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Modelling incomplete fusion dynamics of complex nuclei at Coulomb energies
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The incomplete fusion dynamics of 20
10Ne + 208

82 Pb collisions at energies above the Coulomb barrier are
investigated using a novel semiclassical dynamical model, which combines a classical trajectory model with
stochastic breakup, as implemented in the PLATYPUS code, with a dynamical fragmentation theory treatment of
two-body clusterization and decay of a projectile. A finite-difference method solution to the time-independent
Schrödinger equation in the charge asymmetry coordinate is employed by way of diagonalizing a tridiagonal
Hamiltonian matrix with periodic boundary conditions. Results are compared with published experimental values
to indicate the success of this new model, and next steps for its development are detailed.
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I. INTRODUCTION

Superheavy elements (SHEs) often refers to the transac-
tinide elements, which have an atomic number 104 � Z �
120, and sometimes to the superactinide elements (121 �
Z � 157) and beyond [1]. In some cases the term has been
used to refer to elements located in or near the theoretically
predicted island of stability, which have atomic and mass
numbers (Z, N ) ∼= (114 or 120 or 126, 184) [2,3], and in 1990
Seaborg and Loveland suggested that the term SHE should
be associated with “an element whose lifetime is strikingly
longer than its neighbors in the chart of the nuclides” [4]. The
aforementioned island of stability is a predicted set of heavy
nuclides with a near magic number of protons and neutrons
that temporarily reverses the trend of decreasing stability
(with increasing atomic and neutron numbers) in elements
heavier than uranium [5]. In the context of this work, the
term SHEs refers to the transactinide elements, which includes
elements located in or near the island of stability.

SHEs were predicted using the nuclear shell model in the
1960s [2,6,7], and their production is very challenging (due
to very small cross sections in the range of a few picobarns
or less), with complete fusion (CF) of heavy ions being one
of the most successful ways of producing SHEs [8]. The CF
mechanism predominantly produces neutron-deficient SHEs,
making investigation into new methods of production crucial
for further progress in SHE research.

The incomplete fusion (ICF) mechanism differs from the
CF mechanism in that the projectile undergoes breakup and
at least one, but not all, of the fragments fuse with the
target as opposed to the projectile wholly fusing with the
target, with or without undergoing breakup. A complex nu-
cleus is a nucleus wherein it is not clear that there is one
dominant cluster structure, as opposed to a weakly bound
light nucleus (such as 6Li, 7Li, and 9Be), which has a single
dominant cluster structure. A complex nucleus can be viewed
as a superposition of many simple cluster structures, and
this is why fragmentation theory [9–11] is useful for this
work.

This work is experimentally motivated: the observation of
energetic α particles at forward angles in reactions induced
by heavy ions at Coulomb energies [12–15] indicates the
existence of a reaction mechanism in which, following pro-
jectile breakup, the α particle carries away most of the bom-
barding energy of the projectile, leaving the other remaining
projectile fragment to be captured by the target resulting in
a colder fusion product than would typically be achieved via
the CF mechanism (with higher excitation energy). The low
excitation energy of these cold products from ICF reactions
results in both a higher survivability against fission and fewer
neutrons evaporated, indicating that this mechanism could be
a successful way of producing relatively stable SHE isotopes.

