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M. Shahrbaf, H. R. Moshfegh , and M. Modarres
Department of Physics, University of Tehran, P.O. Box 14395-547, Tehran, Iran

(Received 28 May 2019; published 21 October 2019)

The lowest order constrained variational method is reformulated to find the equation of state of hypernuclear
matter. For the nucleon-nucleon interaction we employed the well-known Argonne V18 (AV18) interaction. The
equation of state is calculated using two-body central potentials for �N and �� interactions that are determined
in order to reproduce the experimental data on single- and double-� hypernuclei. For the odd-state part of the
�� interaction, which is not known due to the lack of experimental data, a proposed repulsive and attractive
potential is employed to calculate the equation of state. It is shown that the presence of � in the hypernuclear
matter produces a strong softening of the equation of state. The results are compared with similar calculations
with another variational method. The state-dependent energy as well as central and tensor correlation functions
are studied up to J = 2 for each JLSTMT channel where related to total (J), orbital (L) and spin (S) angular
momentum and isospin (T) and the third component of isospin (MT) respectively for �N and �� interactions.
Furthermore, the effect of baryon density and hyperon density as well as the type of hyperon-hyperon interaction
on the two-body correlation functions are investigated.

DOI: 10.1103/PhysRevC.100.044314

I. INTRODUCTION

The structure and properties of nuclear matter remain an
open question which impacts nuclear and particle physics and
astrophysics. The study of nuclear matter is important for
the development of density functional theory in the study of
nuclear structure, and for a deep understanding of the baryon-
baryon interaction (see Ref. [1] for more details). Hyperons
provide a new candidate for a strange degree of freedom in
the equation of state (EoS) of nuclear matter at high densities.
The presence of hyperons causes a softening of the nuclear
matter EoS [2]. For calculation of the energy of nuclear matter
and medium-heavy nuclei, various many-body theories [3,4]
have been developed. One can mention the self-consistent
Green’s function scheme [5–12], the diagrammatic expansion
methods, in particular the Brueckner-Bethe-Goldstone hole-
line expansion [3], the Monte Carlo method in its different
versions [13–18], and the variational method [19–26]. The
explanation of the correlation structure of nuclear matter,
which is one of its most important characteristics, is one of
the main aims of this attempt through the years. In fact, the
correlation function describes a correlation hole between two
baryons produced by the presence of a hard core in the baryon-
baryon interaction. All of the physical information about the
properties and the parameters of two baryons interacting in the
hypernuclear medium should be included in the correlation
function. It is a key quantity to characterize a many-body
technique and to realize the corresponding numerical results.
The spectral function of a many-fermion system gives the
important quantities of interest in scattering studies. Two
important factors for calculating the spectral functions are
short- and long-range correlation functions [27]. The relation
between the spectral function and the correlation function is

not straightforward, but it has been studied in the Brueckner-
Hartree-Fock (BHF) framework [28] and for the lowest order
constrained variational (LOCV) method [29]. In the LOCV
method, it is assumed that there is a specific form for the long-
range behavior of the correlation functions due to an exact
functional minimization of two-body energy with respect to
the short-range parts of the correlation functions. However,
some phenomena like dissipation due to shear viscosity and
related neutrino transport [30] that occur in neutron star matter
are linked to the correlation function. Therefore, it is natural
to look for a calculation of the correlation functions as well
as the EoS of hypernuclear matter from a reliable many-
body scheme. The LOCV method was developed [31,32] for
calculating the properties of homogeneous nuclear fluids in
a series of works with realistic nucleon-nucleon interactions
[33,34]. Furthermore, it was generalized [35] to contain more
sophisticated nucleon-nucleon interactions such as the Ur-
bana V14 (UV14), the Argonne V14 (AV14) [36,37], and
the new Argonne V18 (AV18) [38] as well as the Reid68
[33] and �-Reid68 [34] interactions. The LOCV calcula-
tions are also applied both at zero and finite temperatures
[39,40]. The results show that it can reasonably define the
nucleonic-matter properties at zero and finite temperatures
[31,32,35,39,41]. The LOCV method was also extended for
calculating different properties of nuclear fluids such as the
hot and frozen neutron as well as the nuclear and β-stable
matter with realistic nucleon-nucleon interactions [35,40,41].
The nucleon-nucleon (NN) interaction in this method was also
supplemented by the Urbana-type three-body force (TBF) in
Ref. [42]. Recently, the chemical potential of nucleons was
calculated within the LOCV method, and also the β-stable
equations in the presence of free hyperons was solved [2].
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The hyperonic degree of freedom has the potential for great
impact on the properties of dense nuclear matter. A hyperon is
a baryon containing one or more strange quarks, but no charm,
bottom, or top quark. Astrophysical research has shown that
this form of matter most likely exists in a stable form within
the core of neutron stars [43–48]. So far, our LOCV method
does not include strange particles. With respect to the above
arguments, in this work we attempt to develop our method
by including hyperons as a strange particle for the first time.
In this choice, we pay particular attention to the � hyperon
in the LOCV method as well as calculation of the state-
dependent two-body correlation functions and the energy for
each pair of particles, i.e., NN , �N , and ��. To the best of
our knowledge, this is the first study for the calculation of
such central and tensor correlation functions for the hyperon-
nucleon and the hyperon-hyperon interactions. Of course,
there are some works on the measurements of the correlation
function for a pair of �� or p� in relativistic heavy-ion
collisions [49], in which the correlation is measured as a
function of the relative momentum. This kind of correlation
function is sensitive to the effects of quantum statistics (QS)
as well as the final state interactions (FSIs). However, we
calculate the correlation function as a function of distance
between two particles for every interaction channel. Since we
use realistic force between the baryons, our results for the
correlation function are not related to QS.

