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Damping of density oscillations in neutrino-transparent nuclear matter
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We calculate the bulk-viscous dissipation time for adiabatic density oscillations in nuclear matter at densities
of one to seven times the nuclear saturation density and at temperatures ranging from 1 MeV, where corrections
to previous low-temperature calculations become important, up to 10 MeV, where the assumption of neutrino
transparency is no longer valid. Under these conditions, which are expected to occur in neutron star mergers,
damping of density oscillations arises from β equilibration via weak interactions. We find that for 1-kHz
oscillations the shortest dissipation times are in the 5- to 20-ms range, depending on the equation of state, which
means that bulk viscous damping could affect the dynamics of a neutron star merger. For higher frequencies, the
dissipation time can be even shorter.
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I. INTRODUCTION

The observation of gravitational waves from neutron star
mergers [1] has drawn attention to the importance of under-
standing the properties of nuclear matter at the densities and
temperatures attained in mergers. Recent studies [2,3] of the
gravitational wave signals estimate that the two neutron stars
involved in GW170817 reached central densities of at least
twice nuclear saturation density (nsat ≡ 0.16 fm−3). Numeri-
cal simulations [4–12] find that during the first 10 to 20 ms
after the neutron stars make contact the material at densities
of up to several times nsat can reach temperatures of many
tens of MeV, perhaps up to 80 [5,6] or even 100 MeV [4],
and comoving fluid elements are subjected to strong density
oscillations at a typical frequency of 1 kHz [13]. This raises
the possibility of bulk viscosity in nuclear matter playing an
important role if it is strong enough to damp those oscillations
on a short enough timescale to affect the dynamics of the
merger.1

An initial estimate for npeμ matter [13] suggested that the
bulk viscous dissipation time could be extremely short: in the
range of a few milliseconds. In this work, we focus on npe
matter in the neutrino-transparent regime (T � 5 to 10 MeV
[14–18]), where neutrinos escape from the merger region, and
make a detailed study. We calculate the dependence of the
bulk viscous dissipation time on density and temperature, and
we explore its sensitivity to the equation of state. We find that
the lowest dissipation times occur at temperatures of about
3 MeV, which lies in the neutrino-transparent regime, since
neutrinos with energies of 3 MeV have mean free paths on the
order of a few kilometers [14,17,18]. For very low densities
(nB ≈ 0.5nsat), the dissipation time of 1 kHz oscillations is as
low as 5 ms. At densities above nsat, the dissipation times can

1We use the term “merger” to refer to the late stages of the inspiral
as well as the process that begins when the stars touch.

be as low as 20 ms. These times are similar for both equations
of state that we study.

Bulk viscosity for oscillations in the kHz range arises from
β equilibration via weak interactions. Neutrino transparency
means there is no Fermi sea of neutrinos, so in the relevant
Urca processes neutrinos only occur in final states [19,20].
This deviation from detailed balance leads to corrections
to the standard Fermi surface (FS) approximation when the
temperature rises above about 1 MeV [14]. Those corrections
are included in our calculations.

We work in natural units, where h̄ = c = kB = 1. All data
presented in our figures can be found in the Supplemental
Material [21].

II. NUCLEAR MATTER AND THE URCA PROCESS

β equilibration establishes the stable proton fraction via
Urca processes. In this work, we will focus on processes
involving electrons, leaving muon contributions for future
investigation. If there is a deficit of protons, protons are
created via the neutron-decay processes

n → p + e− + ν̄e direct Urca,
n + N → N + p + e− + ν̄e modified Urca. (1)

Here, N denotes a spectator neutron or proton. If there is
a deficit of neutrons, neutrons are created via the electron-
capture processes

e− + p → n + νe direct Urca,
N + e− + p → N + n + νe modified Urca. (2)

The direct Urca process is in general faster than the modi-
fied Urca process, since it involves two fewer particles.

