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Three-nucleon (3N) short-range correlations (SRCs) are some of the most elusive structures in nuclei. Their
observation and the subsequent study of their internal makeup will have a significant impact on our understanding
of the dynamics of the superdense nuclear matter which exists at the cores of neutron stars. We discuss the
kinematic conditions and observables that are most favorable for probing 3N SRCs in inclusive electronuclear
processes and make a prediction for a quadratic dependence of the probabilities of finding a nucleon in 2N
and 3N SRCs. We demonstrate that this prediction is consistent with the limited high-energy experimental data
available, suggesting that we have observed, for the first time, 3N SRCs in electronuclear processes. Our analysis
enables us to extract a3(A, Z ), the probability of finding 3N SRCs in nuclei relative to the A = 3 system.
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I. INTRODUCTION

Three-nucleon short-range correlations (3N SRCs), in
which three nucleons come close together, are unique arrange-
ments in strong interaction physics. The 3N SRCs have a
single nucleon with very large momentum (�700 MeV/c)
balanced by two nucleons of comparable momenta. Unlike
two-nucleon short-range correlations (2N SRCs), 3N SRCs
have never been probed directly through experiments. As a
consequence of the factorization of short-distance effects from
low-momentum collective phenomena [1,2], 2N and 3N SRCs
dominate the high-momentum component of nuclear wave
function, which is almost universal up to a scale factor (see,
e.g., Refs. [1,3]).

The dynamics of three-nucleon short-range configurations
reside at the borderline of our knowledge of nuclear forces,
making their exploration a testing ground for “beyond the
standard nuclear physics” phenomena such as irreducible
three-nucleon forces, inelastic transitions in 3N systems, as
well as the transition from hadronic to quark degrees of
freedom. Their strength is expected to grow faster with the
local nuclear density than the strength of 2N SRCs [1,2]. As
a result, their contribution will be essential for an understand-
ing of the dynamics of superdense nuclear matter (see, e.g.,
Ref. [4]).

Until recently, a straightforward experimental probe of 2N
and 3N SRCs was impossible due to the requirements of
high-momentum transfer nuclear reactions being measured in
very specific kinematics in which the expected cross sections
are very small (see Ref. [1] and references therein). With
the advent of the high-energy (6 GeV) and high-intensity
continuous electron accelerator at Jefferson Lab (JLab) in the
late 1990s, an unprecedented exploration of nuclear structure
became possible, opening a new window to multinucleon
SRCs.

II. TWO-NUCLEON SHORT-RANGE
CORRELATIONS (2N SRCs)

The first dedicated study of 2N SRCs in inclusive,
A(e, e′)X , high-momentum-transfer reactions revealed a
plateau in the ratios of per nucleon cross sections of heavy
nuclei to the deuteron [5] measured at the Standard Linear
Accelerator Center (SLAC) with momentum transfer, Q2 �
2 GeV2 and Bjorken variable x > 1.5. Here, x = Q2

2mN q0
with

mN being the nucleon mass and q0 being the transferred
energy to the nucleus, and for a nucleus A, 0 < x < A. The
observed plateau, largely insensitive to Q2 and x, sets the
parameter a2(A, Z ) [6], which is the probability of finding
2N SRCs in the ground state of the nucleus A relative to the
deuteron. These plateaus were confirmed in inclusive cross-
section ratios of nuclei A to 3He [7,8], at similar kinematics
with the magnitude of plateaus taken to be related to the rel-
ative probability, a2(A,Z )

a2(3He) . Qualitatively and quantitatively, the
latter results were in agreement with Ref. [5]. These, together
with more recent and dedicated measurements of the nuclear
to the deuteron inclusive cross-section ratios [9], provided
compelling evidence for the sizable (≈20%) high-momentum
component of the ground-state nuclear wave function for
medium to heavy nuclei originating from 2N SRCs.

