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Dynamically assisted nuclear fusion
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We consider deuterium-tritium fusion as a generic example for general fusion reactions. For initial kinetic
energies in the keV regime, the reaction rate is exponentially suppressed due to the Coulomb barrier between
the nuclei, which is overcome by tunneling. Here, we study whether the tunneling probability could be enhanced
by an additional electromagnetic field, such as an x-ray free electron laser (XFEL). We find that the XFEL
frequencies and field strengths required for this dynamical assistance mechanism should come within reach of
present-day or near-future technology.
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Introduction. Tunneling is ubiquitous in physics. Examples
include field ionization in atomic physics and α decay in
nuclear physics. The Gamov picture [1] explains the Geiger-
Nuttall law [2] via tunneling of the α particle through the
Coulomb barrier of the remaining nucleus. In the opposite
process, nuclear fusion, the two nuclei must also overcome
their Coulomb barrier, typically by tunneling, before they can
fuse. As an extreme example, the Sauter-Schwinger effect
predicts the creation of electron-positron pairs out of the
vacuum by a strong electric field E , which can be understood
as tunneling from the Dirac sea [3–7]. The exponential depen-
dence characteristic of tunneling leads to a strong suppression
of the pair-creation probability Pe+e− ∼ exp{−πES/E} for
electric fields E too far below the Schwinger critical field ES

determined by the mass me of the electron and the elementary
charge q via ES = m2

ec3/(qh̄) ≈ 1.3 × 1018 V/m. Verifying
this prediction has been one motivation for reaching these
ultra-high field strengths E . As we shall see below, these
theoretical and experimental efforts may also prove useful for
assisting nuclear fusion.

Even though tunneling is usually taught in the first course
on quantum mechanics, our understanding is still far from
complete, especially in time-dependent scenarios, see [8–13].
Interesting phenomena in this context include the Franz-
Keldysh effect [14,15] or the Büttiker-Landauer traversal time
[16]. For the Sauter-Schwinger effect, it has been found
that the pair-creation probability can be drastically enhanced
by an additional weaker but time-dependent field [17–25],
even if its frequency scale ω is well below the mass gap
of 2mec2 ≈ 1 MeV. As another surprise, this enhancement
mechanism, i.e., the dynamically assisted Sauter-Schwinger
effect, strongly depends on the concrete temporal (or spa-
tiotemporal) dependence of the assisting field [26], such as
a Sauter 1/ cosh2(ωt ) or Gaussian exp{−(ωt )2} pulse or a
sinusoidal profile cos(ωt ). In the following, we study whether
and how tunneling in nuclear fusion could be dynamically
assisted, for example, by the additional electromagnetic field
of an x-ray free electron laser (XFEL) [27].

Model. We consider deuterium-tritium fusion

2
1D + 3

1T → 4
2He + 1

0n + 17.6 MeV, (1)

where the initial kinetic energies E of the nuclei are in the keV
regime and thus typical length scales (such as the tunneling
distance) of order picometer. (As indicated above, D and T
denote 2

1H and 3
1H, respectively.) Hence we may describe

the two nuclei as nonrelativistic point particles with masses
mD and mT and positions rD(t ) and rT(t ). Their dynamics is
governed by the Lagrangian

L = mD

2
ṙ2

D + mT

2
ṙ2

T − V (|rD − rT|)
+ qṙD · A(t, rD) + qṙT · A(t, rT), (2)

where the potential V (|rD − rT|) contains the Coulomb re-
pulsion at large distances and the nuclear attraction at short
distances (of order Fermi). The vector potential A represents
the field of the XFEL.

For initial kinetic energies E between 1 and 10 keV, the
outer classical turning point rE where V (rE ) = E lies between
1.4 pm and 140 fm, which then determines the remaining
tunneling distance. Since the XFEL wavelength (� 50 pm)
is much larger than that, we may approximate the vector
potential A(t, r) by a purely time-dependent field A(t ). As a
result, the center-of-mass motion decouples from the relative
coordinate r− = rD − rT, whose dynamics is governed by

L− = μ

2
ṙ2
− − V (|r−|) + qeff ṙ− · A(t ), (3)

with the reduced mass μ = (m−1
D + m−1

T )−1 and the effective
charge qeff = q(mT − mD)/(mT + mD) ≈ q/5.

