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An analysis of the astrophysical S factor of the proton-proton weak capture (p + p → 2H + e+ + νe) is
performed on a large energy range covering solar-core and early Universe temperatures. The measurement
of S being physically unachievable, its value relies on the theoretical calculation of the matrix element �.
Surprisingly, � reaches a maximum near 0.13 MeV that has been unexplained until now. A model-independent
parametrization of � valid up to about 5 MeV is established on the basis of recent effective-range functions. It
provides an insight into the relationship between the maximum of � and the proton-proton resonance pole at
(−140 − 467 i) keV from analytic continuation. In addition, this parametrization leads to an accurate evaluation
of the derivatives of �, and hence of S, in the limit of zero energy.
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I. INTRODUCTION

The proton-proton fusion reaction (p + p → 2H + e+ +
νe), also known as the proton-proton weak capture, is a
fundamental process in nuclear astrophysics. It is the starting
point of the proton-proton chain for stellar nucleosynthesis
in hydrogen-burning stars. Its cross section σ (E ) is usually
expressed in terms of the astrophysical factor S(E ) at the
two-proton center-of-mass energy E . Unfortunately, this cross
section is so small at typical astrophysical temperature (E �
0.01 MeV) that a reliable measurement cannot be achieved
with enough statistics, even above the Coulomb barrier (about
0.2 MeV). A theoretical prediction of S is therefore required.

The first calculation of S at zero energy was proposed by
Bethe and Critchfield [1]. They also introduced the dimen-
sionless weak capture matrix element � at zero angular mo-
mentum from which they deduced S. Thereafter, the accuracy
of S(0) was improved by Salpeter [2] and Bahcall and his
coworkers [3] using effective-range theory. In the 1990s, sev-
eral authors calculated S(0) from the nucleon-nucleon wave
functions computed in potential models [4,5]. More recently,
systematic computations of S(0) were performed in pionless
effective field theory from next-to-leading order (NLO) of the
momentum expansion [6,7] up to N4LO [8]. In parallel, efforts
were made in chiral effective field theory to reduce the uncer-
tainty on S(0) by adding two-body corrections to the Gamow-
Teller operator adjusted with data for tritium β decay [9–12].
As the uncertainty on S(0) has diminished since early works,
the small contribution of its energy derivatives S′(0) and S′′(0)
has become important for nuclear astrophysics [12–15]. In this
regard, Adelberger et al. recommended a calculation of S′′(0)
to be undertaken [13].

The calculation of these derivatives raises the question of
whether S is analytic in the neighborhood of zero energy. Such
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an analysis is still missing in the literature. Yet some peculiar-
ities of the proton-proton scattering are known. In 1980, Kok
highlighted the presence of a subthreshold resonance pole at
about (−140 − 467 i) keV in the 1S0 channel [16]. Up to a
complex phase, this pole lies in an energy range corresponding
to early Universe temperatures below the nucleosynthesis
freeze-out point (E � 1 MeV) [17]. Therefore, the derivatives
of S are likely to be influenced by the relative closeness of
this pole. In addition, it is known that the Coulomb interaction
between two protons generates a sequence of poles at complex
energy which accumulate to the zero-energy point [16,18].
These poles may affect the polynomial extrapolation used in
Refs. [11,12,15] to determine S(0), S′(0), and S′′(0) from the
numerical computation of S(E ) on an energy range that does
not include E = 0. In this context, the issue is to understand
the influence of all these structures on the astrophysical S
factor.

The purpose of this work is to obtain an efficient model-
independent parametrization of S, valid on a large energy
range (E � 5 MeV), and able to impose constraints on its
series expansion at E = 0. Our parametrization must also
describe the resonance pole at (−140 − 467 i) keV and the
Coulomb poles. To do so, we resort to a recently intro-
duced effective-range function (ERF), namely the � func-
tion [18–20], which has only been considered useful for
heavier systems until now [21]. This approach is motivated by
the efficiency of the ERFs at describing the energy-dependent
shape of the proton-proton wave function up to a few MeVs. It
is aimed to reach a much better accuracy on the values of S(0),
S′(0), and S′′(0) than with the polynomial extrapolation per-
formed in Refs. [11,12,15]. Finally, our results will be verified
with the nucleon-nucleon wave functions computed in differ-
ent local potential models, namely Av18 [22], Reid93 [23],
and NijmII [23]. In particular, these potentials are intended to
validate the model independence of our parametrization.

This paper is organized as follows. Section II presents the
parametrization of the astrophysical S factor, first from ana-
lytical approximations of the nucleon-nucleon wave functions
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in Sec. II B and then in a model-independent way in Sec. II C.
The analysis of S at complex energies is discussed in Sec. III
and supplemented by graphical illustrations. The numerical
values of the logarithmic derivatives of S are shown in Sec. IV.
Section V is devoted to a conclusion. Detailed calculations of
the Fermi phase-space integral and the Coulomb integrals are
given in Appendices A and B, respectively.

II. PROTON-PROTON WEAK CAPTURE

A. Astrophysical S factor

Let us start by defining the astrophysical S factor studied
in this paper. After integrating out the emitted leptons, the
proton-proton weak capture cross section is known to be given
to a good approximation by [2,3,24]

σ (E ) = 3mec2(λg)2

π2Ek
F (E + Q)

∣∣∣∣
∫ ∞

0
ud (r) upp(E , r) dr

∣∣∣∣
2

,

(1)
where k = √

mpE/h̄ is the proton-proton wave number and ud

and upp are the radial S-wave components of the deuteron and
proton-proton wave functions, respectively. The contribution
from higher-order partial waves can be neglected in the low-
energy approximation [25]. The parameter λ = 1.2724(23)
is the weak axial/vector ratio, g = GF |Vud |(mec2)2/(h̄c)3 =
2.96707(64) × 10−12 is the dimensionless weak coupling
constant for neutrons, GF is the Fermi constant of muon
decay, and Vud is the first element of the CKM quark mix-
ing matrix. All the fundamental constants are taken from
Ref. [17]. The quantity F (E + Q) in Eq. (1) is known as the
Fermi phase-space integral, which accounts for the electric
repulsion of the emitted positron in a relativistic framework.
It is discussed in more detail in Appendix A.