In order to understand the underlying dynamics, numer-
ous dynamical models were proposed following the first
experimental observation of projectilelike fragments associ-
ated with ICF [16,17]. A breakup fusion model [18] based
on the distorted-wave Born approximation was proposed by
Udagawa and Tamura wherein the projectile is assumed to
break up into α clusters within the nuclear field of the target,
one of which fuses with target nucleus. The production of
these breakup fragments was described by a simple plane-
wave-projectile-breakup model [19,20] proposed by Wu and
Lee wherein the (fast) breakup process is governed by the
projectile’s nucleon momenta distribution, and the coupling
of Fermi momentum and the center-of-mass momentum is
assumed to result in the production of these quick fragments.
A sum-rule model [21] proposed by Wilczyński et al. that
concluded that ICF mainly originates from peripheral colli-
sions and is confined to the l space above the lcrit for CF
was later extended by Brâncuş et al. [22]. Bondorf et al.
proposed a promptly-emitted-particles model [23] in which
it was explained that the nucleons transferred to the target
nucleus from the projectile nucleus may obtain extra velocity
to escape before equilibration as a consequence of being
accelerated in the nuclear field of the target. Fermi-jet [24,25],
moving-source [26], exciton [27,28], and overlap [29,30]
models, as well as dynamical models for ICF and projec-
tile breakup [31,32], were also proposed. The probability of
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ICF was correlated with the mass asymmetry of interacting
partners by Morgenstern et al. [33], a supplement for which
was presented by Gupta et al. [34] and Singh et al. [35].
The particle-γ coincidence measurements by Inamura et al.
[36–38] and Zolnowski et al. [39] resulted in the advancement
of understanding of ICF dynamics. Geoffroy et al. investigated
the origin of projectile fragments from undamped peripheral
interactions at high l values, and measured the γ multiplicity
as well as the correlation of energies and angles of charged
particles [40]. Trautmann et al. [41] and Inamura et al. [36–38]
also emphasized the peripheral nature of ICF. It was inferred
in Gerschel’s review of ICF [42] that target deformation also
has an effect on localization of the l window. The emission
of projectilelike fragments was suggested to originate from
l values smaller than 0.5 lcrit [43,44] based on results with
semimagic targets obtained by Tricoire et al. [25], however,
this emission was found to originate from high l values for
rare-earth targets [21,36,40,45]. Despite the aforementioned
studies, ICF dynamics are still not very well understood at
energies around 4–7 MeV/A [46,47].

As this mechanism has not been thoroughly explored yet,
and could prove to be an effective way of producing neutron-
rich SHE isotopes with low excitation energies [14], the
focus of this work is to investigate ICF reaction dynamics of
complex nuclei at Coulomb energies. Broadly, this reaction
mechanism can also be useful for producing new isotopes
throughout the periodic table [48].

To this aim, a semiclassical dynamical model is being
developed by combining a classical trajectory model with
stochastic breakup, as implemented in the PLATYPUS code
[49], with the quantum-mechanical fragmentation theory [50]
treatment of two-body clusterization and decay of a projectile.
A finite-difference method solution to the time-independent
Schrödinger equation in the charge asymmetry coordinate is
being explored by way of diagonalizing a tridiagonal Hamil-
tonian matrix with periodic boundary conditions.

II. BACKGROUND AND THEORY

A. Background

PLATYPUS is a self-contained FORTRAN-90 program based
on a classical trajectory model [49,51] with stochastic breakup
and is a powerful tool for quantifying complete and incom-
plete fusion, as well as breakup in reactions induced by
weakly bound two-body projectiles near the Coulomb barrier,
which is to be extended for the reactions of complex nuclei.

The program calculates a wide range of observables in-
cluding integrated CF and ICF cross sections and their spin
distribution, as well as breakup observables such as the angle,
kinetic energy, and relative energy distributions of the frag-
ments. All of the observables are calculated using a three-
dimensional classical dynamical model merged with Monte
Carlo sampled probability-density distributions [49].

A crucial input of the model implemented in the PLATYPUS

code is an experimentally determined breakup function, which
encodes the effects of the Coulomb and nuclear interactions
that cause the projectile breakup. For example, a 9Be projec-
tile (made up of two α particles and a neutron) breaks up upon
striking a stable target, and the resultant–particles are detected

FIG. 1. A diagram representing ICF of a complex projectile
(undergoing fragmentation in the charge asymmetry coordinate) and
an inert target.

for a given scattering angle of the projectile. The probability
of breakup is defined as a function of the distance of closest
approach Rmin, by dividing the experimental breakup cross
section by the Rutherford scattering cross section [52]. The
integration of a local probability density over the projectile-
target distances results in this total breakup probability [49]:

PBU (Rmin) = 2
∫ ∞

Rmin

PL
BU (R)dR = e−αRmin+β, (1)

where PBU is the probability of breakup, PL
BU (R)dR is the

probability of breakup in the interval R to R + dR, and α

and β are constants determined from experimental results that
vary for different systems [53,54]. This function is sampled
to determine the position of breakup in the orbit of the
projectile [49].

A major limitation of using the PLATYPUS code to model
the ICF of complex nuclei is that it requires the binary
fragmentation configuration of the projectile as an input; in
effect it addresses the ICF of a single binary fragmentation
configuration. While the code provides the probability of a
given projectile breaking up into a specific binary configura-
tion of fragments (as a function of Rmin), it does not mean
that the projectile would necessarily break up into those two
specific fragments in reality as many other competing binary
fragmentation configurations are possible with a complex
nucleus (see Fig. 1). This shortcoming is the motivation for
adopting a dynamical fragmentation theory [50] treatment of
two-body clusterization and decay of a projectile.

