues that are especially relevant in this
low-momentum region.

We stress that these new energy-dependent potentials only
influence the scattered nucleon; the initial state is described
by the original RMF model. For simplicity, we chose to
introduce the same energy dependence for the RMF potentials
for protons and neutrons. The actual potentials computed
from the RMF would of course be different for protons and
neutrons, and even more so for nonisoscalar targets, but the

2In Fig. 10 of Ref. [18] the relative weight of RMF and RPWIA
contributions in the SuSAv2 model are shown as a function of qQE,
i.e., q at the QE peak. To make the transformation from qQE to TN

we have used the relation ωQE ≈
√

q2
QE + M2 − M. Then, we get

TN ≈ ω − 20 MeV, where we have neglected the nuclear recoil and
approximated ω by ωQE. The −20 MeV is to account for the average
binding energy.

energy dependence of both potentials can be safely assumed to
be very similar. This is supported by other phenomenological
fits to inclusive QE electron scattering data on different nuclei
[57], and also by fits to proton-nucleus scattering data [58], in
which the energy dependence is found to be similar for light
and heavy systems. Thus, although in this work we present
carbon results only, this method could be applied to other
nuclei independently of their mass and isospin [59].

In what follows we refer to this approach as the ED-RMF
model.

III. RESULTS AND DISCUSSION

In Sec. III A, we study Pauli blocking and distortion effects
in (e, e′) cross sections. Since the energy and momentum
transfer are known, in contrast to the neutrino scattering case,
it is easier to identify and separate the contributions from
the different channels to the cross section. This simplifies
the analysis and serves to benchmark the models. We then
study inclusive neutrino induced cross sections for fixed
and flux-averaged neutrino energies in Secs. III B and III C,
respectively. Finally, SPP cross sections are investigated in
Sec. III D.

In addition to the QE and SPP contributions evaluated
in this work, two-body current mechanisms, such as meson-
exchange currents (MEC) and short-range correlations (SRC),
also affect the 1p-1h and the 2p-2h responses. These were pre-
viously evaluated in the framework of a nonrelativistic mean-
field model: the effect of SRC was computed in Ref. [60] and
the MEC in Refs. [15,61,62]. On the one hand, the influence of
the two-body currents in the 1p-1h response was found to be
very small. On the other hand, it is well known that the 2p-2h
response plays a key role in the “dip” region between the QE
and delta peaks. Therefore, to compare with inclusive data we
have included the 2p-2h MEC from Refs. [63,64] as a separate
contribution. This consists of a fully relativistic microscopic
calculation of one-pion exchanged two-body currents within
a relativistic Fermi gas (RFG) model. In Ref. [63], it is
argued that the general behavior of the MEC response is rather
insensitive to finite-size nuclear effects, being dominated by
the nucleon and pion electromagnetic form factors and the
two-particle phase space. In spite of that, it would be very
interesting to study two-body current mechanisms in a consis-
tent way from the RMF theoretical standpoint, and evaluate if
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they differ much from those computed within nonrelativistic
mean-field models and the RFG.

A. Inclusive electron scattering

In Figs. 4 and 5, we compare the results from the different
models with 12C(e, e′) data.

For the kinematics of Fig. 4, well below the pion pro-
duction threshold, one-nucleon knockout (QE scattering) and
collective nuclear effects [66] dominate the nuclear response.
The latter are not explicitly included in our calculations so
we expect some underestimation of the data. The too narrow
resonances that appear in the RMF results would certainly
smooth out in a beyond-mean-field approach including the
effect of the residual interactions. The effect of Pauli blocking

is analyzed by comparing RPWIA (dashed green lines) to PB-
RPWIA (dashed-dotted red lines). One observes that RPWIA
overshoots the data. Pauli blocking removes the spurious
strength coming from the nonorthogonality of the hadronic
states, which considerably improves the comparison with
data.

One may be tempted to take a shortcut and introduce
“Pauli blocking” using the same procedure as in Fermi-gas-
based models, that is, through a simple cutoff that eliminates
the contributions corresponding to knockout nucleons with
momenta below a given Fermi momentum pF (we use pF =
230 MeV for carbon). The results of this approach are shown
by the dashed blue lines. This approach seems to provide the
right total strength (area under the curves) though the position
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FIG. 6. QE contribution computed with RPWIA, RMF, and ED-RMF models. Data were taken from [65].

of the cross section is clearly off. Notice that the binding
energy is already included, in the same way, in all models
shown here, so there is no freedom left to shift the position
of the distributions.