It turns out that the overlap integral between ud and
upp in Eq. (1) vanishes in the zero energy limit (E → 0).
This vanishing behavior originates from the cancellation of
the proton-proton radial wave function upp at E = 0 due
to the Coulomb barrier. This behavior can be factored out
of the overlap integral in defining the dimensionless orbital
matrix element �(E ) as [2,3]

�(E ) = aBb3/2

√
8

2η

Cη,0

∫ ∞

0
ud,0(r) upp,0(E , r) dr, (2)

where Cη,0 =
√

2πη/(e2πη − 1) is the Coulomb normaliza-
tion coefficient, η = 1/(aBk) is the Sommerfeld parameter,
and aB = h̄c/(αmpc2/2) = 57.6398 fm is the proton-proton
Bohr radius. The other constants are the deuteron binding
wave number b = √

2mpnBd/h̄ = 0.231606 fm−1 [3,13], the
proton-neutron reduced mass mpn = mpmn/(mp + mn), and
the deuteron binding energy Bd = 2.22457 MeV. In contrast
to the overlap integral, �(E ) has a finite limit at E = 0.
With these notations, the cross section (1) becomes after some
simplifications

σ (E ) = 1

( e2πη − 1) E

12mec2(λg)2

πaBb3
F (E + Q)|�(E )|2.

(3)

This expression (3) suggests the most natural definition of the
astrophysical S factor, that is,

S(E ) = (e2πη − 1) E σ (E ). (4)

This definition (4) of S is assumed in this work. Strictly
speaking, the definition (4) does not reduce to the original
definition due to Salpeter [2]

Sstd(E ) = e2πη E σ (E ), (5)

and nowadays considered as standard in stellar astrophysics.
We point out that Eq. (4) is considered in Sec. II of Bahcall’s
and May’s paper [3], even though they actually defined S by
Eq. (5).

Anyway, at sufficiently low energy, the definitions (4)
and (5) coincide. We notice indeed that the approximation
e2πη − 1 � e2πη is valid within less than 1% for

E �
[

2π

ln(100)

]2

Ry � 1.86 Ry, (6)

where Ry is the nuclear Rydberg energy which is equal to
α2mpc2/4 = 12.4911 keV in the proton-proton system. Since
we consider energies much higher than the Rydberg energy
in this work, definition (4) is preferred. Thus, we understand
Eq. (5) as the low-energy approximation of Eq. (4).

Furthermore, it should be noted that definition (4) does
not affect any of the values S(0), S′(0), and S′′(0) presented
in the main text compared to Sstd. Indeed, the relative error
between the two definitions displays an essential singularity
at E = 0 which cancels all its derivatives in the limit E

>−→ 0.
Therefore, the derivatives of S at E = 0 obtained in this work
are necessarily equal to the derivatives of Sstd at E = 0.

Finally, using Eqs. (3) and (4), one finds the expression

S(E ) = 12mec2(λg)2

πaBb3
F (E + Q)|�(E )|2. (7)

The currently recommended value of S(0) is 4.01(4) ×
10−23 MeV fm2 [13].

B. Wave function–based parametrization

Most of the energy dependence in the overlap integral (2)
comes from the proton-proton wave function upp. This func-
tion is normalized such that it tends to a sine wave of unit
amplitude for r → ∞. Its asymptotic behavior reads

upp,0(r)
r→∞−−−→ Fη,0 cos δ0 + Gη,0 sin δ0, (8)

where Fη,�(kr) and Gη,�(kr) are the standard Coulomb wave
functions [26] and δ0 is the proton-proton 1S0 phase shift.
Similarly, the asymptotic behavior of the deuteron 3S1 wave
function is

ud,0(r)
r→∞−−−→ A e−br . (9)

The normalization coefficient A is found to be
0.8850(5) fm−1/2 using three different potential models
(Av18, Reid93, and NijmII) [22,23]. It turns out that the
asymptotic regime in Eqs. (8) and (9) is already reached for
r � 2 fm. Since the spatial extent of the deuteron is much
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TABLE I. Shape parameters in different potential models for the
S-state two-nucleons wave functions.

sd νd sp νp

Av18 [22] 8.43 3.61 9.81 4.22
Reid93 [23] 8.45 3.63 9.55 3.92
NijmII [23] 8.78 4.00 9.59 3.95

larger than 2 fm, it is relevant [2,3] to calculate (2) from these
asymptotic behaviors.

Inserting the asymptotic behaviors (8) and (9) into Eq. (2)
leads to the Laplace transforms of the Coulomb functions,
which are known analytically in terms of Gauss hypergeomet-
ric functions. However, this calculation does not consider the
short-range behavior of the nucleon-nucleon wave functions
due to the nuclear potential.

One efficient way of including the short-range contribution
in � is to use analytical approximations of the nucleon wave
functions. This method was used by many authors, especially
to approximate the deuteron wave function on the basis of
a series of exponential functions. Such approximations are
known as Hulthén-type wave functions [27–31].

We propose to use the following approximation of the 3S1

bound state of the deuteron:

ud,0(r) = A(1 − e−sd br )νd e−br . (10)

The shape parameters sd and νd are fitted to the deuteron
wave function. It is worth noting that A is related to the
shape parameters sd and νd in Eq. (10) by the normalization
condition

A =
√

NS
2b

(
2νd + 2s−1

d + 1
)

(2νd + 1
)


(
2s−1

d + 1
) , (11)

where NS is the 3S1-state probability given by 〈ud,0|ud,0〉 =
94.30(6)% for the three potential models (Av18, Reid93,
NijmII). The fitted values of the shape parameters subject
to the constraint (11) are shown in Table I. As one can see
in Fig. 1(a), the approximation (10) of the deuteron wave
function is remarkably accurate. The root-mean-square devi-
ation from the Reid93 3S1 wave function is about 0.015. This
accuracy is good enough for our needs.

The same kind of parametrization can be applied to the
proton-proton wave function:

upp,0(r) = (1 − e−spbr )νp (Fη,0 cos δ0 + Gη,0 sin δ0). (12)

In contrast to the deuteron wave function, this wave func-
tion depends on the energy of the incoming protons. There-
fore, the shape parameters sp and νp are likely to vary
with the energy. However, we will neglect these variations
on the considered energy range because of the great depth
of the nuclear potentials. The fitted values of the shape pa-
rameters are shown in Table I for different potential models.

The advantage of the expressions (10) and (12) is the
reduction to the known Laplace transforms of the Coulomb
functions if the shape factors (1 − e−sd x )νd and (1 − e−spx )νp

are expanded in binomial series. The product function
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FIG. 1. Comparison between the analytical approximations of
the nucleon-nucleon wave functions and the wave functions com-
puted with the Reid93 potential [23].

then becomes

ud,0 upp,0 =
∞∑
i, j

ci, j e−βi, j br (Fη,0 cos δ0 + Gη,0 sin δ0). (13)

The integer indices i and j in the expansion (13) run over
the terms of the binomial expansion of (1 − e−sd x )νd and
(1 − e−spx )νp , respectively. The variable βi, j takes the values

βi, j = 1 + isd + jsp, (14)

and the corresponding coefficient is

ci, j = (−1)i+ j

(
νd

i

)(
νp

j

)
. (15)