The rates of the direct Urca neutron-decay and electron-
capture processes are given by the 12-dimensional phase
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space integrals [19]

�dU,nd =
∫

d3 pn

(2π )3

d3 pp

(2π )3

d3 pe

(2π )3

d3 pν

(2π )3

∑
spins |MdU|2

24E∗
n E∗

p EeEν

×(2π )4δ4(pn − pp − pe − pν ) fn(1 − fp)(1 − fe),

(3)

�dU,ec =
∫

d3 pn

(2π )3

d3 pp

(2π )3

d3 pe

(2π )3

d3 pν

(2π )3

∑
spins |MdU|2

24E∗
n E∗

p EeEν

×(2π )4δ4(pn − pp − pe + pν )(1 − fn) fp fe, (4)

where fi = 1/{1 + exp[(Ei − μi )/T ]} are the Fermi-Dirac
distributions for species i = n, p, or e with chemical potential
μi and the matrix element is [19]

∑
spins

|MdU|2 = 32G2E∗
n E∗

p EeEν

×
[

1 + 3g2
A + (

1 − g2
A

)pe · pν

EeEν

]
, (5)

where G2 = G2
F cos2 θc = 1.29 × 10−22 MeV−4 and gA =

1.26. We will describe the nucleon energy dispersion relations
and discuss the significance of using E∗ instead of E for the
nucleons in Sec. V A. We note here that the matrix elements
in Ref. [14] denoted 〈|M|2〉 are in fact

∑
spins |M|2/(2E1 ×

2E2 × · · · × 2En) for a process with n particles in the initial
and final states combined.

The rate of modified Urca neutron decay and electron cap-
ture with a nucleon spectator is given by the 18-dimensional
phase space integrals in Ref. [22].

III. BULK VISCOSITY IN THE FERMI SURFACE
APPROXIMATION

A. Urca rates

At low temperatures T � 1 MeV [14], where the Fermi
surfaces are sharply defined, we can make the approximation
that only particles near the Fermi surface can participate in
Urca processes. We call this the “Fermi surface (FS) approx-
imation.” At these temperatures, the β-equilibrium condition
is [19,20]

μn = μp + μe (Fermi surface approx). (6)

This condition enforces the equality of Urca rates for proton
production and proton capture, yielding a proton fraction that
is constant in time [23]. In the Fermi surface approximation,
the phase space integrals (Sec. II) can be simplified by fix-
ing the momentum magnitudes to the corresponding Fermi
momenta.

In the Fermi surface approximation, the direct Urca matrix
element [Eq. (5)] simplifies to

∑
spins

|MdU|2 = 32G2
(
1 + 3g2

A

)
E∗

n E∗
p EeEν (7)

under the assumption of nonrelativistic nucleons [19]. In the
Fermi surface approximation, in (low-temperature) β equilib-
rium [Eq. (6)] the rate of direct Urca neutron decay and direct
Urca electron capture are equal and are given by [14,19,24]

�dU,nd = �dU,ec = AdU G2
(
1 + 3g2

A

)
mnmp pFeϑdU T 5

ϑdU ≡
{

0 if pFn > pF p + pFe

1 if pFn < pF p + pFe,

AdU ≡ 3[π2ζ (3) + 15ζ (5)]/(16π5) ≈ 0.0170. (8)

We see that in this approximation, the direct Urca process has
a density threshold, above which the process is kinematically
allowed.

In the Fermi surface approximation, the neutron-spectator
modified Urca rates (both neutron decay and electron capture,
which are equal in β equilibrium [Eq. (6)]) are given by

�mU,n = AmU G2 f 4
πNN g2

A

m3
nmp

m4
π

p4
Fn pF p(

p2
Fn + m2

π

)2 ϑn T 7 ,

ϑn ≡
⎧⎨
⎩

1 if pFn > pF p + pFe

1 − 3

8

(pF p + pFe − pFn)2

pF p pFe
if pFn < pF p + pFe,

(9)

and the proton-spectator modified Urca rates are given by
[14,19]