While inclusive processes provided the first evidence for
2N SRCs and an estimate of their probabilities, a2(A, Z ), the
details of correlation dynamics have been obtained mainly
from semi-inclusive experiments in which one or both nu-
cleons from 2N SRCs were detected. The first A(p, ppn)X
experiments at high-momentum transfer were performed at
Brookhaven National Laboratory [10,11]. The theoretical
analysis of these experiments gave the striking result that
the probability of finding proton-neutron combinations in 2N
SRCs exceeds by almost a factor of 20 the probabilities for
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FIG. 1. (a) Geometry of 2N SRCs, pr ≈ −pi. Two configura-
tions of 3N SRCs: (b) Configuration in which recoil nucleon mo-
menta pr2, pr3 ∼ −pi/2 and (c) configuration in which pr2 ∼ pr3 ∼
pi. Here ms is the invariant mass of the recoiling 2N system.

proton-proton and neutron-neutron SRCs [12]. This result was
subsequently confirmed in semi-inclusive electroproduction
reactions at JLab [13,14], and both are understood as arising
from the dominance of the tensor component in the NN inter-
action at distances |r1 − r2| � 1 fm [15,16]. This reinforced
the conclusion that the nucleons have been isolated in SRCs
with separations much smaller than average internucleon dis-
tances. The dominance of the pn component in 2N SRCs
suggested a new prediction for momentum sharing between
high-momentum protons and neutrons in asymmetric nuclei
[17] where the minority component (say, protons in neutron-
rich nuclei) will dominate the high-momentum component
of the nuclear wave function. This prediction was confirmed
indirectly in A(e, e′ p)X and A(e, e′ pp)X experiments [18]
and directly in A(e, e′ p)X and A(e, e′n)X processes in which
proton and neutron constituents of 2N SRCs have been probed
independently [19,20]. The momentum sharing effects also
arise from variational Monte Carlo calculations for light
asymmetric nuclei [21] as well as in model calculations of
nuclear wave functions for medium to heavy nuclei [22].

In addition to measuring the isospin content of 2N SRCs,
several experimental analyses [11,14,23] established a de-
tailed “geometrical” picture of 2N SRCs consisting of two
overlapping nucleons having relative momentum between
250 and 650 MeV/c with back-to-back angular correlations
[Fig. 1(a)] and with moderate center of mass momentum,
�150 MeV/c, for nuclei ranging from 4He to 208Pb [23]. Sev-
eral recent reviews [2,3,24–26] have documented extensively
the recent progress in the investigation of 2N SRCs in a wide
range of atomic nuclei.

III. THREE-NUCLEON SHORT-RANGE
CORRELATIONS (3N SRCs)

Despite an impressive progress achieved in studies of 2N
SRCs, the confirmation of 3N SRCs remains arguable. One
signature of 3N SRCs is the onset of the plateau in the ratio of
inclusive cross sections of nuclei A and 3He in the kinematic
region of x > 2 similar to the plateau observed for 2N SRCs
in the region of 1.5 < x < 2 and discussed above. The first
observation of a plateau at x > 2 was claimed in Ref. [8].
However, it was not confirmed by subsequent measurements
[9,27]. The source of this disagreement has been traced to the
poor resolution at x > 2 of the experiment of Ref. [8], which

led to bin migration [28], where events move from smaller to
higher x. Additionally, as it will be shown below, the absence
of a plateau is related to the modest invariant momentum
transfer, Q2, covered in Ref. [8].

To quantify the last statement, we first need to identify
the dominant structure of 3N SRCs in the nuclear ground
state. The problem is that while for 2N SRCs the correla-
tion geometry is straightforward [two fast nucleons nearly
balancing each other, Fig. 1(a)], in the case of 3N SRCs
the geometry of balancing three fast nucleons is not unique,
ranging from configurations in which two almost parallel
spectator nucleons with momenta, ∼− pi

2 balance the third
nucleon with momentum pi [Fig. 1(b)] to the configurations in
which all three nucleons have momenta pi with relative angles
≈120◦ [Fig. 1(c)]. The analysis of 3N systems in Ref. [15]
demonstrated that configurations in which two recoil nucleons
have the smallest possible mass, mS ∼ 2mN , dominate the 3N
SRC nuclear spectral function at lower excitation energy. This
allows us to conclude [29] that in inclusive scattering, which
integrates over the nuclear excitation energies, the dominant
contribution to 3N SRCs originates from arrangements similar
to Fig. 1(b) with mS � 2mN .