One important issue with the overlap integral (2) is
the strongly vanishing behavior of the proton-proton wave
function when the energy decreases. The wave function
upp,0(r), normalized according to Eq. (8), tends to zero as
η−1/2 e−πη [24]. This behavior is due to the asymptotic nor-
malization of the Coulomb wave functions Fη,� and Gη,� that
are constrained to sine wave of unit amplitude. In Eq. (2),
this cancellation is compensated by the prefactor 2η/Cη,0. In
order to factorize the cancellation of upp,0(r) out of the overlap
integral, we rewrite the Coulomb wave functions Fη,� and Gη,�

of Eq. (8) in terms of the modified Coulomb functions �η,�

and �η,� introduced in Refs. [18,32]. Contrary to the standard
Coulomb functions, these functions have the advantage of be-
ing analytic in the complex plane of the energy. In particular,
they tend toward nonzero functions of r/aB at zero energy.
The function �η,� is related to Fη,� by [32]

Fη,�(kr) = Cη,�(2� + 2)

(2η)�+1
�η,�(kr), (16)
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where Cη,� is the general Coulomb normalization coefficient
that reads [26,32]

Cη,� = (2η)�

(2� + 2)

√
2πη wη,�

e2πη − 1
. (17)

In Eq. (17), the function wη,� is defined by

wη,� =
�∏

j=0

(
1 + j2

η2

)
and wη,0 = 1. (18)

The function Gη,� can be expressed in terms of �η,� and �η,�

as [32]

Gη,� = Cη,�(2� + 2)

(2η)�+1

e2πη − 1

π

(
�η,�

wη,�

+ gη,��η,�

)
, (19)

where gη,� is the Bethe function given by

gη,� = ψ (� + 1 + iη) + ψ (� + 1 − iη)

2
− ln η, (20)

and ψ (z) = ′(z)/(z) is the digamma function [18,33].
Combining Eqs. (16) and (19), the asymptotic behavior of the
proton-proton wave function (8) becomes

Fη,0 cos δ0 + Gη,0 sin δ0 = Cη,0/(2η)

|�+
0 (E )|

(aB

2
κ0�η,0 + �η,0

)
.

(21)
In contrast to Fη,� and Gη,�, the modified Coulomb functions
�η,� and �η,� are free of singularity at zero energy. This
property is crucial in the analysis of � at complex energy,
especially near E = 0. In Eq. (21), κ0 is the standard ERF of
the proton-proton 1S0 scattering. Its first-order expansion in E
provides an accurate parametrization of the phase shift δ0 over
a large energy range (E � 5 MeV),

κ0(E ) = 2

aB

(
π cot δ0

e2πη − 1
+ gη,0

)
� −1

α0
+ r0

2

mp

h̄2 E . (22)

The parameters α0 and r0 are, respectively, the scattering
length and the effective range. The modulus of the modified
ERF �+

0 [18,34] also appears in Eq. (21). This phase-shift-
dependent function is related to κ0 by

�+
0 (E ) =

(
aB

2
κ0 − gη,0

)
− iπ

e2πη − 1
. (23)

However, in contrast to κ0, the function �+
0 is singular at

E = 0 mostly because of gη,0. The bracket in Eq. (23) is
also called the �0 function in Ref. [18]. In practical com-
putation, �+

0 can be evaluated from the knowledge of the
effective-range function κ0. The square modulus of �+

0 can
be expressed as

|�+
0 (E )|2 =

(
aB

2
κ0 − gη,0

)2

+
(

π

e2πη − 1

)2

, (24)

as it will also enter the parametrization of �. The expres-
sion (24) is the analytic continuation of |�+

0 |2 to the complex
plane of the energy. Finally, all these ERFs are depicted in
Fig. 2.

Using the expansion (13) of the product function, the
overlap integral (2) splits into a series of Laplace transforms of
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FIG. 2. Effective-range functions of the proton-proton 1S0 scat-
tering for the Reid93 potential [23]. The other potential models
provide very close curves at this scale.

the modified Coulomb functions �η,0 and �η,0. These Laplace
transforms are defined as follows:

φβ,0(ε) =
∫ ∞

0
e−βx�η,0(x

√
ε) dx,

ψβ,0(ε) =
∫ ∞

0
e−βx�η,0(x

√
ε) dx, (25)

where x = br is the dimensionless radial coordinate, ε =
k2/b2 = E/B is the dimensionless proton energy, and B =
2mpnBd/mp is the deuteron binding energy corrected for the
neutron-proton mass difference. As shown in Appendix B, the
regular Coulomb integral is exactly given by

φβ,0(ε) = χ

β2 + ε
exp

[
χ

arctan(
√

ε/β )√
ε

]
, (26)

where the dimensionless constant χ = 2/(aBb) = 0.149816 is
due to Bahcall and May [3]. The Laplace transform of �η,0

cannot be obtained in a simple form. However, it is explained
in Appendix B that, as far as χ is small with respect to 1, the
following approximation holds for E � 5 MeV:

ψβ,0(ε) � 

(
−1,

χ

β

)
φβ,0(ε), (27)

where (a, z) denotes the upper incomplete gamma func-
tion [26].

Therefore, combining Eqs. (13) and (21) into Eq. (2), we
get the expansion

�̃ = A/
√

2b

χ |�+
0 |

∞∑
i, j

ci, j

(
aB

2
κ0φβi, j ,0 + ψβi, j ,0

)
. (28)

The tilde over � means that the result (28) assumes the
analytical approximations (10) and (12).

It is useful to separate the first term of the expansion (28),
for which β0,0 = 1, because it corresponds to the contribution
of the far-field part of the nucleon wave functions. One thus
expects this contribution to be larger than the short-range part
of the wave functions [3]. We find convenient to introduce an
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FIG. 3. Correction function for different potential models. The
curves (a) depict the linear behavior of C̃ in Eq. (30) using the data
of Table I. The curves (b) show the numerical computation of C from
Eq. (32). The inset is an enlargement of the same curves.

energy-dependent function, denoted C̃, which gathers all the
contributions of the short-range part of the wave functions.
The expansion (28) is thus written as

�̃ = A/
√

2b

χ |�+
0 |

[(
aB

2
κ0 + γ

)
φ1,0(ε) − C̃(ε)

]
, (29)

where γ = (−1, χ ) = 4.28065 is independent of the energy
and

C̃(ε) = −
∞∑

i, j 	=0,0

ci, j

(
aB

2
κ0φβi, j ,0 + ψβi, j ,0

)
. (30)

The minus sign in front of the series of Eq. (30) makes C̃ a
positive function.

The shape parameters of the nucleon wave functions in
Table I provide an estimation of C̃. At zero energy, we get
from Eq. (30) the estimate C̃(0) � 0.253. The function C̃ built
on Eq. (30) is shown as curve (a) in Fig. 3.