In contrast to the NN interaction which has been exten-
sively studied, the uncertainty in the hyperon-nucleon (Y N)
and the hyperon-hyperon (YY ) interactions is much larger due
to the lack of Y N scattering data and no YY scattering data.
Thus, it is necessary to study the structure of hypernuclei to
obtain the information on Y N and YY interactions. Studying
the single- and double-� hypernuclei, a spin-parity dependent
�N interaction is constructed [50] so as to reproduce the
experimental binding energies of light � hypernuclei. Further-
more, an even-state part of the �� interaction is constructed
[51] so as to reproduce the experimental value of the double-�
binding energy extracted from the data of 6

��He [52]. For
the odd-state part of the �� interaction, which is not known
due to a lack of experimental data, a proposed repulsive and
attractive potential is employed for calculation of the EoS
[53]. We intend to compare the obtained EoS with that of
a relatively simple cluster variational method [54,55]. The
structure of the article is as follows. In Sec. II we present
our formalism based on the LOCV formalism and evaluation
of the energy for hypernuclear matter at zero temperature.
In Sec. III the baryon-baryon interactions are introduced. In
Sec. IV we present our results for the energy of hypernu-
clear matter and the properties of the two-body correlation
functions. Finally, the summary and conclusion are given in
Sec. V.

II. LOCV FORMULATION

The LOCV method is one of the microscopic methods de-
veloped to calculate the bulk properties of homogeneous nu-
clear fluids (e.g., the saturation properties) using the realistic
baryon-baryon interaction. It has been employed for various

types of nucleon-nucleon interactions such as the Reid68 and
�-Reid [32] (the modified Reid potential with the inclusion of
the isobar degrees of freedom), UV14, AV14, and AV18 [35],
and the charge-dependent Reid potential (Reid93) [56]. Also,
various thermodynamic properties of hot and frozen homo-
geneous fermionic fluids such as symmetric and asymmetric
nuclear matter [57], β-stable matter [35], helium-3 [58], and
electron fluid [59] have been calculated using LOCV method,
with different realistic interactions. Furthermore, the LOCV
formulation has been developed using a relativistically fitted
potential to the nucleon-nucleon phase shifts for covering
the relativistic Hamiltonian [60]. The LOCV calculation is
a fully self-consistent technique with no free parameter and
a state-dependent correlation function. Considering the nor-
malization condition, as a constraint, is another advantage of
the LOCV formulation. This assumption keeps the higher-
order terms as small as possible. In the LOCV method, it is
also assumed that there is a specific form for the long-range
behavior of the correlation function to carry out an exact
functional minimization of two-body energy with respect
to the short-range parts of correlation functions. The func-
tional minimization procedure causes a great computational
simplification in comparison to the unconstrained methods,
where the short-range behavior of the correlation functions
is parametrized with the aim of going beyond the lowest
order [61]. Until now, we have performed the calculations of
the LOCV method for nuclear matter and helium-3 beyond
the lowest order to test its convergence [62]. The energy of
three-body clusters was evaluated with both the state averaged
and the state-dependent correlation functions. The smallness
of the normalization constraint (the convergence parameter)
as well as the three-body cluster energy showed that the
cluster expansion converges reasonably and, neglecting the
higher-order terms (i.e., more than two-body cluster), is an
appropriate approximation at least up to twice the empirical
nuclear matter saturation density. We extend our method to
include a strange particle, i.e., �, for the first time.