�mU,p = AmU

7
G2 f 4

πNN g2
A

mnm3
p

m4
π

× pFn(pFn−pF p)4

[
(pFn−pF p)2 + m2

π

]2 ϑp T 7, (10)

ϑp ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if pFn > 3pF p + pFe

(3pF p + pFe − pFn)2

pFn pFe
if

pFn > 3pF p − pFe

pFn < 3pF p + pFe

4
3pF p − pFn

pFn
if

3pF p − pFe > pFn

pFn > pF p + pFe

(
2 + 3

2pF p − pFn

pFe
− 3

(pF p − pFe)2

pFn pFe

)
if pFn < pF p + pFe.
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B. Bulk viscosity

Consider a fluid element of nuclear matter subjected to a
small-amplitude, periodic baryon density oscillation

nB(t ) = nB + 
n sin ωt , (11)

where 
n � nB. Since the equilibrium proton fraction varies
with density, changing the density will temporarily push the
nuclear matter out of β equilibrium by an amount [19,25,26]

μ
 ≡ μn − μp − μe . (12)

We will consider only “subthermal” density oscillations where
μ
 � T . In response to the density change, the nuclear matter
will try to reestablish β equilibrium via the Urca process
which has a characteristic rate γ (nB, T ) [19]. The bulk viscos-
ity of neutrino-transparent nuclear matter is given by [27–29]

ζ = C2

B

γ

ω2 + γ 2
, (13)

where B and C are susceptibilities of the nuclear matter which
depend on the equation of state but not on the weak-interaction
equilibration rate,

B = − 1

nB

∂μ


∂xp

∣∣∣∣
nB

,

C = nB
∂μ


∂nB

∣∣∣∣
xp

. (14)

In this paper, we assume that there is negligible heat flow
between adjacent fluid elements during the merger. This is
valid as long as the thermal equilibration time in the absence
of neutrinos is much longer than about 10 ms. From Eq. (1) of
Ref. [13], this will be true as long as density oscillations (and
the resultant thermal gradients) have wavelengths longer than
about a meter. This criterion is obeyed in current simulations,
whose spatial resolution is tens of meters at best. Since heat
does not flow, we use adiabatic susceptibilities, evaluating the
derivatives Eq. (14) at constant entropy per baryon S/NB, or
equivalently, at constant entropy density per baryon density
s/nB. See Appendix for a comparison of adiabatic and isother-
mal thermodynamic quantities.

The equilibration rate γ = Bλ, where

λ = ∂ (�n→p − �p→n)

∂μ


∣∣∣∣
μ
=0

. (15)

In the Fermi surface approximation, we can analytically com-
pute λ from Eqs. (8), (9), and (10) [19,29–32],

λ = λdU + λmU,n + λmU,p, (16)

where

λdU = 17

240π
G2

(
1 + 3g2

A

)
mnmp pFeT 4 , (17)

λmU,n = 367

1152π3
G2g2

A f 4
πNN

m3
nmp

m4
π

p4
Fn pF p(

p2
Fn + m2

π

)2 ϑnT 6 , (18)

λmU,p = 367

8064π3
G2g2

A f 4
πNN

mnm3
p

m4
π

pFn(pFn − pF p)4

(
(pFn − pF p)2 + m2

π

)2 ϑpT 6.

(19)

From Eq. (13), it follows that, for an oscillation of fixed
frequency ω, the bulk viscosity has a resonant maximum when
the equilibration rate (which varies as a function of density
and temperature) coincides with the oscillation frequency, i.e.,
when γ (nB, T ) = ω. A major goal of this paper will be to map
the regions in density and temperature where this maximum is
achieved.