C. Model-independent parametrization

Instead of relying on analytical approximations of the
nucleon-nucleon wave functions, we can establish a general
model-independent parametrization of � inspired by Eq. (29),

� = A/
√

2b

χ |�+
0 |

[(
aB

2
κ0 + γ

)
φ1,0(ε) − C(ε)

]
. (31)

Indeed, this expression comes from the separation of the
far-field part of the nucleon-nucleon wave functions from its
short-range part C, and this far-field part is not supposed
to change from a potential model to another. Consequently,
the parametrization (31) is model independent, as far as the
function C can be fitted. The function C is defined by inverting
Eq. (31)

C(ε) =
(

aB

2
κ0 + γ

)
φ1,0(ε) − χ |�+

0 |
A/

√
2b

�(E ), (32)
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FIG. 4. Linearized matrix element L of the weak capture. The
vacuum polarization term of Av18 has been omitted because it leads
to a spurious behavior at low energy. The linear fit has been achieved
on [300, 600] keV.

but computing � with Eq. (2) on the basis of numerical wave
functions. At zero energy, we find C(0) = 0.260(1), the error
being due to the uncertainty on potential models.

The function C in Eq. (32) is shown as curve (b) in Fig. 3.
Although they are close within less than 4% on the considered
energy range, curves (a) and (b) display different shapes. We
note that curve (b) deviates from a straight line, in contrast
to curve (a). This difference is due to the limitation of the
assumption in Eq. (12) that the short-range part of the proton-
proton wave function, i.e., the shaping factor (1 − e−spbr )νp ,
does not depend on the energy. Therefore, the use of function
C is limited to relatively low energy (�100 keV) where it can
be considered linear. In order to model the behavior over a
large energy range (�5 MeV), we establish from Eqs. (26)
and (31) a parametrization of � that is more convenient to
practical applications

�(E ) =
exp

(
χ

arctan
√

ε√
ε

)
|�+

0 (E )|(1 + ε)
L(ε), (33)

where the function L can be related to C with

L(ε) = A√
2b

⎡
⎣aB

2
κ0 + γ − C(ε) (1 + ε)

χ exp
(
χ

arctan
√

ε√
ε

)
⎤
⎦. (34)

In contrast to C, the function L is pretty close to a smoothly
varying straight line, as shown in Fig. 4. Indeed, the three
terms in the square brackets of Eq. (34) display very linear
behaviors over a large energy range (�5 MeV). This impor-
tant feature is independent from our first guess (12) about
the proton-proton wave function. Therefore, the function L is
appropriate to model fitting over a large energy range.

Furthermore, the result (34) allows us to calculate the zero-
energy values of L and �. Using A = 0.8850(5) fm−1/2, α0 =
−7.815(9) fm, and C(0) = 0.260(1) computed in potential
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FIG. 5. Matrix element � of the weak capture computed with the
Reid93 potential. The curve has an inflection point at 16.2 keV and
a maximum at 130 keV. The inset is an enlargement of the graph to
low energy.

models, we find

L(0) = A√
2b

[−aB

2α0
+ γ − C(0)

χ eχ

]
= 8.42(1). (35)

It should be noted that Bahcall and May originally obtained
remarkably good estimates of A and C(0) from effective-range
theory [3]

A �
√

2b

1 − brpn
= 0.883(2) fm−1/2,

C(0) � b(rpp + rpn)

4
= 0.262(1). (36)

In Eq. (36), we have used the numerical values of the proton-
proton 1S0 effective range rpp = 2.77(1) fm and the proton-
neutron 3S1 effective range rpn = 1.75(1) fm from Table XIV
in Ref. [35].

If, on the other hand, we perform the linear fitting of L on
[300, 600] keV directly from Eqs. (2) and (33), then we get

L(ε) = L0 + L1ε = 8.42(1) + 0.55(1) ε. (37)

The uncertainties are due to the differences between the
potential models. The function L of Eq. (37) is compared to
the results from potential models in Fig. 4. The actual curve
of L deviates from a straight line because of the short-range
behavior of the wave functions. Despite this deviation, it turns
out that L is accurate by less than 2% error below 5 MeV and
is especially good below 1 MeV. This adequacy confirms the
validity of the parametrization (33).

The matrix element � computed in the Reid93 potential
is depicted in Fig. 5. The curves obtained in other potentials,
along with the result (33), are indistinguishable at this scale.
These curves are quite rarely shown in the literature [36]. At
zero energy, we find the important value for stellar nucleosyn-
thesis �2(0) = 7.034(33), which is consistent with Ref. [13].
Using Eq. (7) and the numerical value of F (Q) from Eq. (A10)

−3 −2 −1 0
1

0

1

2

0

10

20

30

40

50

−B

Bound state pole
Resonance pole
(−140 + 467 i) keV

Re(E) (MeV) Im
(E

)
(M

eV
)

FIG. 6. Three-dimensional plot of �2 in the upper complex half-
plane. The vertical scale shows the modulus and the color highlights
the phase. The Coulomb singularities and the branch cut at arg(E ) =
π are not visible at this scale.

plus 1.62% to account for radiative corrections [12–14,37],
the corresponding value of S(0) is 3.95(3) × 10−23 MeV fm2.

III. COMPLEX ANALYSIS OF THE WEAK CAPTURE

Remarkably, � reaches a maximum near 130 keV that
corresponds, through Eq. (33), to the minimum of |�+

0 | seen
in Fig. 2. The actual origin of this maximum is revealed by
the continuation of � to complex energies, as provided by
Eq. (33). The analytic continuation of �2 based on Eqs. (33)
and (37) is shown in Figs. 6 and 7. Note that the curve along
the positive real semiaxis in Fig. 6 corresponds to Fig. 5. The
deuteron bound state pole in Fig. 6 is due to (1 + ε)−1 in
Eq. (33).

Furthermore, in contrast to �, the function L is holomor-
phic in the neighborhood of E = 0, because of the properties

−15 −10 −5 0
5

0

5

10

−Ry
0

7

10

20

Re(E) (keV) Im
(E

)
(k

eV
)

FIG. 7. Same as Fig. 6 but for low energies. The accumulation
of alternating poles and zeros tends to E = 0 and is thus an essential
singularity. The nuclear Rydberg energy is Ry = 12.4911 keV.
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FIG. 8. Phase plots [18,32,38] of the analytic continuation of
�2. The complex phase is highlighted by colors. The poles are
marked by crosses, the zeros by empty circles, and the maximum at
0.13 MeV by a square. Panel (a) shows the high energies and (b) is
an enlargement into the low-energy region dominated by Coulomb
singularities. The branch cut along the negative real semiaxis stops
at E = 0.

of the modified Coulomb functions �η,0 and �η,0 in the
limit E → 0 [18,32]. Therefore, it follows from Eq. (33) that
any singularity of |�+

0 |−1 is reflected on �. In this regard,

it can be shown that |�+
0 |−1 has two poles at (−140 ±

467 i) keV that are interpreted as the proton-proton 1S0 res-
onance poles [16,18]. In Fig. 6, only one of them is vis-
ible because the plot is restricted to the upper half-plane
(Im E � 0). The other one is shown in Fig. 8(a).