In the LOCV method for the single-particle states, we
use an ideal Fermi gas wave function, φ, and we employ
the variational techniques to find the wave function of the
interacting system [31,32,35], i.e.,

�(1, . . . , A) = F (1, . . . , A)�(1, . . . , A), (1)

where � is the uncorrelated Fermi system wave function
(Slater determinant of plane waves) and F (1, 2, . . . , A) is the
many-body correlation function. In Jastrow form, they are
defined as a product of f (i j)s which are two-body correlation
functions, i.e.,

F = S
∏
i> j

f (i j), (2)

where S is the symmetrizing operator and in this extended
LOCV formulation i, j stand for n, p, and �. To the best of our
knowledge, central and tensor correlation functions for Y N
and YY interactions, which are state dependent, have not been
calculated so far. The Jastrow two-body correlation functions
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f (i j) are defined as

f (i j) =
3∑

α,p=1

f p
α (i j)Op

α (i j), (3)

where Op
α is the projection operator which projects onto the

α channels, i.e., α = {J, L, S, T, Tz}. For singlet and triplet
channels with J = L, we choose p = 1 and for triplet channels
with J = L ± 1 we set p = 2, 3. The operators Op

α are given
by

Op=1−3
α = 1,

(
2

3
+ 1

6
S12

)
,

(
1

3
− 1

6
S12

)
, (4)

where S12 = 3(σ1 · r̂)(σ2 · r̂) − σ1 · σ2 is the tensor operator.
The many-body energy E [ f ] is calculated from the expecta-
tion value of our Hamiltonian, i.e.,

H =
∑

i

p2
i

2mi
+

∑
i< j

V (i j) + · · · , (5)

where pi = −h̄∇i, mi is the mass of the ith particle, and v(i j)
is the realistic two-body potential. The expectation value of
energy, which is a functional of the two-body correlation func-
tion, is written in the following form using cluster expansion
[63]:

E [ f ] = 1

A

〈�|H |�〉
〈� | �〉 = E1 + EMB

∼= E1 + E2 + · · · , (6)

where A is the total number of baryons. In the lowest order we
cut off the above series after E2. Due to the rapid convergence
of the cluster expansion, the small contribution of higher-
order terms is neglected in the series. The one-body energy E1

is independent of f and is only the familiar Fermi gas kinetic
energy, given by

E1 =
∑

i

3h̄2k2
fi

10mi
, (7)

where k fi is the Fermi momentum of the ith particle. Also, the
two-body energy is defined as

E2 = 1

2A

∑
i j

〈i j|W (12)|i j − ji〉, (8)

where

W (12) = − h̄2

2m

[
f (12),

[∇2
12, f (12)

]] + f (12)V (12) f (12).

(9)

The two-body antisymmetrized matrix element 〈i j|W |i j − ji〉
is calculated with respect to the plane waves of single par-
ticles, i.e., φ. In our extended LOCV formulation which
includes strange particles in addition to nucleons, the particle
state, i.e., |i j〉, is defined as

|i j〉 = |kik j, σiσ j, τiτ j, sis j〉. (10)

The above quantum numbers stand for the wave number,
the spin state, the isospin state, and the strange number of
two particles, respectively. Therefore, we find different states
for the particles with respect to the above definition, i.e.,

|nn〉, |pp〉, |np〉T =1 (hereafter we denote it by np1), |np〉T =0
(hereafter we denote it by np0), |n�〉, |p�〉, and |��〉. A
complete set of two particle states is inserted twice in the
above equation. By performing some algebra, we can rewrite
the two-body term as a functional of correlation functions
[32,35,56]. In the above equations, V (12) is a phenomenolog-
ical nucleon-nucleon, nucleon-hyperon, and hyperon-hyperon
potential. The expression of two-body energy can now be
minimized with respect to the channel correlation function,
but subject to the normalization constraint [32,35,56], which
is considered in the LOCV method by