B. Charge asymmetry

In 2012 Kuklin et al. presented a model [50] that makes
use of the charge asymmetry coordinate, ηZ , which stems
from the mass asymmetry coordinate, η, first proposed by the
Frankfurt School for Theoretical Nuclear Physics in the 1970s
[10,11], and is equal to the continuous volume asymmetry
coordinate when the two nuclei overlap [10,11]. Take, for
example, a complex projectile undergoing fragmentation in
order to incompletely fuse with an actinide target, as shown
in Fig. 1.

In the center of Fig. 1 there are three binary configurations
shown for the fragmentation of the projectile in the charge
asymmetry coordinate, to demonstrate the concept. ηZ is
defined as the difference in the charges of the two fragments

044604-2



MODELLING INCOMPLETE FUSION DYNAMICS OF … PHYSICAL REVIEW C 100, 044604 (2019)

FIG. 2. Schematic diagram representing the overlap between in-
tranuclear nucleon-distribution tails of the two fragments (the neck)
of a dinuclear system.

divided by the sum total of their charges, as per Eq. (2):

ηZ = (Z1 − Z2)

(Z1 + Z2)
, (2)

where Z1 and Z2 are the charges of fragments 1 and 2, respec-
tively. In the case of ηZ = 0, the fragmentation is symmetric
(Z1 = Z2), as per the middle configuration in Fig. 2. At the
extremes, where ηZ = ±1, there is no fragmentation (as one of
the would-be fragment has charge Z = 0). The charge asym-
metry coordinate is similar to the mass asymmetry coordinate
[9–11], but it concerns charge distribution rather than mass
distribution:

η = (A1 − A2)

(A1 + A2)
. (3)

The determination of the state of a dinuclear system for a
given parent nucleus is made by solving the time-independent
Schrödinger equation in the charge asymmetry coordinate
with periodic boundary conditions at ηZ = ±1 [50]:

Ĥ�n(ηZ ) = En�n(ηZ ), (4)

where � is the wave function, E is the energy, n is the eigen-
state quantum number, ηZ is the charge asymmetry coordinate,
and Ĥ is the collective Hamiltonian:

Ĥ = − h̄2

2

∂

∂ηZ
(B−1)ηZ ηZ

∂

∂ηZ
+ V (ηZ ), (5)

where (B−1)ηZ ηZ is the inverse inertia coefficient (a mass
parameter for the coordinate ηZ ) (units: nucleon mass−1 fm−2)
and V (ηZ ) is the potential energy as a function of ηZ . This
condenses to:[

− h̄2

2

∂

∂ηZ
(B−1)ηZ ηZ

∂

∂ηZ
+ V (ηZ )

]
ψ (ηZ ) = Eψ (ηZ ). (6)

The inverse inertia coefficient is calculated using the equation
[50]:

(B−1)ηZ ηZ =
(

∂η

∂ηZ

)−2

(B−1)ηη. (7)

FIG. 3. Inertia coefficient (×) / potential (+) plot for the frag-
mentation of 20

10Ne in the charge asymmetry coordinate, with the
potential energy of the compound nucleus U0 = 0 MeV. Mark-
ers denote values calculated, whilst intermediate values can be
interpolated.

As in Ref. [55] (B−1)ηη is calculated using:

(B−1)ηη = 1

m0

Aneck

2
√

2πb2A2
, (8)

where A is the total nucleon number of the dinuclear system,
Aneck is the number of nucleons in the neck between the two
fragments, m0 is the nucleon mass and b is a free parameter
that characterizes the size of the neck. Aneck is given by:

Aneck =
∫

dr[ρ1(r) + ρ2(r)] exp

(
− (r − r0)2

b2

)
, (9)

where ρ1(r) and ρ2(r) are the nucleon densities of the two
fragments as a function of the distance from the center of mass
of the dinuclear system, r, and r0 is the point where these
two fragments densities are equal [ρ1(r0) = ρ2(r0)]. The neck
here refers to the region of overlap between the intranuclear
nucleon-distribution tails, as visualized by Fig. 2.