The function |�+
0 |−1 also possesses a branch cut along

the negative real semiaxis due to the logarithm in the Bethe
function g0 in Eq. (23). This branch cut makes � complex at
negative energy, although it is real at positive energy. Being
on the boundary of the plots, the branch cut cannot be seen
either in Figs. 6 or 7 but only in the top views of Fig. 8.

In addition, |�+
0 |−1 is responsible for the accumulation of

poles and zeros shown in Fig. 7. These singularities originate
from the terms ψ (±iη) in the Bethe function g0. The pole-zero
pattern is repeated each E = −Ry/n2 for n ∈ {1, 2, 3, . . .}.
Such a structure can be understood as a set of virtual states
generated by the Coulomb potential between the protons.

These considerations about the analytic properties of �

have two major consequences. First, the maximum of � is
directly related to the Coulomb potential. Especially, one
sees in Fig. 6 that it results from a saddle point between
the conjugated resonance poles and the low-energy Coulomb
singularities.

Second, � is not analytic at E = 0 due to �+
0 in Eq. (33).

Therefore, its series expansion is not expected to converge

over a nonzero energy range around E = 0. The common way
of extracting the derivatives of � would be to use polynomial
extrapolation from data on a finite energy interval [11,12,15].
However, such a method is not accurate due to the non-
negligible influence of the interval itself [12,15].

IV. ZERO-ENERGY DERIVATIVES

One way to address the issue of the extrapolation to E = 0
is to expand � in power series directly from Eq. (33) taking
advantage of the flatness of L at low energy. The result (33)
provides a constraint on the derivatives of � with respect
to the energy, especially the first derivative at zero energy:
�′(0). This value plays a significant role in the proton-proton
fusion at solar energies [13]. From Eq. (33), the logarithmic
derivative of � can be easily calculated

d ln �

dE
= d ln φ1,0

dE
− d ln �0

dE
+ d ln L

dE
, (38)

where the function |�+
0 | has been replaced by �0 because they

share the same asymptotic expansion at E = 0. This is due to
the fact that the term (e2πη − 1)−2 in Eq. (24) is negligible
since all of its derivatives are zero. The first terms in the
asymptotic expansion of �0 are

�0 = aB

2
κ0 −

[
E

12 Ry
+ E2

120 Ry2 + O(E3)

]
. (39)

However, it should be noted that this expansion does not
converge at E = 0 because of the Coulomb singularities in
�0. It remains nevertheless valid for E � Ry [18,20]. In
addition, the expansion of the regular Coulomb integral is
given by

φ1,0 = χ eχ

[
1 − 3 + χ

3
ε + 90 + 48χ + 5χ2

90
ε2 − O(ε3)

]
.

(40)

Combining these results in Eq. (38), we find that the log-
arithmic derivative of � at E = 0 mostly depends on the
effective-range parameters

�′(0)

�(0)
= |α0|mp

2h̄2

(
aB

3
− r0

)
− 3 + χ

3B
+ L1

BL0
. (41)

The prime over � refers to the derivative with respect to
E . This novel result was not obtained by Bahcall and May,
although its numerical value is given in their paper [3]. From
L0 and L1 in Eq. (37), the result (41) yields

�′(0)

�(0)
= −0.4423(6) + (0.23149 − 0.01205r0)|α0|. (42)

This result and all the following ones are expressed in units of
MeV and fm.

It should be noted that, according to Eq. (34), L0 and
L1 also depend on effective-range parameters. In this regard,
the expansion (42) is incomplete. However, it is not possible
to extract the full dependence of L in the effective-range
parameters since it would be necessary to modify the potential
models accordingly.
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Besides, one notices in Eq. (42) that the uncertainty of the
effective range r0 only slightly influences the result. There-
fore, it is useful to re-express Eq. (42) in the neighborhood of
|α0| = 7.815 fm with r0 = 2.77(1) fm. We obtain the follow-
ing result:

�′(0)

�(0)
= 1.106(2) + 0.1981(1) (|α0| − 7.815), (43)

around the scattering length α0 = −7.815(9) fm. The central
value,

�′(0)

�(0)
= 1.106(3) MeV−1, (44)

is compatible with Refs. [3,14]. It turns out that the term L1/L0

in Eq. (41), which contains the short-range behavior of the
wave functions, only contributes to about 2.6%. Therefore, the
uncertainty of L1/L0 marginally affects the overall uncertainty
of �′(0)/�(0), which is primarily due to the effective-range
parameters α0 and r0.

It is worth noting that Eq. (33) now determines all the
derivatives of � at E = 0. Indeed, the higher-order derivatives
of L are negligible in the expansion of � compared to the other
terms. The reason is that the derivatives of � are dominated
by �+

0 . In particular, the second derivative of � can also be
calculated analytically from Eq. (33). We have

�′′(0)

�(0)
= φ′′

1,0

B2φ1,0
− �′′

0

�0
+ L2

B2L0
+ 2

(
�′

0

�0

)2

−2
φ′

1,0�
′
0

Bφ1,0�0
+ 2

φ′
1,0L1

B2φ1,0L0
− 2

L1�
′
0

BL0�0
, (45)

where the primes refer to derivatives with respect to the
main variable: either E for �0(E ) or ε for φ1,0(ε). All the
functions in Eq. (45) are implicitly evaluated at E = 0. It
turns out that the second derivative L2 can be neglected, as
it contributes to only 0.01%, far below the uncertainty of
the other terms. The terms of Eq. (45) containing �0 and its
derivatives are dominating the other ones, especially the term
−�′′

0/�0 which is about 29 MeV−2. Inserting the expansion
of φ1,0 and �0 at E = 0 into Eq. (45), but without replacing
the effective-range parameters α0 and r0 by their numerical
value for now, we find

�′′(0)

�(0)
= 0.4051(5) + [3.5017(3) + 0.01066(1)r0]|α0|

+(0.32737 − 0.01704r0)2|α0|2. (46)

The last term in Eq. (46) comes from the term (�′
0/�0)2 in

Eq. (45). The uncertainties in this term are negligible, as it
solely depends on accurately known physical quantities (h̄, α,
and mp).