χ = 1

A

∑
i j

〈i j|F 2
p − f 2|i j − ji〉 = 0, (11)

where Fp is the modified Pauli function, defined by

Fp(r) =
{[

1 − 9
2

( J1(k fi r)
k fi r

)2]− 1
2 , indistinguishable particles

1, distinguishable particles,

where J1(k fi r) denotes the spherical Bessel function of order
1. Thus, our constraint has the first form of Pauli function for
|nn〉, |pp〉, and |��〉, while for |np1〉, |np0〉, |n�〉, and |p�〉
we use the second form of Pauli function in the calculation of
constraint. It is worth mentioning that in the cluster expansion,
[χ = 〈�|�〉 − 1] plays the role of a smallness parameter.
All correlation functions are coupled through the Lagrange
multiplier λ which is introduced to the formulation by the
above constraint. Then we obtain the sets of uncoupled and
coupled Euler-Lagrange differential equations with respect
to the correlation functions which are related to the two-
body potential. Solving these Euler-Lagrange equations, the
constraint is incorporated only up to a certain distance, i.e.,
healing distance, where the logarithmic derivative of corre-
lation functions matches those of the Pauli function. We can
substitute thus the correlation function with the Pauli function.
As mentioned before, there is no free parameter in our LOCV
formulation; thus the healing distance is determined directly
through the constraint and the initial conditions.

III. INTERACTIONS

As it was shown in the previous section, the expectation
value of the energy will be calculated using the cluster ex-
pansion. In Eq. (9), V (12) is a phenomenological two-body
potential. In our method, the hypernuclear Hamiltonian is de-
composed into seven parts with respect to the isospin of each
pair of particles, i.e., nn, pp, np (T = 1, 0), �p, �n, and ��,
where each pair will have special potential. Therefore, we
obtain a two-body energy for each pair which is a functional
of the two-body correlation function. As pointed out before,
all of the physical information about two-baryon interactions
should be included in the correlation function.

A. The nucleon-nucleon interaction

As for the NN interaction, i.e., Vnn, Vpp, and Vnp, we employ
the AV18 potential [38] which can reasonably reproduce
observable data.
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TABLE I. The parameters of the �N interaction in Eq. (12).

i 1 2 3
βi (fm) 1.60 0.80 0.35

νi(1E ) (MeV) −7.87 −357.4 6132.0
νi(3E ) (MeV) −7.89 −217.3 3139.0
νi(1O) (MeV) −1.30 513.7 8119.0
νi(3O) (MeV) −3.38 22.9 5952.0

B. The �-nucleon interaction

In the present study, we extend the LOCV method for
asymmetric nuclear matter to calculate the energies of hyper-
nuclear matter. In particular, as for the first step, we take into
account the presence of a � hyperon in nuclear matter. For
the �N interaction, on the basis of the SU(3) symmetry of
meson-baryon coupling constants, several meson-theoretical
models have been proposed, where all of them can be used
directly in our method. However, we use a spin-parity de-
pendent potential [50] in which some parameters are tuned
phenomenologically to reproduce the experimental values of
the splitting energies of 7

�Li, simulating the basic features of
the Nijmegen meson-theoretical models NSC97f [64]. We use
the central part of potential which is given by [50]

V (c)
�N (r) =

∑
α

3∑
i=1

να
i exp[−(r/βi )

2]. (12)

The parameters of the potential are given in Table I. In this
equation, which is a three-range Gaussian form, α stands for
the four different spin-parity states of the system, i.e., α = 3E
(the triplet even), and 1E (the singlet even), 3O (the triplet
odd), and 1O (the singlet odd). The �N scattering phase shifts
calculated by NSC97f are simulated by the central potential.
The second-range strengths of the even-state part and the odd-
state part of this potential are calibrated so as to reproduce the
experimental values obtained for 4

�H and 7
�Li, respectively.

C. The �� interaction

Taking into account the presence of a � hyperon in nuclear
matter, it is necessary to consider the �� potential. As in
the case of �N interaction, we employ a central potential
constructed by the same group [51] for the even-state part of
the �� interaction, since the experimental data obtained from
hypernuclei are available for the even-state part. One should
note that the experimentally known state of two �s in the
double-� hypernuclei is an S orbital. As reported in Ref. [51],

TABLE II. The parameters of the even-state part of the ��

interaction in Eq. (13).

i 1 2 3
μi (fm−2) 0.555 1.656 8.163

νi (MeV) −10.67 −93.51 4884.0
νσ

i (MeV) 0.0966 16.08 915.8

TABLE III. The parameters of the odd-state part of the ��

interaction in Eq. (14). The parameters μi are chosen to be the same
as the even state in fm−2(i.e., μ1 = 0.555, μ2 = 1.656, μ3 = 8.163).