η (and by extension, ηZ ) is treated as a continuous variable
because at the touching configuration where the nuclei over-
lap, mass asymmetry (which is normally a discrete variable
at larger distances) and the purely geometrical coordinate
volume asymmetry (which is a continuous variable) are the
same [10]. The dinuclear system is assumed to be filled by a
continuous homogeneous fluid of mass and charge.

C. Potentials

The proposed solution to the time-independent
Schrödinger equation postulates that each binary
configuration of fragmentation has its own associated
potential energy V (ηZ ), as exemplified by Fig. 3. For the
potential, two spherical nuclei are considered at the touching
configuration. These fragments have definite binding energies
and interact through Coulomb and nuclear potentials. The
total potential, V is taken as the sum of the of the nuclear and
Coulomb potentials, VN and VC , respectively, in addition to the
binding energies of the two fragments, BE1 and BE2, relative
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to the binding energy of the compound nucleus, BECN :

V = VN + VC + BE1 + BE2 − BECN . (10)

The strong variations in binding energy for different frag-
ments give rise to the large energy fluctuations among the
dinuclear configurations in Fig. 3. The inertia coefficient
plot has been extrapolated from ηZ = ±0.6 to ±1 (due to
insufficient data [56]), and so the inertia coefficient points
for ηZ = ±0.8 are also expected to be local maxima. For the
calculation of the mass parameter in the charge asymmetry
coordinate, a macroscopic, geometrical model explained in
Refs. [50,55] has been used.

The potentials in Fig. 3 were calculated using the Broglia-
Winther approach [57], wherein the real part of the nucleus-
nucleus optical potential is assumed to have a Woods-Saxon
shape:

VN (r) = − V0

1 + exp
( r−R0

a

) , (11)

where

V0 = 16π
R1R2

R1 + R2
γ a, a = 0.63 f m, (12)

and

R0 = R1 + R2 + 0.29, Ri = 1.233A1/3
i − 0.98A−1/3

i , (13)

with surface energy constant γ :

γ = γ0

[
1 − ks

(
N1 − Z1

A1

)(
N2 − Z2

A2

)]
, (14)

where γ0 and ks are assumed to be 0.95 MeV/fm2 and 1.8,
respectively. The Broglia-Winther potential has been used as
a real nuclear potential to explain the elastic differential cross
sections of many heavy-ion systems [57].

D. Finite-difference method

A finite-difference method solution to the time-
independent Schrödinger equation that incorporates periodic
boundary conditions is presented in Ref. [58]. The premise
of the method is to discretize the continuous variable (in this
case, x) into a series of points with a finite difference � in
such a manner that xi = x0 + i�, where i is the step number
(i = 0, 1, 2, 3, . . . , N).

Starting with the time-independent Schrödinger equation,
the mass, m, is also taken as a function of the coordinate x as
well as the potential, V , and the wave function, ψ [59]:

− h̄2

2

d

dx

(
1

m(x)

d

dx

)
ψ (x) + V (x)ψ (x) = Eψ (x). (15)

Taking m(x) = m0B(x) and multiplying by 2m0

h̄2 :

− d

dx

(
1

B(x)

d

dx
ψ (x)

)
+ 2m0

h̄2 V (x)ψ (x) = 2m0

h̄2 Eψ (x). (16)

Introducing the terms v(x) = 2m0

h̄2 V (x) and E = 2m0

h̄2 E :

− d

dx

(
1

B(x)

d

dx
ψ (x)

)
+ v(x)ψ (x) = Eψ (x). (17)

Rewriting the derivatives using the finite difference method:

− 1

�x2

(
ψi+1 − ψi

Bi+1/2
− ψi − ψi−1

Bi−1/2

)
+ viψi = Eψi, (18)

where the intermediate points (i ± 1/2) are the mean values
of the two adjacent points:

Bi+1/2 = 1
2 (Bi+1 + Bi ), Bi−1/2 = 1

2 (Bi + Bi−1). (19)

Here the periodic boundary condition ψ0 = ψN is enforced
[60]. With this boundary condition the domain of definition of
our wave function can formally be extended from the interval
x ∈ [0, L] to the whole number axis, with the requirement that
the function be periodic with the period L:

ψ (x + L) = ψ (x). (20)

The coordinate space x is related to the charge asymmetry
coordinate by:

x = 1 − ηZ , (21)

and as the range of ηZ is 2, the range of x [and therefore L in
Eq. (20)] must also be 2.