Deformation of potential. Let us first estimate the tunneling
probability without the A field via the WKB approximation.
For low initial kinetic energies E , the short-range details of
the nuclear attraction are not important and the tunneling
exponent is dominated by the long-range behavior of V , which
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gives (for s waves)

P ∼ exp

{
−π

√
2μc2

E αQED

}
, (4)

where αQED ≈ 1/137 is the fine structure constant. Of course,
this expression is analogous to the Geiger-Nuttall law for α

decay [2]. Inserting an energy E = 1 keV and the reduced
mass μ ≈ 1.12 GeV, the above tunneling exponent is P ∼
10−15 (for E = 10 keV, it is 10−5).

At the classical turning point rE (minimum distance) of
around 1.4 pm (for an energy E of 1 keV), the Coulomb
field strength is around 7 × 1014 V/m. As a result, near-future
ultra-strong optical lasers or XFEL approaching this field
strength regime could deform the potential barrier and thereby
enhance (or suppress) tunneling significantly. For example,
for a constant electric field of 35 × 1014 V/m, the factor of
π in the exponent (4) is replaced by 8/3 ≈ 2.7. Note that
due to the exponential scaling of the tunneling probability
P, even moderate deformations can have a strong effect, e.g.,
π → 8/3 in the exponent (4) implies P ∼ 10−15 → 10−13.

Floquet approach. However, while the frequency of an
optical laser is so low that this deformation can be treated
within the quasi-static approximation, the temporal variations
of an XFEL are too fast and hence should be taken into
account. In fact, as we shall see below, this time dependence
can strongly enhance the tunneling probability.

In order to study this enhancement, let us first assume an
oscillating time dependence A(t ) = Azez cos(ωt ) and use a
Floquet ansatz (see, e.g., [28,29])

ψ (t, r) =
+∞∑

n=−∞
ψn(r) exp {−iEt/h̄ − inωt}, (5)

where r = r− denotes the relative coordinate from now on.
Assuming that the external vector potential A(t ) is a small
perturbation, we employ perturbation theory and split the
total Hamiltonian Ĥ (t ) into the stationary unperturbed part
Ĥ0 plus the time-dependent perturbation Ĥ1(t ) = ĤA cos(ωt ).
The zeroth order Ĥ0ψ0(r) = Eψ0(r) represents the solution
in the absence of the XFEL and we choose it to be a p
wave ψ0(r) = ψ

p
0 (r) cos ϑ . Of course, for p waves we have

to take the angular momentum barrier into account. However,
comparing the angular momentum barrier for � = 1 with the
Coulomb potential, we see that the latter dominates for radii
larger than the reduced Compton wavelength λ̄C divided by
αQED, in our case, 24 fermi. Consequently, the angular mo-
mentum barrier becomes only relevant at very short distances
r � rE .

Following this strategy, the first Floquet side bands ψ±1(r)
are (to first order in A) determined by

(E − Ĥ0 ± h̄ω)ψ±1(r) = ĤAψ0(r), (6)

together with the appropriate boundary conditions. As ex-
pected from the selection rules, the first-order wave functions
ψ±1(r) contain s- and d-wave contributions, where we focus
on the most important part ψ s

+1(r) = ψ s
+(r) in the following.

Then Eq. (6) turns into an ordinary second-order differ-
ential equation for ψ s

+(r) which can be solved numerically.

However, we may also obtain an analytical estimate: The
zeroth-order ψ0(r) represents a wave which is incident with
energy E from the outside, i.e., it is oscillating for radii r larger
than the turning point rE and has an exponential (tunneling)
tail for smaller radii r < rE . As a result, the source term
ĤAψ0(r) in Eq. (6) is negligibly small near the origin r � rE
and assumes its maximum near the turning point rE .

Now, let us first construct a particular solution of the in-
homogeneous differential equation (6) which is also zero near
the origin. Then, integrating equation (6) toward larger radii,
we see that this particular solution remains negligible until we
approach the turning point rE where the source term ĤAψ0(r)
starts to play a role. For large radii, this particular solution
then contains the forced oscillation with exp{±ikEr} corre-
sponding to the initial kinetic energy E = h̄2k2

E/(2μ) plus
the two locally homogeneous solutions with exp{±ikE+h̄ωr}
corresponding to the higher energy E + h̄ω = h̄2k2

E+h̄ω/(2μ).
However, this particular solution does not satisfy the correct
boundary conditions for large radii, because we do not have
an incident wave with this higher energy E + h̄ω. Thus, in
order to correct this, we have to add a homogeneous solution
of Eq. (6) which precisely cancels this incident wave. This ho-
mogeneous solution corresponds to a wave which is incident
with energy E + h̄ω, mostly reflected back to r → ∞, but also
contains a small tunneling amplitude at the origin, for which
we can use the same WKB estimate as in (4), but now with E
being replaced by E + h̄ω.