Attractive type Repulsive type

νodd
1 (MeV) −10.67 −1.067

νodd
2 (MeV) −93.51 109.4

νodd
3 (MeV) 4884 4884

νσ,odd
1 (MeV) 0.0966 0.00966

νσ,odd
2 (MeV) 16.08 −18.81

νσ,odd
3 (MeV) 915.8 915.8

the explicit form of the potential is

V ��,even
12 =

3∑
i=1

(
νeven

i + νσ,even
i σ1σ2

)
exp

[−μeven
i r12

2
]
. (13)

One can realize that this potential is again a three-range Gaus-
sian form, where i = 1, 2 are adjusted so as to simulate the
�� part of the NF version of the Nijmegen model. Also, the
strength of the third part (i = 3) is retuned so as to reproduce
the experimental �� binding energy in 6

��He, which is given
by a NAGARA event [the event of observation of (Lambda
Lambda) He-6 double hypernucleus] [52]. The value of the
parameters determined are given in Table II. As mentioned
before, the odd-state part of the �� interaction is not known
due to the lack of experimental data. However, to calculate
the EoS of the system, we employ a proposed repulsive and
attractive potential model [53]. The odd-state part of the ��

interaction is expressed in the same form as the even-state
part, but with different adjusted parameters, i.e.,

V ��,odd
12 =

3∑
i=1

(
νodd

i + νσ,odd
i σ1σ2

)
exp

[−μodd
i r12

2
]
. (14)

The parameters are given in Table III.
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FIG. 1. The general behavior of hyperon-nucleon and hyperon-
hyperon potential.
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In Fig. 1 we show the general behavior of these kinds
of hyperonic potential in different channels for the different
states of spin and parity. All potentials expressed by Eqs. (12)–
(14) have a repulsive and attractive part based on LS (orbital
and spin angular momentum) channels.

IV. RESULTS AND DISCUSSION

A. The EoS of hypernuclear matter

The EoS for many-body systems is a fundamental quantity
to describe the characteristics of matter and it is strongly
related to the kind of particles and their interaction. In hy-
pernuclear matter, which includes hyperons in addition to
nucleons as a new degree of freedom, we expect to see a

ρ
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B

FIG. 2. The equation of state of hypernuclear matter as a function
of baryon density for different x�. The solid lines show the case of
symmetric nuclear matter which includes � while the dotted lines
correspond to the case of xp = 0, by using (a) the repulsive odd-state
part of the �� interaction and (b) the attractive odd-state part of the
�� interaction.

softer equation of state in comparison to nuclear matter. Fur-
thermore, one expects the hyperons to appear in the nuclear
matter when the density increases and the chemical potential
of nucleons can supply the rest mass of hyperons. Thus, a
reliable microscopic method should include hyperons. For the
first time, we supplement the LOCV method to contain an
interacting hyperon and calculate the EoS of hypernuclear
matter with different proton fractions (xp) as well as different
lambda fractions (x�). As discussed in our previous work [2],
in the presence of hyperons, there is no significant change in
the EoS of hypernuclear matter with and without nucleonic
TBF at densities around nuclear saturation density. Therefore,
in this work we devote our calculation to the case without
nucleonic TBF. However, it is worth mentioning that, without
including TBF, the maximum mass of a neutron star cannot
fulfill the observational lower bound on the value of the
compact star maximum mass [2] and the saturation properties
of the nuclear matter cannot be reproduced correctly but these
calculations have not been the goal of the present study and
we will consider them in a future work.

In Fig. 2, we show the energy per baryon as a function
of baryon density with the repulsive [Fig. 2(a)] and attractive
[Fig. 2(b)] types of odd-state �� interaction, respectively.
The solid lines show the energy of symmetric nuclear matter
which includes a different fraction of �, while the dotted lines
indicate the case where the proton fraction is zero. Therefore,
the dotted line with the zero � fraction corresponds to the
pure neutron matter. It is worth mentioning that our LOCV
method is a flexible method for calculation of the EoS for
hypernuclear matter with any arbitrary magnitude of (xp) and
(x�). The role of hyperon inclusion to soften the EoS is clear
in Fig. 2. As it can be observed from the figures, the behavior
of the total energy (which does not include the rest mass of
particles) with increasing the � fraction is different at low and
high densities. In particular, at low densities, the contribution
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FIG. 3. The comparison of the EoS for hypernuclear matter
calculated within the LOCV method and the variational method
used in the work of Togashi et al. [53]. In both methods, the same
interactions for NY and YY have been used.
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FIG. 4. The equation of state of hypernuclear matter as a function
of baryon density. The cases which include an attractive �� inter-
action and a repulsive one as well as the case in which we removed
the �� interaction are compared. The solid lines show the case of
symmetric nuclear matter which includes �, while the dotted lines
correspond to the case of xp = 0.