In order to enforce this periodic boundary condition the
tridiagonal Hamiltonian matrix must be amended by setting
the top-right (1, N) and bottom-left (N, 1) elements equal
to the subdiagonal elements, as per the matrix equation
[Eq. (22)]:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2c + v1 a 0 · · · a

b −2c + v2 a · · · 0

0 b −2c + v3 · · · 0

0 0 b · · · 0
...

...
...

. . .
...

b 0 0 · · · −2c + vN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

...

ψN

⎞
⎟⎟⎟⎟⎟⎟⎠

= E

⎛
⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

...

ψN

⎞
⎟⎟⎟⎟⎟⎟⎠

, (22)

where vi is the potential of the ith step, E is the
eigenenergy, a = − 1

�2
1

Bi+1/2
for elements above the diag-

onal, b = − 1
�2

1
Bi−1/2

for elements below the diagonal and

c = − 1
2 [ 1

�2 ( 1
Bi+1/2

+ 1
Bi−1/2

)] for elements on the diagonal (for
which B is the mass parameter). Equation (22) is the practical
application of Eq. (6) in the code. This tridiagonal matrix is
then diagonalized by calling the LAPACK subroutine dsyevx
[61], and the resultant eigenvectors are subsequently nor-
malised so that the probability density function (PDF) ψ2 can
be computed and plotted as shown in Fig. 4.

In this example, 20
10Ne is used as a test case because this

nucleus has been used as a complex projectile in several ICF
experiments [12–15]. Figures 4(a), 4(b), and 4(c) represent
the PDF associated with the first, second, and third energy
eigenvalues, respectively, for the fragmentation of 20

10Ne in the
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FIG. 4. Normalized PDF representing the fragmentation for the
first three energy eigenvalues of 20

10Ne in the charge asymmetry co-
ordinate, with the potential energy and inertia coefficients of Fig. 3:
(a) −5.38 MeV, (b) −5.34 MeV, and (c) −4.76 MeV. The inertia
coefficients and potentials of Fig. 3 have been interpolated here using
�ηZ = 0.001.

charge asymmetry coordinate. These three energy eigenvalues
correspond to six degenerate eigenvectors. This degeneracy
arises from the symmetry of the potential about ηZ = 0 in
Fig. 4. For the first and third eigenvalues there are clear
peaks at ηZ = ±0.6, which arise from fragment charges Z1

and Z2 of 8 and 2, corresponding to 16
8 O and 4

2He. Similarly
for the second eigenvalue there are clear peaks at ηZ = ±0.2,
which arise from fragment charges Z1 and Z2 of 6 and 4,

FIG. 5. Normalized total PDF representing the fragmentation for
all 34 eigenvalues that lie within a 5 MeV excitation energy range
of 20

10Ne in the charge asymmetry coordinate, with the potential
energy and inertia coefficients of Fig. 3. The inertia coefficients and
potentials of Fig. 3 have been interpolated here using �ηZ = 0.001.

corresponding to 12
6 C and 8

4Be. This shows that this method
can successfully distinguish between the different binary con-
figurations of fragmentation. The splitting of the peaks in
Fig. 4(c) is due to the increased number of nodes in this higher
excited state of 20

10Ne.

E. Summing states

A given projectile excitation energy range encompasses a
certain number of eigenstates, and so in order to account for
each state’s contribution to the total fragmentation PDF they
are summed using a Boltzmann factor [62]:

|�(ηZ )|2 =
∑N

i=0 e−Ei/T |ψi(ηZ )|2∑N
i=0 e−Ei/T

, (23)

where Ei is the eigenenergy of the ith state and T is the
temperature in MeV given by:

T =
√

E∗
max

a
, (24)

where E∗
max is the maximum excitation energy of the projectile

and the constant a in MeV−1 is given by the Fermi gas model
[62]:

a = AP

10 MeV
, (25)

where AP is the nucleon number of the projectile nucleus.
The resulting total PDF for 20

10Ne of Eq. (23) with a
projectile excitation energy range of 5 MeV is shown in
Fig. 5. This PDF is then turned into a cumulative distribution
function (CDF) and Monte Carlo sampled in order to select a
binary fragmentation configuration. This is achieved via direct
inversion of the CDF [63].
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FIG. 6. Angular distributions for the transfer reaction of 4
2He

(20
10Ne + 208

82 Pb → 212
84 Po + 16

8 O) for projectile incident energies of
105 MeV (+) and 115 MeV (×): (a) from experiment [64], (b) from
the present model calculations for a projectile with an excitation
energy range (E∗

max − E∗
min) of 1 keV.