IV. INTERMEDIATE TEMPERATURES

A. Urca process at intermediate temperatures

Below the direct Urca threshold, neutrons, protons, and
electrons on their Fermi surfaces cannot participate in the
direct Urca process while conserving energy and momentum.
Direct Urca still occurs, but it involves particles away from
their Fermi surfaces, and so the rate is Boltzmann suppressed.
As temperatures rise above 1 MeV, up to the neutrino trap-
ping temperature, the Boltzmann suppression lessens, and the
direct Urca rate becomes comparable to and then, eventually,
greater than the modified Urca rate, thus broadening the direct
Urca threshold. In contrast, the presence of a spectator nu-
cleon means that neutrons, protons, and electrons close to their
Fermi surfaces can participate in a modified Urca process,
and so the Fermi surface approximation is still appropriate for
modified Urca, even at the moderately high temperatures that
we consider [14].

The β equilibrium condition becomes

μn = μp + μe + μδ , (20)

where the additional chemical potential μδ arises from the ab-
sence of detailed balance: Neutron decay and electron capture
processes are not exact inverses of each other. μδ is a function
of temperature and baryon density, and its value is determined
by the requirement that the rates for neutron decay and elec-
tron capture rates must balance [14]. These rates include direct
Urca contributions, calculated by integration of the full phase
space, and modified Urca contributions for which we can use
the Fermi surface approximation as described in the Appendix
of Ref. [14].

To illustrate the breakdown of the Fermi surface approxi-
mation at temperatures relevant for neutron star mergers, we
show in Fig. 1 the comparison between rates calculated in
the Fermi surface approximation [using the low-temperature
β equilibrium condition, Eq. (6)] and the full phase space in-
tegration [with the general β equilibrium condition, Eq. (20)].
We show the neutron decay rate, which is equal to the electron
capture rate in each case, calculated for neutrino-transparent
nuclear matter described by the IUF equation of state, de-
scribed below. We see that at T = 4 MeV the Fermi surface
approximation makes the direct Urca threshold seem unphys-
ically sharp, underestimating the below-threshold rates by an
order of magnitude and overestimating the above-threshold
rates by a factor of 3 to 5.

B. Bulk viscosity at intermediate temperatures

To calculate bulk viscosity at temperatures where the Fermi
surface approximation is not valid, we use the appropriate
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FIG. 1. Total Urca rates (direct plus modified) in β equilibrium
for the IUF EoS at T = 4 MeV. The dashed (black) curve is the
Fermi surface approximation to the Urca rates, using the low-
temperature β equilibrium criterion, Eq. (6). The solid (blue) curve
is the total Urca rate with the full phase space integral, and using the
general β equilibrium condition Eq. (20).

characterization of the deviation from equilibrium,

μ
 = μn − μp − μe − μδ . (21)

When μ
 = 0, the system is in true β equilibrium (20). In
this regime, the equilibration rate λ [Eq. (16)] no longer has a
simple analytic form, as the direct Urca rates (3) and (4) can
only be simplified to three-dimensional numerical integrals
[14]. We obtain λ by calculating the difference �n→p − �p→n

at proton fractions around the β equilibrium value where the
rates are equal. The slope of the difference as a function of μ


at μ
 = 0 is λ.

V. RESULTS

A. Models of nuclear matter

To gauge the sensitivity of our results to the equation
of state of nuclear matter, we will use two representative
equations of state, one stiffer (DD2 [33,34]) and one softer
(IUF [33,35,36]). Both are tabulated at the CompOSE website
[37]. Both are relativistic mean-field theories, where nucleons
interact strongly by exchanging σ , ω, and ρ mesons. The
couplings between the mesons and nuclei are chosen to re-
produce nuclear observables like the nuclear binding energy,
saturation density, symmetry energy, and incompressibility,
among others [38–40]. Aside from the standard nucleon-
meson linear couplings, the IUF model has self-interactions
in the σ and ω fields, plus interactions among the mesons (see
Eq. (7) in Ref. [39]). DD2 has the standard linear nucleon-
meson couplings, but instead of nonlinear self-interactions or

meson-meson interactions, it promotes the nucleon-meson
couplings to density-dependent functions [39]. DD2 has no
direct Urca threshold (i.e., direct Urca is kinematically forbid-
den at all densities in the Fermi surface approximation) (see
Fig. 2 in Ref. [13]), while IUF has a direct Urca threshold near
4nsat. The maximum mass neutron star for DD2 is 2.42 M	
and for IUF it is 1.96 M	.