of attractive nuclear force is more than that of hyperonic
force; thus, the energy will increase with increasing the �

fraction. However, at high densities, the energy decreases with
increasing the � fraction, since more � hyperons with much
heavier mass in comparison with nucleons occupy a single-
particle state with lower energies than those of nucleons. For
comparison, Fig. 3 shows the attractive type of odd-state ��

interaction both for the LOCV method and another variational
method used in Ref. [53]. In spite of differences in calculation,
the behavior of the EoS as a function of baryon density which
is obtained within the LOCV method seems similar to that
of Ref. [53]. The difference between magnitudes is because
of the use of nucleonic TBF in Ref. [53], while we only use
a two-body force between nucleons. Thus, our EoS is softer
and the saturation point will appear at higher densities. In this

work, our focus is on considering a strange particle in the
LOCV method and its effect on the energy per particle as well
as the study of two-body correlation functions in NY and YY
interactions for the first time. Thus, the effect of nucleonic
TBF is not our goal in this work. However, it is studied in
detail in the LOCV method [42].

For a better presentation of the effect of different kinds of
�� interaction, we plot Fig. 4. As can be seen in this figure,
in both neutron matter and nuclear matter, including the
repulsive type for odd-state �� interaction causes a stiffness
in the EoS in comparison with the case in which the ��

interaction is removed. Furthermore, as expected, considering
the attractive type for odd-state �� interaction results in more
softening.

Since the study of the correlation function of �� in heavy-
ion collisions shows that �� interaction is weak and mainly
attractive [49], hereafter we devote our results to the attractive
�� interaction. It should be pointed out that, at high densities,
an attractive �� interaction can result in the formation of
strangelets in the core of neutron stars [65,66]. In Table IV,
we present the contribution of every channel in the energy of
hypernuclear matter and nuclear matter for comparison up to
J = 2 at ρB = 0.3 fm−3, and ρ� = 0.3ρB when xp = xn.

Note that the magnitudes listed in Table IV are the two-
body energies for every channel given by Eq. (8) which are
calculated within the LOCV method. Thus, for obtaining the
total energy, one should add the one-body energy (i.e., kinetic
energy) which is given by Eq. (7), and in this case it is equal
to 24.59 MeV for hypernuclear matter and 33.61 MeV for
nuclear matter, which results in a total energy of −19.99 MeV
for hypernuclear matter and −23.23 MeV for nuclear matter.
As stated before (also see Fig. 2), the contribution of attractive
channels in the energy for nuclear matter is more than hyper-
nuclear matter in this baryon density. Furthermore, for J � 2,
there is not much difference between the energies of various
isospin projection in different channels. Figure 5 shows the
density dependence of 1S0 and 3S1 channels, which have the
main contribution in the two-body energy for cases with and
without �. As the figure shows, both calculations have the
same density dependence.

We compare our results for energy with the energies of
hypernuclei determined experimentally [67] or calculated so

TABLE IV. Comparison of channel breakdown of energy (MeV) for hypernuclear matter and nuclear matter up to J = 2 at ρB = 0.3 fm−3

and ρ� = 0.3ρB when xp = xn.

Channel pp nn �� np1 np0 p� n�
∑

MT No �

1S0 −4.46 −4.49 −0.68 −4.60 −14.23 −24.13
3P0 −0.99 −1.00 −0.18 −0.92 −3.09 −5.29
1P1 3.23 0.09 0.10 3.43 7.25
3P1 2.77 2.77 −0.54 2.66 7.66 19.07
3S1 −15.81 −4.75 −4.51 −25.07 −26.06
3D1 0.96 −0.12 −0.12 0.72 2.55
1D2 −0.86 −0.86 −0.07 −0.83 −2.62 −6.06
3D2 −3.6 −0.2 −0.2 −4.00 −8.20
3P2 −2.15 −2.16 −0.44 −2.12 −6.87 −14.76
3F2 −0.17 −0.18 −0.01 −0.15 −0.51 −1.22
Total −5.87 −5.92 −1.92 −5.21 −15.22 −4.98 −4.73 −44.59 −56.84
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FIG. 5. The comparison of 1S0 and 3S1 channel contributions to
the binding energy for nuclear matter and hypernuclear matter.

as to reproduce reasonably the existing data for �-binding
energy [51]. The results are presented in Table V.