The effect of the distortion of the outgoing nucleon can
be inferred by comparing PB-RPWIA and RMF results. Still
in Fig. 4, one observes a further reduction and redistribution
of the strength that improves the agreement with data. For
the kinematics of Fig. 4, the ED-RMF approach provides the
same results as the RMF model, so we do not show the results
here. One could say that, for low momentum of the outgoing
nucleus, the mere restoration of orthogonalization is sufficient
to bring the RPWIA results into good agreement with the
data. However, when one reaches the “tail” of the response
at higher energy transfers, distortion of the final nucleon—
that is, the fact that the momentum of the knockout nucleon
inside the nucleus is not coincident with the momentum of
the detected nucleon (asymptotic value) but it is smeared
out by FSI—is fundamental to obtain agreement with the
data. Thus the RMF model is clearly favored by the data.
Similar results are obtained with the mean-field approach of
Ref. [66].

The influence of the distortion is best seen in Fig. 5. For
these kinematics, the QE and delta peaks are clearly defined.
Also, the contribution of two-nucleon knockout, as estimated
in Ref. [63], is important. We discuss first the QE contribution.
One observes that Pauli blocking has relatively little impact
while the distortion strongly shifts the distributions, producing
an excellent agreement with the data, especially in the ω re-
gion below the QE peak. Regarding the SPP cross sections, in
Figs. 5(a)–5(c) the effect of Pauli blocking shows as an overall
reduction of the order of 10% in the peaks. The distortion
produces a small shift of the distributions towards lower ω. In
Figs. 5(d)–5(f) Pauli blocking produces a small effect while
the distortion considerably reduces the cross section.

Notice that, since we are comparing with inclusive sam-
ples, it is expected (and desirable) to underestimate the data,
especially in the region above the pion production threshold,
where other processes beyond SPP, such as two-pion produc-
tion [67], start to contribute. Also, it is convenient to clarify
that we do not include medium modification (MM) of the delta
width. We have verified that, for the kinematics of Fig. 5, the
model for the MM of Refs. [68–70] leads to a reduction of the
cross section in the delta region of approximately 15–20%.

This is due to the new decay channels that are open: �N →
πNN , �N → NN , and �NN → NNN . In order to reproduce
the inclusive signal, those processes should be modeled and
their contributions added to the cross section, which might
compensate for the reduction.

In Fig. 5 we have also included the results from the ED-
RMF model. We observe the expected and desired effect, i.e.,
the ED-RMF results lie in between the RPWIA and RMF
ones, improving the agreement with data. To further illustrate
this, in Fig. 6 we show the QE results from the RPWIA,
RMF, and ED-RMF models for two extreme high-energy
kinematics.

B. Inclusive neutrino scattering

Here we present neutrino-induced QE cross sections
for fixed incoming energies, a situation which is currently
unattainable in experimental situations but important to study
for two main reasons. First, it allows for a clear separation
of different reaction processes; second, the exact shape of the
double-differential cross section for fixed incoming energies
is a crucial ingredient in the analysis of neutrino oscillations,
as it links the experimentally obtainable information to the
neutrino energy [20].

In Refs. [10,38], it was shown that when including the
distortion of the outgoing nucleon wave functions, for for-
ward scattering of the charged lepton, the cross section for
quasielastic nucleon knockout is larger for muon neutrinos
than for electron neutrinos. We further analyze this here.
In Fig. 7 we show the electron-neutrino and muon-neutrino
single-differential cross sections as a function of scattering
angle. One sees that within the RPWIA and the “RPWIA with
the cutoff” the electron-neutrino cross section is always larger
than the muon-neutrino one. In contrast, the RMF and PB-
RPWIA models predict a larger muon-neutrino cross section
for very forward scattering angles. This suggests that a proper
quantum mechanical treatment of the Pauli blocking is the key
to reproduce this effect [38].