As previously, if we focus on the neighborhood of |α0| =
7.815 fm assuming r0 = 2.77(1) fm, we get from Eq. (46) the
expression

�′′(0)

�(0)
= 32.795(6) + 4.758(2) (|α0| − 7.815). (47)

Note that the remainder term in Eq. (47) is 0.0785(1) (|α0| −
7.815)2 in unit MeV−2. The central value

�′′(0)

�(0)
= 32.80(5) MeV−2, (48)

is in accordance with Ref. [14]. The uncertainty on
�′′(0)/�(0) is mainly due to α0 = −7.815(9) fm. This re-
sult (48) is considerably more accurate than what we get
from direct fitting on �. In fact, the direct computation of
the second derivative of � depends too much on the energy
interval chosen for the fitting, hence degrading its accuracy.
Similar effective-range constraints can be derived for higher-
order derivatives of � from Eq. (33). The expected accuracy
of this approach does not exceed about 0.2% as it is limited
by the uncertainty on α0.

Finally, we deduce the zero-energy derivatives of the as-
trophysical S factor from Eqs. (43) and (47). Knowing from
Eq. (7) that S(E ) is proportional to F (E + Q)|�(E )|2, the
logarithmic derivatives read [24]

S′(0)

S(0)
= F ′(Q)

F (Q)
+ 2

�′(0)

�(0)
(49)

and

S′′(0)

S(0)
= F ′′(Q)

F (Q)
+ 4

F ′(Q)

F (Q)

�′(0)

�(0)
+ 2

[
�′(0)

�(0)

]2

+ 2
�′′(0)

�(0)
.

(50)

Using the values of the Fermi phase-space integral from
Eq. (A10), we get the results

S′(0)

S(0)
= 11.253(3) + 0.3962(2) (|α0| − 7.815),

S′′(0)

S(0)
= 169.51(8) + 17.56(1) (|α0| − 7.815). (51)

The central values 11.25(1) MeV−1 and 169.5(3) MeV−2,
obtained by setting |α0| = 7.815(9) fm, are compatible with
Refs. [3,12–14,24,39]. These results are obtained with an
unprecedented high accuracy. In the literature, most of the
uncertainties are due to the polynomial extrapolation of S(E )
which is highly sensitive to the chosen energy interval [12,15].
Our method is based instead on the fitting of L, as suggested
by the analytic structure of � at low energy. Consequently, the
results (51) are not affected by the uncertainty of 1% reported
for S(0) [13].

V. CONCLUSION

To conclude, we have derived an accurate parametrization
of the energy dependence of the weak capture matrix element
� valid up to a few MeVs that is based on recent effective-
range functions [18,19]. This result provides the analytic
continuation of � to complex energies and highlights the
relationship between its maximum near 0.13 MeV, the broad
proton-proton resonance, and the Coulomb subthreshold sin-
gularities. In addition, it leads to a remarkably accurate de-
termination of the logarithmic derivatives of the astrophysical
S factor at E = 0 in terms of effective-range parameters. Our
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method bypasses the issue [15] of the energy-range depen-
dence in the polynomial fitting of S by means of the function
L, that is analytic at low energy, in contrast to S. In this
regard, the gain in accuracy on S(0), S′(0), and S′′(0) using
our method is expected to be similar if corrections, such as
the two-body current terms [10–12], are taken into account.
Finally, the new parametrization (33) is appropriate for use in
stellar and Big-Bang astrophysics as it covers a large energy
range up to the binding energy of the deuteron.
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APPENDIX A: FERMI PHASE-SPACE INTEGRAL

When calculating the proton-proton weak capture cross
section, we are led to integrate the Dirac δ of energy-
momentum conservation over the momenta of the three out-
going particles: the deuteron, the positron, and the electronic
neutrino. The resulting integral is known as the Fermi phase-
space integral and reads in first approximation [14,40,41]

F (E + Q) =
∫ w̄

1
P(w) w

√
w2 − 1 (w̄ − w)2 dw, (A1)

as long as the recoil of the deuteron is neglected. The
released energy Q = 2mpc2 − md c2 − mec2 is found to be
0.420236(17) MeV with the masses from Ref. [17]. The
variable w in Eq. (A1) is the positron energy divided by its
mass. With this notation,

√
w2 − 1 is to be understood as

the positron momentum divided by its mass. From energy
conservation, the upper bound denoted as w̄ is equal to
(E + Q + mec2)/(mec2). It means that the Fermi integral F
also depends on the proton-proton energy E . The purpose of
this Appendix is to calculate the low-energy dependence of
F on E .

The Coulomb factor P in Eq. (A1), accounting for the
distortion of the positron wave function in the electric field
of the deuteron, is given by [14,40,41]

P(w) = 2(1 + ν)(2ρ
√

w2 − 1)−2(1−ν) |(ν + iηe)|2
eπηe(2ν + 1)2

,

(A2)
where ν is equal to

√
1 − α2 with the fine-structure constant

α � 1/137.036 and ρ = Rmec2/(h̄c) is the dimensionless
radius of the deuteron. In the following calculations, we
will assume R = 2.14 fm [14]. In Eq. (A2), the Sommerfeld
parameter of the emitted positron ηe = αw/

√
w2 − 1 must be

positive, as it is repelled by the nucleus. Conversely, in a β−

decay, the Sommerfeld parameter ηe should take a minus sign.
It should be noted that in the nonrelativistic limit (ν → 1), the
Coulomb distortion factor P(w) becomes

P(w) = ∣∣Cηe,0

∣∣2 = 2πηe

e2πηe − 1
. (A3)

The Fermi integral (A1) cannot be analytically calculated
in a simple form. However, very efficient approximations

exist. One way is to expand the Coulomb factor (A2) in series
of the fine-structure constant α. We find

P(w) = 1 − απw√
w2 − 1

+ α2

[
π2

3

(
w√

w2 − 1

)2

+ 11

4
− γ − ln(2ρ

√
w2 − 1)

]
+ O(α3), (A4)

where γ = 0.5772 . . . is the Euler-Mascheroni constant. In
this work, we limit ourselves to the order α2, as it is enough
to obtain at least five decimal places in the final results. The
same approach is followed in Ref. [41] up to α3. Now, we
just have to calculate one Fermi integral for each term in the
expansion (A4). The advantage is that the integrals of the form

fp(w̄) =
∫ w̄

1

(
w√

w2 − 1

)p

w
√

w2 − 1(w̄ − w)2 dw, (A5)

which will come into play, can be expressed in terms of
elementary functions for p ∈ Z. Such expressions can be
obtained by expanding the last factor (w̄ − w)2 in Eq. (A5).
The results read for p = 0

f0(w̄) =
(

w̄4

30
− 3w̄2

20
− 2

15

)√
w̄2 − 1

+ w̄

4
ln(w̄ +

√
w̄2 − 1), (A6)

for p = 1

f1(w̄) = w̄5

30
− w̄2

3
+ w̄

2
− 1

5
, (A7)

and for p = 2

f2(w̄) =
(

w̄4

30
+ 11w̄2

60
+ 8

15

)√
w̄2 − 1

−3w̄

4
ln(w̄ +

√
w̄2 − 1). (A8)

We notice that, according to Eqs. (A6)–(A8), the Fermi inte-
gral is expected to behave as O(E5) at relatively large energy
(E � mec2). Therefore, F (E + Q) dominates the O(E−2)
behavior of �2 in Eq. (7).