With the dominant mechanism of 3N SRCs identified, we
are able to develop the kinematic requirements to expose
3N correlations in inclusive eA scattering. We use the fact
that, due to relativistic nature of SRC configurations, the
most natural description is achieved through the light-cone
(LC) nuclear spectral functions [6,30] in which the correlated
nucleons are described by their nuclear light-cone momentum
fractions, αi, and transverse momentum, pi,⊥. In inclusive
scattering, one probes the spectral function integrated over
the LC momenta of the correlated recoil nucleons, residual
nuclear excitation energy, and the transverse momentum of
the interacting nucleon. This corresponds to the LC density
matrix of the nucleus ρA(αN ), where αN is the LC momentum
fraction of the nucleus carried by the interacting nucleon. It
can be shown [31] that ρA(αN )/α is analogous to the partonic
distribution function in QCD, fi(x), where x describes the LC
momentum fraction of the nucleon carried by the interacting
quark.

To evaluate the LC momentum fraction, αN (henceforth
α3N ), describing the interacting nucleon in the 3N SRC, we
consider the kinematic condition of quasielastic scattering
from a 3N system: q + 3mN = p f + pS , where q, p f , and
pS are the four momenta of the virtual photon, final struck
nucleon, and recoil two-nucleon system respectively. One
defines the LC momentum fraction of the interacting nucleon,
α3N = 3 − αS , where αS ≡ 3 ES−pz

S
E3N −pz

3N
is the light-cone fraction

of the two spectator nucleons in the center of mass of the
γ ∗(3N ) system with z||q. Using the boost invariance of the
light-cone momentum fractions, one arrives at the following
laboratory-frame expression (see Ref. [29] for details):

α3N = 3 − q− + 3mN

2mN

[
1 + m2

S − m2
N

W 2
3N

+
√(

1 − (mS + mN )2

W 2
3N

)(
1 − (mS − mN )2

W 2
3N

)]
, (1)
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FIG. 2. Kinematics of 3N SRCs. The surface above the hori-
zontal plane at α3N = 1.6 defines the kinematics most optimal for
identification of 3N SRCs in inclusive processes. In this calculation,
we assumed a minimal mass for mS = 2mN which corresponds to the
maximal contribution to the nuclear spectral function with k⊥ = 0
and β = 1 [see Eq. (1)].

where W 2
3N = (q + 3mN )2 = Q2 3−x

x + 9m2
N and q− = q0 − q

with q0 and q being energy and momentum transfer in the
laboratory with z||q. The invariant mass of the spectator 2N

system is m2
S = 4 m2

N +k2
⊥

β(2−β ) , where k⊥ is the transverse compo-
nent of the relative momentum of the 2N system with respect
to pS and β is the light-front momentum fraction of pS carried
by the spectator nucleon (0 � β � 2). Inclusive reactions
integrate over the nuclear spectral function and k⊥ and ms are
not determined experimentally.

The expression for α3N , Eq. (1), makes it possible to
identify the kinematical conditions most appropriate for the
isolation of 3N SRCs in inclusive A(e, e′)X reactions. This is
done by identifying the minimal value of α3N above which one
expects the contribution of 3N SRCs to dominate. First, the
threshold can be established from our experience of studying
2N SRCs. In this case, we know that 2N SRCs in inclusive
processes dominate at αN � 1.3 which corresponds to an
internal longitudinal momenta of ≈300–350 MeV/c. Hence,
for 3N SRCs one needs at least pmin � 700 MeV/c, corre-
sponding to α3N � 1.6, which will allow two high-momentum
spectator nucleons to belong to a 3N SRCs. This minimal
value for α3N is validated by the studies of the fast backward
nucleon production in pA scattering within the few-nucleon
correlation model [6], which indicate that the transition from
2N to 3N SRCs occurs at α ∼ 1.6–1.7.