In Fig. 8 we show the QE total cross section for interac-
tions restricted to very forward scattering angles, where the
total transverse response is shown separately to highlight a
peculiarity of the interaction, which is important around the
muon threshold and at very forward scattering angles. In the
massless limit for forward lepton scattering the transverse
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FIG. 7. QE single-differential cross section as a function of the
scattering angle. Black and light-green lines correspond to electron
and muon-neutrino induced reactions, respectively. Within the RMF
and PB-RPWIA approaches the electron-neutrino cross section be-
come smaller than the muon-neutrino one for very forward scattering
angles.

lepton kinematical factors are zero. For the heavier muon,
however, the transverse responses are non-negligible when the
muon mass is large compared to its momentum.

Figure 9 depicts the double-differential cross section for
forward lepton scattering and energies near the muon produc-
tion threshold. The longitudinal contribution is shown sepa-
rately, so that the difference between the total (solid lines) and
longitudinal contributions (dashed lines) is the total transverse
(T and T ′) cross section. In Fig. 9(a), we see indeed that the
electron-neutrino-induced cross section is almost completely
longitudinal while the transverse response gives an important
contribution to the νμ cross section. For slightly larger incom-
ing energies but still very forward scattering, Fig. 9(c), we see
that both the muon and electron cross sections are primarily
longitudinal. For larger scattering angles, Figs. 9(b) and 9(d),
the transverse cross section becomes more important. A simi-
lar analysis, with similar outcomes, was previously presented
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FIG. 9. Double-differential cross section for electron-neutrino
and muon-neutrino quasielastic scattering on carbon. The longitudi-
nal contribution to the cross section is shown separately. Calculations
were performed with the RMF model.

in Ref. [10] using a different model, the continuum random
phase approximation (CRPA).

Finally, in Fig. 10 we show the total charged current
quasielastic (CCQE) cross sections for the different models.
It is interesting that, from approximately Eν > 700 MeV,
the PB-RPWIA, RPWIA with the cutoff, and the ED-RMF
overlap, lying in between the RPWIA and RMF results,
which could be considered as upper and lower bounds for the
inclusive cross section.

C. MiniBooNE CCQE muon-neutrino scattering

To analyze the nuclear effects on flux-averaged neutrino-
nucleus distributions, we study here the CCQE cross sections
for the muon-neutrino MiniBooNE flux [71].

The CCQE differential cross section in bins of cos θμ as
a function of the muon kinetic energy (Tμ) is represented in
Fig. 11. The effect of Pauli blocking is visible only for the
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rately and has been added to all QE results. Data are from [71].

most forward bin of Fig. 11(a), which was expected since
forward scattering cross sections are dominated by events
where the neutrino transfers small energy and momentum.
The effect of the distortion (RMF vs PB-RPWIA) is visible
for the less forward bins [Figs. 11(b)–11(d)] and consists of an
important reduction of the cross section on the right-hand side
of the peak. This effect, however, disappears when the ED-
RMF approach is employed. This is consistent with the results
for the single differential cross section shown in Fig. 12. In
this case, due to the integration over the muon energy, the PB-
RPWIA result almost matches the ED-RMF one. The main
difference with respect to RPWIA is an important reduction
of the cross sections at forward angles.

D. CC neutrino-induced SPP

In this section we present results for CC neutrino-induced
one-π+ production on carbon, and show how the description
of the knockout nucleon wave function affects the cross

FIG. 12. Single differential CCQE cross sections folded with the
MiniBooNE flux. MEC, taken from [56], is shown separately and has
been added to all QE results. Data are from [71].
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FIG. 13. Single charged pion production cross section on carbon
in terms of Q2 for two neutrino energies.

section. All the results in this section include medium mod-
ification of the delta decay width [68–70].

In Fig. 13 we show the single differential cross section as
a function of Q2, for two different incoming energies. The Q2

distribution is a topic of current debate in the neutrino commu-
nity. In recent experiments it was found that a suppression of
the resonance production cross section at low Q2 is necessary
to obtain agreement with the data [72]. The reason for this
suppression is, however, not understood. Looking at these
results, we see that the inclusion of Pauli blocking leads to a
reduction in precisely this low-Q2 region (compare RPWIA to
PB-RPWIA lines) while the effect of the distortion is almost
averaged out, as inferred from the comparison ED-RMF to
PB-RPWIA. Therefore, since MC event generators do have
Pauli blocking implemented in a way which is somehow simi-
lar to the “RPWIA (pN > 230)” approach, with the results we
have at hand we cannot ascribe the experimentally suggested
quenching of the resonance production yield to nucleon final-
state effects.