The factor
√

w2 − 1 in the logarithmic term of expan-
sion (A4) can be neglected because it remains of the order of
1 except at large proton-proton energies (E � mec2). There-
fore, using Eq. (A5), the Fermi integral (A1) is approximated
by

F (E + Q) � f0(w̄) − απ f1(w̄)

+α2

{
π2

3
f2(w̄) +

[
11

4
− γ − ln(2ρ)

]
f0(w̄)

}
.

(A9)

This expression allows us to find at least five decimal places
without requiring numerical integration. Another advantage is
the computation of the derivatives of the Fermi integrals with
respect to E . In this work, we need the first two derivatives of
F (E + Q) at zero proton energy (E = 0). This can be easily
achieved with the derivatives of fp(w̄) with respect to w̄ that
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TABLE II. Numerical values of the functions fp(w̄) and their
derivatives with respect to w̄ at E = 0. The upper index n is the order
of the derivatives.

n = 0 n = 1 n = 2

f (n)
0 0.14827(2) 0.68187(8) 2.3574(2)

f (n)
1 0.27417(4) 1.1233(1) 3.3682(2)

f (n)
2 0.64955(7) 2.2505(2) 5.4045(3)

are obtained directly from Eqs. (A6)–(A8). The derivatives of
F (E + Q) with respect to E have thus essentially the same
expressions as Eq. (A9) by replacing fp(w̄) with the deriva-
tives with respect to w̄, denoted as f (n)

p (w̄). Note the change
of variable ∂n

E F = (mec2)−n∂n
w̄F in the manipulation. The

numerical values of the functions fp(w̄) and their derivatives
at E = 0, that is, for w̄ = (Q + mec2)/(mec2) = 1.82238(3),
are given in Table II. Inserting the numerical values of Table II
in the approximation (A9) for the different derivative orders
(n = 0, 1, 2) leads to the results

F (Q) = 0.14215(2),

F ′(Q)/F (Q) = 9.0413(3) MeV−1,

F ′′(Q)/F (Q) = 61.479(5) MeV−2.

(A10)

These results have also been checked by numerical integration
in Wolfram Mathematica [42]. The uncertainties in Table II
and Eq. (A10) come from the released energy Q. Finally, the
low-energy behavior of the Fermi integral can be written as

F (E + Q)

F (Q)
= 1 + F ′(Q)

F (Q)
E + F ′′(Q)

F (Q)

E2

2
+ O(E3), (A11)

with the numerical values of Eq. (A10).
It should be noted that the third derivative of the Fermi

function (A1) with respect to E is devoid of integral and can
be expressed exactly in terms of P(w̄). We have

d3F

dE3
(E + Q) = 2

(mec2)3
P(w̄) w̄

√
w̄2 − 1, (A12)

from which the numerical value F (3)(Q) = 40.498(2) MeV−3

at E = 0 is easily found. Our approach avoids using numerical
derivatives, as they are ill conditioned in finite precision arith-
metic, especially for high-order derivatives. This also ensures
the accuracy of the results (A10).

APPENDIX B: LAPLACE TRANSFORMS OF THE
MODIFIED COULOMB FUNCTIONS

In this Appendix, we present the derivation of the Laplace
transforms of the modified Coulomb wave functions �η,�(ρ)
and �η,�(ρ) defined in Ref. [32]. More explicitly, we are
looking for analytical expressions of the integrals

φβ,�(ε) =
∫ ∞

0
e−βx �η,�(x

√
ε) dx (B1)

and

ψβ,�(ε) =
∫ ∞

0
e−βx �η,�(x

√
ε) dx, (B2)

where x = br is the dimensionless radial coordinate and
√

ε =
k/b is the dimensionless wave number. Although we only
need the result for � = 0, we have made our derivation more
general. The reason is that we use the connection formula be-
tween �η,�(ρ) and �η,�(ρ) developed in Ref. [32] to calculate
ψβ,�(ε) on the basis of φβ,�(ε) for any integer �.

1. Regular Coulomb integral

As shown in Ref. [32], the Coulomb function �η,� in
Eq. (B1) is given by

�η,�(κx) = (χx)�+1 eiκxM

(
� + 1 + iη

2� + 2
; −2iκx

)
, (B3)

where κ = √
ε and χ = 2/(aBb) is the Bahcall and May con-

stant [3]. The regularized confluent hypergeometric function
in Eq. (B3) is defined by the series [26]

M

(
a
b
; z

)
= 1

(b)
1F1

(
a
b
; z

)
=

∞∑
n=0

(a)n

(b + n)

zn

n!
, (B4)

where (a)n = (a + n)/(a) is the Pochhammer symbol. The
division by (b) in Eq. (B4) eliminates the singularities of

1F1(
a
b; z) at b ∈ Z�0 [26]. Using the definition (B3), the regular

Coulomb integral (B1) expands as follows:

φβ,� = χ�+1
∞∑

n=0

(� + 1 + iη)n(−2iκ )n

(2� + 2 + n) n!

×
∫ ∞

0
e−(β−iκ )xxn+�+1 dx. (B5)

All the remaining integrals in Eq. (B5) are given by∫ ∞

0
e−(β−iκ )xxn+�+1 dx = (n + � + 2)

(β − iκ )n+�+2
. (B6)

One notices that the combination of Eqs. (B5) and (B6)
leads to the Gauss hypergeometric function 2F1 or, more
specifically, to its regularized version [26]

F

(
a, b

c
; z

)
= 1

(c)
2F1

(
a, b

c
; z

)
=

∞∑
n=0

(a)n(b)n

(c + n)

zn

n!
. (B7)

Using the definition (B7) in Eq. (B5), we obtain the following
result:

φβ,�(ε) = χ�+1(� + 2)

(β − iκ )�+2
F

(
� + 2, � + 1 + iη

2� + 2 ;
−2iκ

β − iκ

)
.

(B8)
Remarkably, this result is considerably simplified in the
special case � = 0. Indeed, the hypergeometric function in
Eq. (B8) is then of the form 2F1(

a, b
a ; z), which reduces to

(1 − z)−b [26] because of the simplification in the series (B7).
From Eq. (B8), one finds

φβ,0(ε) = χ

β2 + κ2
e2η arctan(κ/β ). (B9)

This useful result is at the basis of the parametrization of �(E )
proposed in this paper.