As α3N increases above 1.6, the contribution of 2N SRCs
is suppressed relative to 3N SRCs. This is because as the
LC momentum fraction grows, the relative momentum in
the 2N system grows much faster than the same quantity in
the 3N system. Thus, in further discussions, we will set α3N =
1.6 as the threshold value, above which one expects the 3N
SRCs to dominate in inclusive scattering. This minimal value
for α3N allows us to identify the kinematic parameters most
promising for probing 3N SRCs, as illustrated in Fig. 2. The
figure shows the relevant kinematics corresponding to the α3N

surface being above the α3N = 1.6 plane. This identifies the
Q2 and x domains favorable for probing 3N SRCs. In partic-
ular, one observes that starting around Q2 � 2.5–3 GeV2 one

gains enough kinematical range in the x > 2 domain that one
expects to observe 3N SRCs.

Another advantage of considering 3N SRCs in terms of α3N

is that at sufficiently large Q2 the LC momentum distribution
function ρA(α3N ) is not altered by final-state hadronic interac-
tions (FSIs). The important feature in the high-energy limit is
that FSIs redistribute the p⊥ strength in the nuclear spectral
function, leaving ρA(α3N ) practically unchanged [32–34]. In
this limit, the distortion of α3N due to FSI can be evaluated as
[32]

δα ≈ x2

Q2

2mN ER(
1 + 4m2

N x2

Q2

) , (2)

where ER is the kinetic energy of the recoil two-nucleon
system. The estimates made in Ref. [29] indicate that for
Q2 ∼ 3 GeV2 FSI may alter α3N by not more than 8% which
is too small to shift the mean field nucleon, αN ≈ 1, to the 3N
SRC domain at α3N � 1.6.

IV. SIGNATURES OF 3N SRCs

The cross section in inclusive electron scattering at high Q2

is factorized in the form [6]:

σeA ≈
∑

N

σeNρN
A (αN ), (3)

where σeN is the elastic electron-bound nucleon scattering
cross section and ρN

A (αN ) is the light-front density matrix
of the nucleus at a given LC momentum fraction, αN of the
probed nucleon. This is analogous to the QCD factorization
in inclusive deep-inelastic scattering off the nucleon, in which
the cross section is a product of a hard electron-parton scatter-
ing cross section and partonic distribution function.

The local property of SRCs suggests that ρA(αN ) in the
correlation region to be proportional to the light-front density
matrix of the two- and three-nucleon systems [5,6]. This
expectation leads to the prediction of the plateau for the ratios
of inclusive cross sections in the SRC region that has been
confirmed for 2N SRCs. Similar to 2N SRCs for the 3N SRC
one predicts a plateau for the experimental cross section ratios
such as

R3(A, Z ) = 3σA(x, Q2)

Aσ3He(x, Q2)

∣∣∣α3N >α0
3N

, (4)

where α0
3N is the threshold value for the α3N above which

one expects onset of 3N SRCs (taken as ≈1.6 as described
above). To quantify the strength of 3N SRCs, we introduce a
parameter a3(A, Z ) [29]:

a3(A, Z ) = 3

A

σeA

(σe3He + σe3H )/2
, (5)

representing an intrinsic nuclear property related to the prob-
ability of finding 3N SRCs in the nuclear ground state. If a
plateau is observed in the 3N SRC region of α3N , then the
ratio R3(A, Z ) in Eq. (4) can be used to extract a3(A, Z ) as
follows [29]:

a3(A, Z ) = R3(A, Z )
(2σep + σen)/3

(σep + σen)/2
. (6)
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FIG. 3. The α3N dependence of the inclusive cross-section ratios
for 4He to 3He: triangles, JLAB data [9,37]; circles, ratios when
using a parametrization of SLAC 3He cross sections [35,36]. The
horizontal line at 1.3 � α3N < 1.5 identifies the magnitude of the
2N SRC plateau. The line for α3N > 1.6 is Eq. (10) with a 10%
error introduced to account for the systematic uncertainty in a2(A, Z )
parameters across all measurements. The data correspond to Q2 ≈
2.5 GeV2 at x = 1, α3N = 1.