As a result, we find that the solution ψ s
+(r) of Eq. (6)

satisfying the correct boundary conditions must also contain a
small amplitude at the origin, which gives us the dynamically
assisted tunneling probability

P ∼ exp

⎧⎨
⎩−π

√
2μc2

E + h̄ω
αQED

⎫⎬
⎭ . (7)

With an initial energy E of 1 keV and an XFEL frequency
h̄ω of 10 keV, for example, the above tunneling exponent is
enhanced by ten orders of magnitude. Of course, while we
are mostly interested in the exponent (as the leading-order
contribution), one must also take the prefactor in front of the
exponent into account. Apart from geometrical factors (e.g.,
stemming from the angular dependences in three dimensions),
this prefactor scales with q2

eff A
2
z , i.e., with the XFEL intensity.

Thus the probability is proportional to the number of incident
XFEL photons, which indicates that this enhancement mech-
anism should also work with incoherent photons.

By numerically integrating Eq. (6), we may arrive at quan-
titative results for the prefactor, where we find that it actually
grows for decreasing ω, see also [30]. However, if ω becomes
too small, the above Floquet approach breaks down and it
becomes necessary to consider higher bands |n| � 2. From the
lowest-order (n = 1) result in Eq. (7) with E = ω = 1 keV, for
example, we conclude that the dynamical assistance requires
electric field strengths of 1015 V/m, which is similar to those
required for the deformation of the potential discussed above.
However, at those field strengths, the perturbative treatment
above becomes questionable (see the next paragraph).
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The replacement E → E + h̄ω in (7) is typical for the
Franz-Keldysh effect to lowest order, which describes dynam-
ically assisted tunneling in the perturbative regime1. As ex-
plained above, it is a consequence of the dressed Floquet state
[Eq. (5)] containing the side bands [Eq. (6)]. For higher side
bands n = 2, 3, . . . , one would expect terms with E → E +
2h̄ω and so on, where the exponential enhancement is even
stronger while the prefactor is also more suppressed (e.g.,
with q4

eff A
4) for low intensities. As in the dynamically assisted

Sauter-Schwinger effect, one would expect that higher orders
can dominate in this case, see [31].

Büttiker-Landauer approach. To go beyond the lowest
order Floquet approach above, we study the WKB exponent
S(t, r) in a space-time dependent setting. Considering a cen-
tral collision of the two nuclei along the z axis, we assume
vanishing angular momentum, i.e., ∂ϑS = ∂ϕS = 0. However,
we have checked that including an angular dependence such
as S = S(t, r, ϑ ) does not affect the following results signifi-
cantly, which is consistent with our previous observation that
the angular momentum barrier is not crucial for the parameters
considered here.

Employing the WKB ansatz ψ = A exp{iS/h̄}, we obtain
the usual eikonal (Hamilton-Jacobi) equation

∂t S(t, r) + [∂rS(t, r) − qeff Az(t )]2

2μ
+ V (r) = 0, (8)

with the static potential barrier V (r) while the time-dependent
XFEL field is represented by Az(t ), see [32]. As the next step
(see also [16,33–35]), we split the eikonal function S(t, r) =
S0(t, r) + S1(t, r) into the zeroth-order solution S0(t, r) of
the static tunneling problem ∂t S0 + (∂rS0)2/(2μ) + V (r) = 0
with ∂t S0 = −E , plus the corrections S1(t, r) induced by the
XFEL field A(t ). Linearizing (8) in those quantities S1 and A
yields the first-order equation(

∂

∂t
+ ∂rS0

μ

∂

∂r

)
S1(t, r) = qeff Az(t )

∂rS0

μ
. (9)

Employing the boundary condition S1(t, rE ) = 0, this equa-
tion has the solution

S1(t, r) = qeff

∫ r

rE
dr′Az[t − τ (r) + τ (r′)], (10)

with the well-known WKB expression [16,36,37]

τ (r) =
∫ r

rE

dr′
√

2[E − V (r′)]/μ
� dτ

dr
= μ

∂rS0
. (11)

1Since Eq. (7) has the same form as Eq. (4), but just with an
increased energy, one could be tempted to arrive at the simple picture
that the nuclei just increase their initial kinetic energy by absorbing
XFEL photons. However, this simple picture can be rather mislead-
ing: Due to momentum conservation, the gain in kinetic energy of a
nucleus by absorbing a keV photon is negligible. Even if we consider
the (classical) acceleration of a nucleus by an XFEL field consisting
of many coherent photons with a frequency of h̄ω = 1 keV and an
ultra-high field strength of order 1015 V/m, the ponderomotive energy
of the quivering motion is negligible in comparison to the kinetic
energy of 1 keV. (For higher frequencies, the ponderomotive energy
would be even smaller.)