III. RESULTS AND DISCUSSION

A. Comparison with experimental data

Experimental results [64] for the angular distribution for
the transfer reaction of 4

2He (20
10Ne + 208

82 Pb → 212
84 Po + 16

8 O)
for projectile incident energies of 105 MeV and 115 MeV,
collected using the ICARE charged particle multidetector
array [65–67], are shown in Fig. 6(a). Results from the model
presented in this paper for the angular distribution for the
same reaction are presented in Fig. 6(b) using values for α

and β of 0.94 and 15, respectively [see Eq. (1)]. These values
of α and β were selected because cross sections borne from
them match experimental results closely. The position of the
centroid of this angular distribution is sensitive to the value
of α; for example, in this case a value of α = 0.74 results
in a peak shift of approximately −2 degrees. The magnitude
of the resultant cross sections are sensitive to both α and
β; in the same example where α = 0.74, the resultant cross
sections are an order of magnitude greater. These values of
α and β were not chosen with the intention of perfectly
matching the experimental results, but rather to demonstrate

FIG. 7. Combined angular distributions for the transfer reactions
of 4

2He (20
10Ne + 208

82 Pb → 212
84 Po + 16

8 O) and 8
4Be (20

10Ne + 208
82 Pb →

216
86 Rn + 12

6 C) for projectile incident energies of 105 MeV (+) and
115 MeV (×): (a) from experiment [64], (b) from the present model
calculations for a projectile with an excitation energy range (E∗

max −
E∗

min) of 5 MeV.

a qualitative agreement. Figure 6(b) shows results for the
reaction in the case where the projectile has an excitation en-
ergy range (E∗

max − E∗
min) of 1 keV, which allows exclusively

for the 20
10Ne binary fragmentation combination of 16

8 O + 4
2He.

This allows for the direct comparison of the model results
from Fig. 6(b) to the experimental results of Fig. 6(a), which
for an incident energy E0 = 115 MeV are of a very similar
magnitude. For E0 = 105 MeV the magnitudes of differential
cross sections are less alike but still comparable. The main
difference between these two figures is that the centroids of
the distributions lie at vastly different angles, however, this
can be explained as having arisen due to the global Broglia-
Winther potential used to simulate the interaction between the
three bodies.

Figure 7(a) contains experimental results [64] for the com-
bined angular distribution for the transfer reactions of 4

2He
(20
10Ne + 208

82 Pb → 212
84 Po + 16

8 O) and 8
4Be (20

10Ne + 208
82 Pb →

216
86 Rn + 12

6 C) for projectile incident energies of 105 MeV and
115 MeV, while Fig. 7(b) contains results from the present
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FIG. 8. ICF cross sections for ICF channels 1 (+), 2 (×) and
both combined (∗) for the reaction 20

10Ne + 208
82 Pb for a projectile

with an excitation energy range (E∗
max − E∗

min) of 5 MeV, for a
range of projectile incident energies (E0). ICF channel 1 refers to
the production of 224

90 Th and 220
88 Ra, while ICF channel 2 refers to the

production of 212
84 Po and 216

86 Rn.

model for the combined angular distribution for the same
reactions, also using values for α and β of 0.94 and 15,
respectively. Figure 7(b) shows results for the reaction in
the case where the projectile has an excitation energy range
(E∗

max − E∗
min) of 5 MeV, which allows for the 20

10Ne binary
fragmentation combination of not only 16

8 O + 4
2He but also

that of 12
6 C + 8

4Be, permitting direct comparison with the ex-
perimental results of Fig. 7(a). As with the Fig. 6 comparison,
the differential cross sections of Fig. 7 are of a very similar
magnitude for an incident energy of E0 = 115 MeV but less
so for E0 = 105 MeV, yet still comparable, and again the main
difference between these two figures is that the cross sections
are obtained at vastly different angles.