In this table, as an approximation, a numerical integration
was performed over the density dependent energy obtained
from the LOCV method, i.e.,

ELOCV =
∫ ∞

0
E (ρ)ρ(r)dv, (15)

where it is assumed that every nucleus is produced with a
finite number of nucleons distributed with a density ρ(r)
described by a Woods-Saxon distribution, i.e.,

ρ(r) = ρ0

1 + exp r−R
a

, (16)

TABLE V. Comparison of the energies calculated within the
LOCV method with those of hypernuclei determined experimentally
[67] or calculated so as to reproduce reasonably the existing data for
�-binding energy [51].

ELOCV Ehypernuclei

x�
xp

xn
(MeV) Hypernulei (MeV)

1
6

2
3 −3.9456 6

�He −3.29 [51]
2
6 1 −2.4509 6

��He −7.25 [51]
2
7

2
3 −3.0912 7

��He −8.47 [51]
1
8

3
4 −5.1970 8

�Li −9.30 [51]
2
8 1 −4.0321 8

��Li −12.10 [51]
1
9 1 −5.8196 9

�Be −6.64 [51]
2
10 1 −5.1477 10

��Be −15.05 [51]
1
89

39
50 −12.4604 89

� Y � − 23 [67]
1

139
57
82 −13.0254 139

� La � − 24 [67]
1

208
82
126 −13.4775 208

� Pb � − 26 [67]
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FIG. 6. The �� correlation functions for both attractive and
repulsive potentials in the 1S0 and 3 p0 channels at ρB = 0.17 fm−3

and ρ� = 0.3ρB. All the curves are plotted for the symmetric nuclear
matter, i.e., xp = xn.

where ρ0, R, and a are the density at the center of the nucleus,
the nuclear radius, and the skin depth, respectively [68]. It is
worth mentioning that in our calculation the only considered
term is the volume term in the mass formula and a simple
central potential is used for NY and YY interactions. Never-
theless, the results of Table V show a reasonable agreement
between ELOCV and Ehypernuclei in the order of magnitude for
light nuclei. One should note that the effect of nucleonic TBF
will be impressive; however, it lies outside the scope of this
study and will considered in a future work.

B. Correlation function

As mentioned before, the correlation functions have a key
role in the study of two-baryon interactions. For the first time
in this work, we present a detailed calculation on the JLSTMT
channel [total (J), orbital (L) and spin (S) angular momentum
and isospin (T) and the third component of isospin (MT)
respectively] related to the two-body correlation functions
for hyperonic two-body interaction up to J = 2 for every
pair of the considered baryons in our method. As defined in
Eqs. (3) and (4), we can calculate the central and the tensor
correlation functions. As shown in Ref. [69], the results of
calculated correlations look insensitive to the introduction of
the TBF. Therefore, similar to the previous section, we focus
our calculation on the case without TBF.

Figure 6 shows �� correlation functions (CFs) for both
attractive and repulsive potentials in two arbitrary interacting
channels, i.e., 1S0 and 3P0 when ρB is equal to 0.17 fm−3 and
ρ� is equal to 0.3ρB. This is a good test for the results of
our method, because as the figure shows and we expected, the
CFs in both channels clearly have shorter range for attractive
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fm−3 and ρ� = 0.3ρB, for (a) �� interaction and (b) N� interaction.

potential. This means that for the attractive force, the particles
correlate over a shorter distance. By multiplying them in two-
body plane waves, as all behavior is reflected in CFs, it means
that the probability of finding two particles at shorter distances
for the attractive potential is more than that for the repulsive
potential.

The �� CFs for J � 2 channels are plotted in Fig. 7(a),
while averaged over isospin projections. As it can be seen, the
behaviors of CFs in various channels are not much different
from each other. They exactly reflect the structure of the ��

interaction and we have employed a central potential in this
case. For comparison, the CFs of N� interaction for different
channels are plotted in Fig. 7(b). A small hard core of radius
Rc = 0.1 fm is introduced in our numerical calculation for the
variational method, which is shown in the figures, since the
correlation functions are zero below the core radius.
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FIG. 8. The two-body correlation function at ρB = 0.30 fm−3,
ρ� = 0.005ρB, and xp = xn. (a) The correlation function of the ��

interaction using the attractive potential for the odd part compared
with those of the NN interaction with T = 1. (b) The correlation
function of the N� interaction using the attractive potential for the
odd part compared with those of the NN interaction with T = 0.