In our calculations, we assume the neutrinos and electrons
are ultrarelativistic free particles and nucleonic excitations
have the dispersion relation [15,41]

Ei = Ui + mi + p2
i

2mi
for i = (p, n), (22)

where Ui, the nuclear mean field, is chosen as a function
of density and temperature so that the Fermi energy EF,i ≡
Ei(pF,i ) matches the chemical potential μi for the given
EoS. For the mass mi, we use the rest mass in vacuum.
The microscopic origin of the nuclear mean field can be
understood through the framework of relativistic mean field
theories, where the mean field U is a function of the vacuum
expectation values of the ω and ρ mesons which are the strong
force carriers between nucleons [42].

As alluded to in Sec. II, the neutron and proton energies
can be written as Ei = Ui + E∗

i , where E∗
i = mi + p2/(2mi ).

In the rate calculations (3) and (4), E∗ should be used for
the energies in the matrix element and in the energy factors
in the denominator, while E should be used in the energy δ

function and the Fermi Dirac factors [15,42,43]. However, in
the approximation we used for the direct Urca matrix element
(7), the E∗ factors cancel out.

B. Bulk viscosity

In Fig. 2, we show the bulk viscosity of nuclear matter
with the DD2 and IUF EoS, when subjected to a 1-kHz
density oscillation, which is a typical frequency for neutron
star mergers [13]. The dashed lines are the bulk viscosity
with Urca rates calculated in the Fermi surface approximation
while the solid lines use the exact Urca rates.

In Fig. 2(a), corresponding to the DD2 EoS, the exact bulk
viscosity peaks at a temperature that is 1–2 MeV lower than
would be predicted by the Fermi surface approximation. This
is because DD2 never allows direct Urca (the threshold is at
infinite density), and we know (see Fig. 1) that the Fermi sur-
face approximation underestimates the below-threshold Urca
rate. This means that in the Fermi surface approximation the
temperature must be pushed up to a higher value in order for
the equilibration rate to match the oscillation frequency, which
is where the resonant peak occurs (Sec. III B).

In Fig. 2(b), corresponding to the IUF EoS, which has
a direct Urca threshold near 4n0. Here we see two distinct
behaviors. For densities n0 and 3n0, which are below thresh-
old, the behavior is similar to that seen for DD2: The Fermi
surface approximation only includes modified Urca processes,
but the exact calculation includes below-threshold direct Urca
processes, which increase the total rate, moving the resonant
peak to lower temperatures. Above the threshold density, the
Fermi surface approximation for direct Urca overestimates
the total Urca rate, since the exact phase space integration
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(a) (b)

FIG. 2. Bulk viscosity of nuclear matter as a function of temperature, for densities of n0, 3n0, 5n0 when undergoing a density oscillation
at 1 kHz. The equation of state is DD2 (a) or IUF (b). Thin, dotted lines are the Fermi surface approximation. Thick, solid lines use the exact
Urca rates.

leads to only a gradual opening of the phase space around
the direct Urca threshold, and hence the resonant peak moves
to higher temperatures than predicted by the Fermi surface
approximation.

As can be seen from Eq. (13), the maximum value of bulk
viscosity at a frequency ω is

ζmax = C2

2Bω
. (23)

In Fig. 3, we plot C2/B = 2ωζmax for a representative range
of densities and temperatures for which nuclear matter is

likely neutrino transparent. We see that for a given frequency,
the maximum value of bulk viscosity varies by one to two
orders of magnitude and depends more strongly on density
than on temperature. Most notably, we can see that C2/B rises
rapidly at low densities, then levels off at n ∼ 2nsat to a value
about an order of magnitude larger then its value at n = nsat.
(This could already be seen in Fig. 2.)