For classically allowed propagation E > V , all the quantities
S0(r) and τ (r) and thus also S1(t, r) are real. For tunneling
E < V , however, S0(r) and τ (r) become imaginary and thus
S1(t, r) will be complex in general. Very analogous to the
Sauter-Schwinger effect, the imaginary part of S1(t, r) then
determines the enhancement (or suppression) of the tunneling
probability. Note that τ is precisely the Büttiker-Landauer
traversal time for tunneling, i.e., the imaginary turning time
in the instanton picture.

According to Eq. (10), the tunneling exponent is deter-
mined by the analytic continuation of the vector potential
A(t ) to complex times (see also [38]), again in close analogy
to the Sauter-Schwinger effect. As a result, we also find a
qualitative difference [26] between a Sauter E (t ) = Ȧ(t ) =
E0/ cosh2(ωt ) and a Gaussian pulse E (t ) = E0 exp{−(ωt )2}
as well as a sinusoidal profile E (t ) = E0 cos(ωt ) here. Let us
first consider a sinusoidal profile which grows exponentially
as exp{ω|τ |} for large imaginary times τ . In analogy to
Eq. (4), we may estimate the maximum imaginary turning
time (again neglecting the finite size of the nuclei) via

E |τ |
h̄

= π

4

√
2μc2

E αQED . (12)

Apart from the factor 1/4, we find the same expression as
in the WKB tunneling exponent (4). For E = 1 keV, we get
E |τ |/h̄ ≈ 8.6. Thus, for frequencies ω in the keV regime,
ω|τ | is a large number, which allows us to approximate our
result (10) further. Calculating S1 near the origin, the inte-
gral (10) receives its maximum contribution near the turning
point rE (similar to the Floquet approach above). For an
oscillating time-dependence Az(t ), we may thus estimate this
integral by

S1

h̄
≈ iqeffAzeiωtE2

2μcαQED(h̄ω)2
exp

{
h̄ω

π

4

√
2μc2

E3
αQED

}
. (13)

Apart from the WKB prefactor A, the time average of the
probability | exp{iS0/h̄ + iS1/h̄}|2 is given by the zeroth-order
term exp{−2|S0|} multiplied by I0(2|S1|/h̄), where I0 is the
modified Bessel function of the first kind. For small argu-
ments, it behaves as 1 + |S1|2/h̄2 and for large arguments, it
scales with exp{2|S1|/h̄}/√4π |S1|/h̄. Note, however, that our
linearized approach (10) breaks down when |S1| becomes too
large. The double exponential dependence of the probability
on ω is typical for the Büttiker-Landauer approach (in oscillat-
ing fields) and shows that the required field strength is actually
weaker than expected from the lowest order Floquet approach
above.

The dynamical assistance sets in when S1/h̄ approaches
order unity. For E = ω = 1 keV, this requires field strengths of
order 1013 V/m. For E = 9 keV and ω = 27 keV, the required
field strength from Eq. (13) is even lower, but in this regime,
the accuracy of our approximations is a bit less reliable.
Nevertheless, the main mechanism should still persist.

Turning the argument around, we find that the threshold
frequency ω∗ where the enhancement mechanism sets in is
determined by the inverse Büttiker-Landauer traversal time
1/|τ | multiplied by the logarithm ln E0 of the field strength
E0. This is very reminiscent of the dynamically assisted
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Sauter-Schwinger effect for an oscillatory time dependence
[26]. Indeed, we find the same qualitative dependence on
the pulse shape in both cases: For a Gaussian profile E (t ) =
E0 exp{−(ωt )2}, the threshold frequency ω∗ scales with ω∗ ∼√

ln E0/|τ |, while ω∗ ∼ 1/|τ | is nearly independent of the
field strength E0 for a Sauter pulse E (t ) = E0/ cosh2(ωt ).