As the present semiclassical model is based on a breakup-
fusion picture, it cannot treat the quantum-mechanical α-
stripping process [68], which might also play a part in ex-
plaining the discrepancies between the data of Figs. 6(a)
and 6(b) and the data of Figs. 7(a) and 7(b). Taking all the
aforementioned into consideration, these comparisons indi-
cate that this new model is indeed accurate for the purpose
of determining how a projectile nucleus will fragment and
subsequently undergo ICF with a target.

B. Total ICF cross sections

Figure 8 presents results from the model for ICF cross
sections for the reaction 20

10Ne + 208
82 Pb for a range of projectile

incident energies (E0), with a projectile excitation energy
range of 5 MeV. An excitation energy range of 1 keV permits
only the binary fragmentation combination of 16

8 O + 4
2He from

20
10Ne, whereas a 5 MeV excitation energy range also permits
the binary fragmentation combination of 12

6 C + 8
4Be. Thus,

ICF channel 1 includes the independent capture of 16
8 O and

12
6 C by the target (16

8 O + 208
82 Pb → 224

90 Th, 12
6 C + 208

82 Pb →
220
88 Ra), while ICF channel 2 includes the independent capture
of 4

2He and 8
4Be by the target (4

2He + 208
82 Pb → 212

84 Po, 8
4Be +

208
82 Pb → 216

86 Rn). A plot of cross sections summed from both
ICF channels is also included in Fig. 8.

The results in Fig. 8 are also for a projectile with an
excitation energy range of 5 MeV, and this was expressly
chosen so that multiple binary fragmentation combinations
would have to be handled by the model, so as to showcase
its capabilities.

Figure 8 suggests that for the reaction 20
10Ne + 208

82 Pb with
a projectile excitation energy E∗ = 5 MeV, the projectile
incident energy E0 � 150 MeV yields the greatest probability
for the ICF of either the 16

8 O or 12
6 C fragments with the target,

E0 � 170 MeV yields the greatest probability for the ICF of
either the 4

2He or 8
4Be fragments with the target, and E0 �

160 MeV yields the greatest probability for the ICF of any
fragment with the target.

C. ICF distributions

As with the PLATYPUS code, this model can also be used to
calculate angular distributions, angular momentum distribu-

FIG. 9. Inclusive angular distributions of ICF products (+) and
associated survival fragments (×) for the reaction 20

10Ne + 208
82 Pb for

a projectile with an excitation energy range (E∗
max − E∗

min) of 5 MeV,
for a projectile incident energy (E0) of 160 MeV: (a) ICF channel 1
(224
90 Th and 220

88 Ra), (b) ICF channel 2 (212
84 Po and 216

86 Rn).
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FIG. 10. Angular momentum distributions of the inclusive ICF
products (the sum of all the ICF channels) for the same reaction as
in Fig. 9, using two different representations, namely in terms of the
angular momentum brought by the ICF fragments into the target (+)
and the 20

10Ne orbital angular momentum (×).

tions, excitation energy distributions and asymptotic angular
distributions as shown in Figs. 9, 10, 11, and 12, respectively,
for any ICF channels relevant to the projectile and its potential
binary fragmentation combinations.

Figure 9 presents the ICF angular distributions for the same
reaction as in the previous subsection, but for a projectile
incident energy (E0) of only 160 MeV rather than for a whole
range of projectile incident energies. 160 MeV was chosen as
an area of interest because this energy is approximately where
the peaks from both ICF channels overlap in Fig. 8. Similarly,
Fig. 10 presents the ICF spin distributions, Fig. 11 presents
the excitation energy distribution of the primary ICF products
(channel 1: 224

90 Th and 220
88 Ra, channel 2: 212

84 Po and 216
86 Rn), and

Fig. 12 presents the asymptotic angular distributions of the

FIG. 11. Excitation energy distribution of the primary ICF prod-
ucts for ICF channels 1 (+) and 2 (×) for the same reaction as in
Fig. 9. ICF channel 1 refers to the production of 224

90 Th and 220
88 Ra,

while ICF channel 2 refers to the production of 212
84 Po and 216

86 Rn.

FIG. 12. Asymptotic angular distribution of the ICF products and
the surviving breakup fragments for ICF channels 1 (+) and 2 (×) for
the same reaction as in Fig. 9. ICF channel 1 refers to the production
of 224