The CFs for hyperonic interaction are compared with those
of nucleonic interaction in Fig. 8. In Fig. 8(a), we present CFs
for �� as well as NN with T = 1 for two arbitrary interacting
channels. It is worth mentioning that they all interact via the
same channels. In Fig. 8(b), the results of CFs for N� as well
as NN with T = 0 are compared in two arbitrary interacting
channels. As it can be seen in both figures, hyperonic CFs
have a shorter range. This is as expected, due to the heavier
mass of hyperons which results in the shorter range for their
interaction.
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FIG. 9. The comparison of correlation functions at ρB = 0.80
fm−3 and xp = xn for different � fraction: (a) �� interaction for
the 1S0 channel and (b) N� interaction for the 3S1 channel.

We plotted two-body CFs for every pair of baryons in an
arbitrary interacting channel for different � fractions. Figure 9
shows �� [Fig. 9(a)] and N� [Fig. 9(b)] CFs. As shown
in the figures, by decreasing the � fraction, the range of
CFs becomes shorter and in a given distance CFs have more
magnitude for smaller � fraction. Note that the presence of
hyperons not only affects the hyperonic CFs, but also changes
the pure nucleonic CFs. Regarding Eqs. (3) and (4), central
and tensor correlation functions for coupled channels are
defined as

Fc = (
2
3 f2 + 1

3 f3
)
, (17)

Ft = 1
6 ( f2 − f3). (18)
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FIG. 10. The comparison of 3S1-3D1 correlation functions at
ρB = 0.17 fm−3 and xp = xn for different � fraction: (a) central and
(b) tensor correlation function.

The central and tensor CFs can be calculated for nucleon-
nucleon interaction. In Figs. 10 and 11, Fc [Figs. 10(a) and
11(a)] and Ft [Figs. 10(b) and 11(b)] are plotted for np
interactions in the 3S1-3D1 coupled channel and for nn-pp
interactions in the 3P2-3F2 coupled channel, respectively, in
the presence of �. The figures show that fulfilling the LOCV
constraint in the presence of a new particle changes and NN
CFs show a new behavior by increasing the � fraction. One
should notice the different scales of Ft and Fc. As it can be
seen in the figures, Ft is much weaker than Fc. Furthermore, by
decreasing the � fraction, the range of CFs becomes shorter
again. This is because increasing the density of � affects the
attractive interaction of nucleons.
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(b) tensor correlation function.

In addition, the effect of changing baryon density on the
behavior of hyperonic CFs has been studied. We have shown
that in both YY and NY interactions, by increasing ρB the
range of CFs becomes shorter, especially over short distances.
This is what we expected, because increasing the baryon
density results in increasing the probability of finding two
particles in a given distance. The results are shown in Fig. 12.

V. CONCLUSION

We developed the LOCV formulation for the first time to
include a strange baryon, i.e., the � hyperon. To do so, we
modified our formalism as well as the wave functions and
the constraint to be employed for the new degree of freedom.
We used a central potential which is spin-parity dependent
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FIG. 12. The comparison of hyperonic correlation functions at
ρ� = 0.3ρB and xp = xn for different ρB: (a) �� interaction for the
1S0 channel and (b) N� interaction for the 1P1 channel.

for both nucleon-hyperon and hyperon-hyperon interactions
within the LOCV method. We showed that including � as
a new degree of freedom as well as increasing the � frac-
tion causes softness in the EoS of hypernuclear matter. The
behavior of the obtained EoS as a function of baryon density,
neglecting the effect of nucleonic TBF, is in agreement with
that of another variational calculation which employs the same
potential. We have calculated the JLSTMT-channel-related
two-body correlation function as a function of distance for NY
and YY interactions which are performed for the first time to
the best of our knowledge. The results show that hyperonic
correlation functions have a shorter range in comparison with
the nucleonic one. Furthermore, the effects of changing the �

fraction as well as the baryon density were studied. It was
shown that by increasing the � fraction, the range of the
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correlation functions becomes longer as a good adaptation
with observed hypernuclei with large mass number. This
effect has been observed not only in the hyperonic correlation
functions but also in the pure nucleonic correlation functions.
It means that the probability of the presence of particles in
a given distance with lower � fraction is more than that of
the higher one. Moreover, it was shown that by increasing

baryon density, correlation functions are transferred to lower
distances.
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