The angular distribution of the pion is shown in Fig. 14.
The PB-RPWIA leads to a reduction of the cross section for
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FIG. 14. Single charged pion production cross section on carbon
as a function of cos θπ for Eν = 2 GeV (black lines) and Eν =
1.1 GeV (light-green lines).
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forward scattering angles. This can be understood from the
fact that forward scattered pions generally have higher energy
than those scattered backwards; this means that the outgoing
nucleon in this kinematic region has low momentum and
therefore has a non-negligible overlap with the initial state.
This reduction is of course also present in the RMF calcu-
lation, but the RMF result shows an additional reduction of
scattering strength over the whole angular space. As described
in the previous sections, the predictions from PB-RPWIA
and ED-RMF approaches lay in between RPWIA and RMF
ones, which could be considered as upper and lower bounds,
respectively.

IV. CONCLUSIONS

In scattering reactions, the interaction of the particles in the
final state with the residual nucleus affects the cross sections
regardless of whether these particles are detected or not.
This quantum mechanical effect does not occur in classical
or semiclassical approaches, which instead perform a trivial
factorization of the reaction vertex and the propagation of
the outgoing particles. This is of relevance for the neutrino
community since, often, the signal in the detector consists
of, e.g., a lepton (muon or electron) detected and nothing
else. A correct prediction of the lepton distributions, therefore,
requires proper treatment of the elementary vertex and the
hadronic final-state interactions.

In this work, we have studied the effects on the quasielastic
(QE) and single-pion production (SPP) cross sections that
arise from the differences in the treatment of the knockout
nucleon wave function.

The influence of Pauli blocking (PB) has been studied
by comparing the results from three approaches: RPWIA,
PB-RPWIA, and RPWIA with a cutoff. Within RPWIA, the
outgoing nucleon is a relativistic plain wave, thus FSI (includ-
ing the PB) are ignored. This results in an clear overestimation
of data in the low-ω region (Fig. 4) and a wrong prediction of
the position of the QE peak (Fig. 5). After the flux folding
for neutrino-induced reactions, the extra strength appears at
forward scattering angles; see Figs. 11(a) and 12. In anal-
ogy to the procedure followed in Fermi-gas-based models,
one can introduce a cutoff for the knockout nucleons with
momentum below a given Fermi momentum pF . This is the
easiest way to somehow account for the PB. This approach is
correct and consistent for infinite nuclear matter (global Fermi
gas model), but not in more realistic frameworks like shell
models, where the nucleons are labeled by energy and angular
momentum quantum numbers rather than with their momenta.
In Fig. 4 it is shown that this cutoff leads to approximately
the right total strength, but the position of the distributions
is clearly off. Within the PB-RPWIA approach, the PB is
incorporated in a way which is consistent with our relativistic
quantum mechanical framework. Basically, we make the ini-
tial and final states orthogonal by subtracting their overlap,
hence spurious contributions are eliminated. In contrast to
“RPWIA with a cutoff,” this approach allows nucleons with
low momentum to leave the nucleus, which results in a more
realistic shape of the low-energy cross sections. Additionally,
we have shown that a correct treatment of the PB seems to be

the key to predict the right ratio of muon-neutrino to electron-
neutrino cross sections at very forward scattering angles (see
Fig. 7 and Ref. [38] for a more detailed discussion).

The distortions of the outgoing-nucleon wave functions
due to the presence of the residual nucleus have been studied
by comparing the former approaches with the RMF and ED-
RMF models. Within the RMF the initial and final nucleons
are eigenstates of the same Hamiltonian, so PB and distortion
are naturally incorporated in a consistent way. First, one
observes an important shift of the distributions. Second, there
is a redistribution of the strength towards the tails. Both effects
tend to improve the agreement with the inclusive electron
scattering data (Figs. 4 and 5), as long as the knockout nucleon
has a momentum approximately below 500 MeV. In the ED-
RMF approach, introduced for the first time in this work,
we have replaced the RMF potentials felt by the outgoing
nucleon by energy-dependent potentials. This is done by
scaling down the scalar and vector RMF potentials as the
momentum of the nucleon increases. This introduces in a phe-
nomenological way the right behavior of the model for high
energy transfer, while keeping the RMF limit for nucleons
with small momenta, naturally incorporating orthogonality
and FSI.