90 Th and 220
88 Ra, while ICF channel 2 refers to the production of

212
84 Po and 216

86 Rn.

ICF products (channel 1: 224
90 Th and 220

88 Ra, channel 2: 212
84 Po

and 216
86 Rn) and the surviving breakup fragments (channel 1:

4
2He and 8

4Be, channel 2: 16
8 O and 12

6 C).
For the reaction 20

10Ne + 208
82 Pb with projectile excitation

energy E∗ = 5 MeV and projectile incident energy E0 =
160 MeV, the angular distributions shown in Fig. 9(a) suggest
that the highest cross section yields for the ICF products 224

90 Th
and 220

88 Ra can be found at angles of approximately 17–23
degrees, and the highest yields for the associated survival frag-
ments 4

2He and 8
4Be can be found at angles of approximately

60–80 degrees. Similarly, for the same reaction, the angular
distributions shown in Fig. 9(b) suggest that the highest cross-
section yields for the ICF products 212

84 Po and 216
86 Rn can be

found at angles of approximately 30–43 degrees, and the
highest yields for the associated survival fragments 16

8 O and
12
6 C can be found at angles of approximately 43–63 degrees.

The angular momentum distributions shown in Fig. 10
suggest that the highest ICF cross section yields can be found
at angular momenta of approximately 7–52 h̄ concerning the
angular momentum brought by the ICF fragments (16

8 O, 12
6 C,

8
4Be, and 4

2He) into the target (208
82 Pb), and at angular momenta

of approximately 55–80 h̄ concerning the projectile (20
10Ne)

orbital angular momentum.
The excitation energy distributions shown in Fig. 11 sug-

gest that of the primary ICF products 224
90 Th and 220

88 Ra, those
with excitation energies of approximately 80–128 MeV have
the highest cross section yields, while of the primary ICF
products 212

84 Po and 216
86 Rn, those with excitation energies

of approximately 27–80 MeV have the highest cross sec-
tion yields. It is clear that for each of these ICF channels
there are two distinct peaks; for ICF channel 1 one likely
arises from 224

90 Th and the other from 220
88 Ra, similarly for

ICF channel 2 one likely arises from 212
84 Po and the other

from 216
86 Rn.

The asymptotic angular distributions shown in Fig. 12
suggest that the highest cross-section yields for ICF products
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224
90 Th and 220

88 Ra and their surviving breakup fragments 4
2He

and 8
4Be can be found at angles of approximately 14–24

degrees, while the highest cross-section yields for ICF prod-
ucts 212

84 Po and 216
86 Rn and their surviving breakup fragments

16
8 O and 12

6 C can be found at angles of approximately 30–43
degrees.

D. General remarks

All the information provided by the present model is
also very useful for planning dedicated experimental setups
for production of specific isotopes through the ICF reaction
mechanism. A limitation of the current implementation of the
model is that there are only two ICF channels in the compu-
tation: one for the ICF of the heavier fragment and target, and
one for the ICF of the lighter fragment and target. The next
major step in this model’s development is the disentanglement
of all the individual ICF channels. For example, in the case
where a projectile has an excitation energy range of 5 MeV,
as presented in Fig. 8, there ought to be four ICF channels:
one for the ICF of 16

8 O and the target, one for the ICF of
12
6 C and the target, one for the ICF of 8

4Be and target, and
one for the ICF of 4

2He and the target. This will allow for
more universal input to the model and much more informative
output from it. Additional steps include further refinements of
the model, so as to make it as accurate and as true to life as
possible.

IV. CONCLUSIONS

In summary, the ICF dynamics of 20
10Ne + 208

82 Pb colli-
sions at energies above the Coulomb barrier have been
investigated using a novel semiclassical dynamical model,
built upon a classical trajectory model with stochastic
breakup, featuring a dynamical fragmentation theory treat-
ment of two-body clusterization and decay of a projectile.
This has been implemented via a finite-difference method
solution to the time-independent Schrödinger equation in the
charge asymmetry coordinate by diagonalizing a tridiagonal
Hamiltonian matrix with periodic boundary conditions. Initial
results look promising and indicate that this method can be a
successful way of probing ICF of complex nuclei at Coulomb
energies, and once the model has been sufficiently polished
following disentanglement of the ICF channels and other
minor refinements it will likely prove to be an invaluable tool
in making predictions for the formation of SHEs through the
ICF reaction mechanism.
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