035805-10



COMPLEX-ENERGY ANALYSIS OF PROTON-PROTON … PHYSICAL REVIEW C 100, 035805 (2019)

2. Irregular Coulomb integral

Now we calculate the Laplace transform (B2) of �η,�. This
calculation is significantly less straightforward than for �η,�,
because it does not reduce to elementary functions for � = 0.
The Coulomb function �η,� is defined in Ref. [32] as

�η,�(ρ)=wη�(−� ± iη)(2ηρ)�+1 e±iρU

(
� + 1 ± iη

2� + 2
; ∓2iρ

)

− wη�h±
η��η,�(ρ),

(B10)

where the choice of the upper or lower sign is immaterial.
In Eq. (B10), U(a

b; z) is the Tricomi confluent hypergeometric

function, and the Bethe functions h±
η� are defined as

h±
η� = ψ (� + 1 ± iη) + ψ (−� ± iη)

2
− ln(±iη). (B11)

The subtraction by wη�h±
η��η,� in Eq. (B10) is intended to

compensate for the singularities of U(a
b; z) in the complex

plane of the energy. This operation makes �η,�(kr) regular
for k ∈ C [32].

Performing the direct integration of Eq. (B10) by means of
the integral representation of U(a

b; z) [26] leads to

ψβ,� = (� + 1 ± iη)(� + 2)(1 − �)

∓2iκ (±iη)�
F

(
� + 2, 1 − �

2 ± iη
;
β ± iκ

±2iκ

)

− wη�h±
η�φβ,�. (B12)

Note that this function is not finite for partial waves higher
than S (� > 0) due to the vertical asymptote of �η,�(kr)
at r = 0. When � = 0, the hypergeometric function in the
above equation can be efficiently computed from its continued
fraction expansion.

The expression (B12) is quite difficult to analyze at low en-
ergy because the hypergeometric function shows an essential
singularity at ε = 0. Although this singularity is compensated
by wη�h±

η�φβ,�, it prevents the hypergeometric function from
having a convergent low-energy expansion. This is why we
propose to determine a suitable approximation to Eq. (B12)
from another approach.

It turns out that the function �η,� is related to the regular
Coulomb function �η,�. We have shown in Ref. [32] that �η,�

obeys the following connection formula:

�η,� = wη�

2
�̇η,� + 1

2
�̇η,−�−1, (B13)

where the dots refer to derivatives with respect to �. This
useful property is preserved by the Laplace transforms (B1)
and (B2). Therefore, the function ψβ,�(ε) can be calculated
from derivatives of φβ,�(ε) as follows [32]:

ψβ,�

wη�φβ,�

= 1

2

(
φ̇β,�

φβ,�

+ φ̇β,−�−1

φβ,−�−1

)
. (B14)

However, in order to calculate the derivatives in Eq. (B14), we
need to use the general expression (B8) valid of φβ,� for all
� ∈ C. In this regard, we have found convenient to ap-
proximate the hypergeometric function by its low-energy

confluent limit

F

(
� + 2, � + 1 + iη

2� + 2 ;
−2iκ

β − iκ

)
= M

(
� + 2

2� + 2;
χ

β

)
+ O(κ2).

(B15)

The approximation (B15) could be improved at κ = 0 by
the confluence expansion (20a) in Ref. [43]. However, this
expansion converges so slowly for κ > 1 that we will not
use it here. The advantage of the approximation (B15) is
the consistency with Bahcall’s and May’s results in the zero-
energy limit. It is useful in our calculation to rewrite the
confluent hypergeometric function in Eq. (B15) in terms of
the regular Coulomb function

M

(
� + 2

2� + 2;
χ

β

)
= (β/χ )�+1 eχ/2β�−i,�(iχ/2β ). (B16)

The approximation of φβ,� for � � 1 is thus given by

φβ,� � β�+1(� + 2)√
β2 + κ2

�+2 e2η arctan(κ/β ) e−χ/2β�−i,�(iχ/2β ).

(B17)

From Eqs. (B8) to (B17), we have taken the modulus of the
factor (β − iκ )−�−2 because φβ,� should still remain a positive
real function after the approximation (B15). The logarithmic
derivative of φβ,� with respect to � can be easily calculated
from Eq. (B17):

φ̇β,�

φβ,�

� ψ (� + 2) − ln
√

1 + κ2/β2 + �̇−i,�(iχ/2β )

�−i,�(iχ/2β )
.

(B18)

We neglect the logarithmic term in Eq. (B18) because it is ir-
relevant in the O(κ2) approximation of Eq. (B15). Combining
two expressions (B18) evaluated at � and −� − 1 in Eq. (B14),
we get

ψβ,�

wη�φβ,�

� ψ (� + 2) + ψ (1 − �)

2
+ �−i,�(iχ/2β )

w−i,��−i,�(iχ/2β )
.

(B19)

This relation can be simplified further by means of the def-
inition (B10) of �η,� with the plus sign. Finally, after the
elimination of the digamma functions with Eq. (B11), we
obtain

ψβ,�

wη�φβ,�

� (1 − �)
U

(
� + 2

2� + 2; χ/β
)

M
(

� + 2
2� + 2; χ/β

) . (B20)

In the special case of interest � = 0, this result can be written
as

ψβ,0

φβ,0
� (−1, χ/β ), (B21)

where (a, z) is the upper incomplete gamma function defined
by

(a, z) =
∫ ∞

z
t a−1 e−t dt . (B22)

When β = 1 and χ = 0.149816, the ratio (B21) evalu-
ates to about 4.28065. The incomplete gamma function in
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Eq. (B21) can also be related to the exponential integral
E1(z) = (0, z) as done in Bahcall’s and May’s work [3]:

(−1, z) = e−z

z
− E1(z). (B23)

Bahcall, however, limited his calculation to zero energy, in
contrast to the property (B21) valid up to a few MeVs.

Furthermore, the novel result (B21) means that ψβ,0 is
nearly proportional to φβ,0 on a large energy range. The
accuracy of this property is graphically tested in Fig. 9. As
we can see, the relative error of the estimate at ε = 1, that
corresponds to E = B, is only 2.9%. The overall accuracy of
the approximation (B21) over a few MeVs is primarily due to
the smallness of χ with respect to 1 (χ = 0.149816). In fact,
it can be shown that both ψβ,0 and (−1, χ/β )φβ,0 have the
same neutral-charge limit:

lim
χ→0

ψβ,0 = lim
χ→0

(−1, χ/β )φβ,0 = β

β2 + ε
. (B24)

Therefore, the property (B21) tends to be exact for χ → 0
but also for β → ∞. These observations have important con-
sequences in the parametrization of the weak capture matrix
element �.
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FIG. 9. Comparison between the Coulomb integrals φβ,�(ε) and
ψβ,�(ε) for β = 1, χ = 2/(aBb) = 0.149816, and � = 0. Panel
(a) shows ψ1,0(ε) and (−1, χ )φ1,0(ε), and panel (b) depicts the
relative error between ψ1,0 computed from Eq. (B12) and the ap-
proximation (B21).
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