The status of the experimental observation of the scaling in
the ratio of Eq. (4) is as follows: The E02-109 experiment
[38] provided high-accuracy ratios, in the 2N SRC region,
at large momentum transfer for a wide range of nuclei [9].
This experiment covered some part of the 3N SRC kinematic
region with lesser quality of data (see also Refs. [37–40]),
providing an indication of a plateau in the cross-section ratios
beginning at x > 2 once Q2 is sufficiently high.

In Ref. [29], it was pointed out that the above-mentioned
data [9,37,38] suffered from a collapse of the 3He cross
section between x = 2.68 and x = 2.85 due to difficulties with
the subtraction of the aluminum target walls. This issue arose
from the relatively small diameter of the target cell (4 cm)
combined with the fact that σ Al 	 σ

3He at large x as σ
3He

must go to 0 at its kinematic limit, x = 3. The cross-section
ratio in Ref. [9] was made possible by the following: First,
the inverted ratio 3He/4He was formed and then rebinned,
combining three bins into one for x � 1.15. Subsequently, the
bins in the inverted ratio that had error bars falling below zero
were moved along a truncated Gaussian, such that the lower
edge of the error bar was at zero. The ratio was then inverted
to give the ratio for 4He/3He shown in Fig. 3 of Ref. [9] and as
the triangles in Fig. 3 below. The use of a truncated Gaussian
gave rise to the asymmetric error bars seen in the ratios.

As an alternative to the somewhat unconventional proce-
dure above, we have used the following approach to substitute
the 3He data of Refs. [9,37,38] in the 3N SRC region: We
have replaced the problematic data between x = 2.68 and
x = 2.85 (1.6 � α3N � 1.8), point by point, by employing a
y-scaling function F (y) [41–43] fit to the SLAC data [35,36]
measured at a comparable Q2. A simple, two-parameter fit
F (y) = a exp(−bx), limited to the range 1.6(y = −0.7) �
α3N � 1.8(y = −1.1), provides a good description of the
SLAC data [29]. We preserved the absolute error of the
E02019 data set [9,37,38] rather than the smaller errors from
the fit. The fit parameters are a = 0.296 and b = 8.241.

Note that the above approach was first used in Ref. [5],
which provided the first evidence of 2N SRCs through cross-
section ratios in inclusive scattering. The 2N SRC results
obtained have been confirmed by subsequent precision stud-
ies [7–9] in which the ratios were measured in a single
experiment.

It is also worth mentioning that in the case of 2N SRC
the adopted approach was more complicated than the one
we employed in the current work. In Ref. [5], the data were
combined to form the cross-section ratios of nuclei (3He,
4He, C, Al, Fe, and Au) to the deuteron, covering a range
in Q2 from 0.9 to 3.2 (GeV/c)2. In the current analysis of
3N SRCs, we worked at a single value of Q2 ≈ 2.7 (GeV/c)2

and, incidentally, the 3He data used in 1993 is the same set we
employ here. The resulting ratios are displayed as red circles
in Fig. 3.

Figure 3 presents the results for the cross-section ratios
obtained within the two above described approaches. While
both give similar results, we consider the replacement of the
data points between x = 2.68 and x = 2.85 (1.6 � α3N �
1.8) as the best alternative to the procedure adopted in Ref. [9]
in part because it allows a consistent treatment of the ratios for
all A.

In Fig. 3, the plateau due to 2N SRCs is clearly visible for
1.3 � α3N � 1.5. In this region, α3N ≈ α2N [29], where α2N

is the LC momentum fraction of the nucleon in the 2N SRC.
Because of this, we refer to the magnitude of this plateau as

R2(A, Z ) = 3σA(x, Q2)

Aσ3He(x, Q2)

∣∣∣∣
1.3�α3N�1.5

= a2(A)

a2(3He)
. (7)

The horizontal line in the region of 1.3 � α3N � 1.5 is
given by the right-hand side of Eq. (7), in which the values
of a2(3He) and a2(A) are taken from the last column of
Table II in Ref. [44], an average of the SLAC, JLAB Hall
C, and JLAB Hall B results. The magnitude of the horizontal
solid line in the region of 1.6 � α3N � 1.8 is the prediction of
R3N (A, Z ) ≈ R2

2N (A, Z ), which will be explained in the next
section. We assigned a 10% error to this prediction (dashed
lines) related to the uncertainty of a2(A, Z ) magnitudes across
different measurements.