It is interesting that after folding over the neutrino energy,
in particular for the MiniBooNE flux and the CCQE samples
studied here (Figs. 11 and 12), all approaches provide very
similar results except the RPWIA, which is systematically
larger. The effect of the nucleon distortion seems to average
out in flux-folded distributions, meaning that the reduction of
the cross section implied by Pauli blocking is quantitatively
the most relevant effect, but it can be reproduced with a
simple cutoff approach. In spite of that, there are important
differences in the double-differential cross section, as shown
in Sec. III A. These differences in the cross section can affect
the oscillation analyses, as they are the link between the data
in terms of the final-lepton variables and the reconstructed
neutrino energy distributions [20].

In Figs. 13 and 14 we have shown the effect of PB and
nucleon distortion on the neutrino-induced SPP cross sections.
In particular, we have analyzed the Q2 and pion scattering
angle distributions. The effects are similar to those observed
and discussed above, i.e., a reduction and shift of the dis-
tributions. This corroborates that the treatment of final state
particles is important regardless of whether these are part of
the signal or not. We want to stress that, to our knowledge,
this is the first time that the distortion of the knocked out
nucleon is implemented for neutrino-induced SPP on the
nucleus within a fully relativistic and quantum mechanical
mean-field framework.

The effects linked to the distortion of the pion wave
function will be studied in future work. Two-body current
mechanisms, affecting the 1p-1h and 2p-2h responses, should
also be computed in a consistent RMF framework in the light
of a more complete model.
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APPENDIX A: ANALYTIC EXPRESSIONS
OF THE PROJECTION COEFFICIENTS

The projection coefficients C
mj ,sN
κ (pN ) are defined as

C
mj ,sN
κ (pN ) =

∫
V

dr
[
ψ sN

pw(r, pN )
]†

ψ
mj
κ (r)

=
√

(2π )3M

V EN
u(pN , sN )†ψ

mj
κ (pN ), (A1)

where ψ
mj
κ (pN ) is the Fourier transformed wave function of

ψ
mj
κ (r). We can get analytic expressions for these coefficients

C
mj ,sN
κ (pN ).

After some algebra one obtains

C
mj ,sN
κ (pN ) = 1√

V
ηκ (pN )

[
χ†

sN
ϕ

mj
κ (�pN )

]
(A2)

with

ηκ (pN ) = (2π )3/2

√
M

EN
(−i)�

×
(

gκ (pN ) + Sκ fκ (pN )
pN

EN + M

)
(A3)

and
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+ ϕ

mj
κ (�pN ) = 〈

�
(
mj − 1

2

)
, 1

2
1
2

∣∣ jm j
〉
Y

(mj− 1
2 )

� (�pN ), (A4)

χ
†
− ϕ

mj
κ (�pN ) = 〈

�
(
mj + 1

2 ), 1
2

−1
2

∣∣ jm j
〉
Y

(mj+ 1
2 )

� (�pN ). (A5)

In Eq. (A3) Sκ is the sign of κ , and gκ and fκ are the radial
functions associated with the upper and lower components in
the bound nucleon wave function in momentum space [32].

APPENDIX B: NORMALIZATION OF THE PAULI
BLOCKED WAVE FUNCTION

The Pauli blocked wave function 
sN (r, pN ), defined in
Eq. (6), is correctly normalized to 1. This is shown as follows:

|
sN (pN )|2 = 1 −
∑
κ,mj

∣∣Cmj ,sN
κ (pN )

∣∣2 ≡ N, (B1)

with N the norm. On the other hand, from Eq. (A1) we have∣∣Cmj ,sN
κ (pN )

∣∣2 = (2π )3 M

V E

∣∣u(pN , sN )†ψ
mj
κ (pN )

∣∣2
. (B2)

Since the normalization volume V can be taken arbitrarily
large, and the quantity (2π )3 M

E |u(pN , sN )†ψ
mj
κ (pN )|2 is finite,

in the limit V → ∞ one gets |Cmj ,sN
κ (pN )|2 → 0, so N → 1,

as it should be.
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