Outlook: Assistance by electrons. For an XFEL, time de-
pendences such as a Gaussian or Sauter pulse may be hard
to realize experimentally. However, the Coulomb field of a
particle such as an electron passing through (or close by)
the smallest gap of the two nuclei would more correspond
to a pulse-like time dependence (cf. the idea in [39]). Note
that the quasistatic deformation of the potential due to the
Coulomb field of an electron would correspond to the well-
known screening; but we are interested in the dynamical
assistance of the tunneling process. Of course, the assumption
of an external (i.e., classical) and spatially homogeneous field
describes an XFEL field quite well, but it is not such a good
approximation for the Coulomb field of an electron.

Nevertheless, one would expect that the dynamical assis-
tance mechanism does also apply (qualitatively) to this case.
To obtain a first rough estimate, let us employ time-dependent
perturbation theory with respect to the Coulomb interaction
between the electrons and the nuclei. The Ĥ0 problem of the
two nuclei could in principle again be diagonalized in terms
of the center of mass and relative coordinates. However, let
us simplify this problem even more by fixing the position of
the tritium nucleus (formally corresponding to the limit mT →
∞) and considering the motion of the deuterium nucleus in the
external potential V (rD). In second quantization, the Coulomb
interaction Hamiltonian reads

Ĥint = −q2
∫

d3rD

∫
d3re

�̂D(rD)�̂e(re)

4πε0|rD − re| , (14)

where �̂D(rD) = �̂
†
D(rD)�̂D(rD) is the deuterium and �̂e(re) =

�̂†
e (re)�̂e(re) the electron density operator. Let us consider the

transition from an initial electron state with the energy E in
e to a

final state with the energy Eout
e = E in

e − �E . Then, the excess
energy �E is transferred to the deuterium. Its initial state is
incident with an initial energy E . As before, the associated
wave function decays exponentially for |rD| < rE . As the final
state, we consider a wave function which is peaked near the
origin (due to the nuclear attraction by the tritium) and decays
exponentially for larger radii (inside the Coulomb barrier).
However, due to the excess energy �E , this final state has
an energy E + �E and thus its exponential decay is slower
and given by Eq. (7) with h̄ω being replaced by �E . Hence,
the spatial overlap integral over rD is again peaked near the
turning point |rD| ≈ rE and yields an exponential suppression

as in (7). The remaining re integral is not exponentially
suppressed and is mainly determined by the probability that
the electron is indeed close enough to assist dynamically.
In this case, the field strength of the electron is also large
enough.

Conclusions. Even though nuclear physics is customarily
associated with very high field strengths and energies (in the
MeV to GeV range), we find that nuclear fusion could be
assisted at much lower scales, which should come within
reach of present-day or near-future XFEL facilities (or with
electrons), see [40]. Apart from the deformation of the po-
tential barrier, the time dependence plays a crucial role for
assisting tunneling through the Coulomb barrier, in close
analogy to the dynamically assisted Sauter-Schwinger effect.

Within the lowest order Floquet approximation, we found
that the tunneling exponent is enhanced according to (7). In
order to go beyond the lowest-order Floquet approximation,
we generalized the Büttiker-Landauer approach to this case
and derived the first corrections S1 to the tunneling expo-
nent in Eq. (10). Note that dynamically assisted tunneling
has already been observed experimentally in several other
scenarios, see, e.g., [41–43].

The proposed dynamical assistance mechanism should also
work for other fusion reactions. An important example is
deuterium-deuterium fusion. In this case, the above approx-
imation A(t, r) ≈ A(t ) is not adequate because qeff = 0 and
we have to include the spatial dependence of the XFEL field.
For an XFEL wavelength of 50 pm and distances of order
1 pm, this results in a suppression by a factor of around 1/50,
which is partly compensated for by the fact that qeff ≈ q/5 is
now replaced by q. On the other hand, this suppression does
not apply to the dynamical assistance by electrons sketched in
Eq. (14).

In summary, our understanding of tunneling is still far from
complete and offers surprises which motivate further studies.
For example, the limitation of perturbative and linearized
approaches necessitates the development of fully nonpertur-
bative methods, perhaps in analogy to the world-line instanton
technique in the Sauter-Schwinger effect, see, e.g., [44–49].

After understanding the main mechanism better, the next
step would be to study whether it could be observed experi-
mentally and which scenario (e.g., beam-beam or beam-target
fusion, thermal or inertial fusion) might be most suitable.
These findings could then determine the potential for possible
future technological applications.
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