As Fig. 3 shows, the data at α3N > 1.6 are consistent with
the prediction of the onset of the new plateau in the 3N-SRC
region and that its magnitude is proportional to R2

2N .
With a set of 3He data obtained in this approach, we are

able to estimate the ratios for other nuclei, including 9Be, 12C,
64Cu, and 197Au, albeit with larger uncertainties [29].

The large experimental uncertainties in evaluation of the
ratios for 4He (Fig. 3) and for heavier nuclei [29] do not allow
us to claim unambiguously the onset of the plateau at α3N �
1.6. However, one can evaluate the validity of such a plateau
by comparing one- and two-parameter fits to the experimental
ratios in the α3N � 1.6 region. The one-parameter fit in the
3N region gives the values (Rexp

3 ) of the plateaus as seen in
Fig. 4(a) along with our prediction of Eq. (10). Rexp

3 is also
listed in Table I. A two-parameter linear fit returns errors on
the parameters nearly as large as the parameters themselves
and a correlation matrix, indicating that the second parameter
is redundant, providing no additional information.
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FIG. 4. (a) The A dependence of the experimental evaluation of
R3 compared with the prediction of Eq. (10). (b) The A dependence
of a3(A, Z ) parameter compared to a2(A, Z ) of Ref. [9].

V. 3N SRCs AND THE pn DOMINANCE

In Fig. 1(b), the 3N SRC is produced in the sequence
of two short-range NN interactions in which the nucleon
with the largest momentum interacts with the external probe
[29,30]. The presence of short-range NN interactions in 3N-
SRC configurations tells us that the recently observed pn-SRC
dominance [12–14] is critical to our understanding of 3N
SRCs.

For 3N SRCs, one expects that only pnp or npn con-
figurations to contribute, with the pn short-range interaction
playing role of a “catalyst” in forming a fast interacting
nucleon with momentum, pi [Fig. 1(b)]. For example, in the

TABLE I. Numerical values a2 [44], R2 [Eq. (7)], Rexp
3 (the

weighted average in the 3N region), and a3 [Eq. (6)].

A a2 R2 Rexp
3 a3

3 2.13 ± 0.04 1 NA NA
4 3.57 ± 0.09 1.68 ± 0.03 2.74 ± 0.24 3.20 ± 0.28
9 3.91 ± 0.12 1.84 ± 0.04 3.23 ± 0.29 3.77 ± 0.34
12 4.65 ± 0.14 2.18 ± 0.04 4.89 ± 0.43 5.71 ± 0, 50
64 5.21 ± 0.20 2.45 ± 0.04 5.94 ± 0.52 6.94 ± 0.77
197 5.13 ± 0.21 2.41 ± 0.05 6.15 ± 0.55 7.18 ± 0.64

case of pnp configuration, the neutron will play the role of
intermediary in furnishing a large momentum transfer to one
of the protons with two successive short-range pn interactions.
Quantitatively, such a scenario is reflected in the nuclear light-
front density matrix in the 3N-SRC domain, ρN

A(3N )(αN ), being
expressed through the convolution of two pn-SRC density
matrices, ρN

A(pn)(α, p⊥) as follows:

ρN
A(3N )(αN , p⊥) ≈

∑
i, j

∫
F (α′

i, pi⊥, α′
j, p j⊥)

× ρN
A(pn)(α

′
i, p′

i⊥)ρN
A(pn)(α

′
j, p′

j⊥)

× dαid
2 p j⊥dαid

2 p j⊥, (8)

where (α′
i/ j, p′

i/ j⊥) are the LC momentum fractions and trans-
verse momenta of spectator nucleons in the center of mass of
the pn SRCs. According to the pn dominance [17],

ρN
A(pn)(α, p⊥) ≈ a2(A, Z )

2XN
ρd (α, p⊥), (9)

where XN = Z/A or (A − Z )/A is the relative fraction of
the proton or neutron in the nucleus and ρd (α, p⊥) is the
light-front density function of the deuteron at α � 1.3. The
factor F (α′

i, pi⊥, α′
j, p j⊥) is a smooth function of LC mo-

menta and accounts for the phase factors of nucleons in the
intermediate state between the sequential pn interactions with
0 < α′

i/ j < 2.
It follows from Eq. (8) and the expression of ρN

A(pn)(α, p⊥)
in Eq. (9) that the strength of 3N SRCs is ∝ a2

2(A, Z ). This is
evident by calculating R3 in Eq. (4) using the relation (3) and
the conjecture of Eq. (8), which leads to [29]

R3(A, Z ) = 9

8

(σep + σen)/2

(2σep + σen)/3
R2

2(A, Z ) ≈
[

a2(A, Z )

a2(3He)

]2

,

(10)

where σep ≈ 3σen in the considered Q2 ∼ 3 GeV2 range. As
Fig. 3 shows, the prediction of R3 ≈ R2

2 is in agreement with
the experimental per nucleon cross section ratios of 4He to
3He targets. There is a similar agreement for other nuclei
including 9Be, 12C, 64Cu, and 197Au [29].

To test the prediction of Eq. (10) quantitatively, we eval-
uated the weighted average of Rexp

3 (A, Z ) for α3N > 1.6 and
compared them with the magnitude of ( a2(A,Z )

a2(3He) )2 in which
a2(A, Z )’s are taken from Ref. [44]. The results in which the
3He cross section was taken from the F (y) fit to the SLAC
data are presented in Fig. 4(a) and Table I. They show good
agreement with the prediction of Eq. (10) for the full range of
nuclei. We investigated the sensitivity of the weighted average
of R3(A, Z ) on the lower limit of α3N (before rebinning) and
found that the results shown in Fig. 4(a) remain unchanged
within errors which grow with a larger α3N > 1.6 cut.

The agreement presented in Fig. 4(a) represents the
strongest evidence yet for the presence of 3N SRCs. If it
is truly due to the onset of 3N SRCs, then one can use
the measured Rexp

3 ratios and Eq. (6) to extract the a3(A, Z )
parameters characterizing the 3N SRC probabilities in the nu-
clear ground state. The estimates of a3(A, Z ) and comparisons
with a2(A, Z ) are given in Fig. 4(b) (see also Table I). These

044320-5



SARGSIAN, DAY, FRANKFURT, AND STRIKMAN PHYSICAL REVIEW C 100, 044320 (2019)

comparisons show a faster rise for a3(A, Z ) with A, consistent
with the expectation of the increased sensitivity of 3N SRCs
to the local nuclear density [2]. If this result is verified in the
future with better quality data and a wider range of nuclei,
then the evaluation of the parameter a3(A, Z ) as a function of
nuclear density and proton-neutron asymmetry together with
a2(A, Z ) can provide an important theoretical input for the
exploration of the dynamics of super dense nuclear matter
(see, e.g., Ref. [45]).

VI. SUMMARY

Based on the theoretical analysis of a three-nucleon sys-
tem, we have concluded that the dominating mechanism of
3N SRCs in inclusive processes corresponds to the situation
in which the recoil mass of the 2N spectator system is close
to a minimum. From that foundation, we derived a kinematic
condition for the onset of 3N-SRCs in inclusive eA scattering,
which should result in the observation of a plateau in the

ratio of cross sections of heavy to light nuclei, such as 3
A

σ A

σ 3He .
The best quality data, available for large enough Q2 (Fig. 3),
indicate a possible onset of such a plateau at α3N > 1.6.
This first signature of 3N SRCs is reinforced by the good
agreement with the prediction of the quadratic (R3 ≈ R2

2)
dependence between the cross section ratios in the 3N SRCs
domain, R3, and the same ratio measured in the 2N-SRC
region, R2. This agreement has allowed us, for the first time,
to extract the parameter a3(A, Z ) characterizing the strength
of 3N SRCs in the ground-state wave function of the nucleus.
Further measurements at larger Q2 are necessary to confirm
the observation made in this analysis. Precision data at large
Q2 in the 3N-SRC region can be secured in the forthcoming
12-GeV experiment at Jefferson Laboratory, E12-06-105 [46].
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