In Fig. 4, we plot the bulk viscosity as a function of
density and temperature (the curves in Fig. 2 are cross sections
through Fig. 4). For a fixed density, as the temperature rises,
the β equilibration rate γ rises rapidly because of the increase

(a) (b)

FIG. 3. Logarithmic plot of the ratio of susceptibilities C2/B = 2ωζmax that determines the maximum bulk viscosity at a given oscillation
frequency. We show results for the DD2 (a) and IUF (b) equations of state, calculated in β equilibrium [Eq. (20)].
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(a) (b)

FIG. 4. Bulk viscosity as a function of density and temperature, for the DD2 (a) and IUF (b) EoSs. The full phase space integral for the
direct Urca rate is used in the solid line contours, while the 28.5 dashed contour uses the FS approximation.

in available phase space. At temperatures of a few MeV, the
re-equilibration rate closely matches the oscillation frequency
of 1 kHz, and then bulk viscosity reaches a maximum. At
higher temperatures, the re-equilbration is too fast and the
bulk viscosity drops.

We see that for the DD2 EoS, the bulk viscosity peak
is at a temperature of about 3 MeV for all densities, which
is a lower temperature than predicted by the Fermi surface
approximation. For IUF, the FS approximation would suggest
two different peaks in bulk viscosity: one below the direct
Urca threshold corresponding to the near equality of the
modified Urca rate and the density oscillation frequency, and
one above the threshold, corresponding to the near equality
of the direct Urca rate and the density oscillation frequency.
However, the gradual opening of the direct Urca threshold
coming from the exact direct Urca calculation melds these
two peaks into one broad peak. At low density, the peak is at
3–4 MeV, but as density increases it moves down to 2 MeV.

C. Energy dissipation time

The most direct indicator of the importance of bulk viscous
damping is the dissipation time τdiss for density oscillations.
Since the merging stars settle down into a massive remnant
in tens of milliseconds, bulk viscous damping will be impor-
tant if τdiss is tens of milliseconds or less. To calculate the
dissipation time, we need the energy of an oscillation and
the rate at which that energy is dissipated by bulk viscosity.
The energy density of an adiabatic baryon density oscillation
nB(t ) = nB + (
n) sin (ωt ) is [13]

ε = 1

2
(
n)2 ∂2ε

∂n2
B

∣∣∣∣
xp,s/nB

= κ−1
S

2

(

n

nB

)2

, (24)

where κS is the adiabatic compressibility [44,45]

κ−1
S = nB

∂P

∂nB

∣∣∣∣
xp,s/nB

. (25)

See Sec. III B for a discussion of the assumption of adiabatic-
ity.

We note that the adiabatic compressibility depends on
the EoS. However, it is a common feature of all nucleonic
EoSs that nuclear matter becomes more incompressible at
high densities, so the inverse compressibility 1/κS rises with
density, as shown in Fig. 5 for a range of EoSs including
those used in this work. This means that at higher density,
oscillations in the density store more energy.

FIG. 5. Adiabatic inverse compressibility (κS )−1 at low tempera-
ture, vs density, for several EoSs derived from relativistic mean-field
theories. Each is tabulated on CompOSE.
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(a) (b)

FIG. 6. Dissipation time τdiss of a 1-kHz density oscillation, using the DD2 EoS (a) and IUF EoS (b), with the exact Urca rates.

To facilitate comparison with previous work (for exam-
ple, Ref. [13]), we mention that the “stiffness” of nuclear
matter is often described via the nuclear incompressiblity K
[20,38,46]. K is conventionally defined at saturation density,
at zero temperature, and for symmetric nuclear matter, and
is approximately 250 MeV [40]. Some works have extended
the definition of the nuclear incompressibility to densities
above nuclear saturation [47]. At zero temperature, nsat, and
for symmetric nuclear matter, the adiabatic κS can be related
to the nuclear incompressibility K by K = 9/(κSn0) [45,46].

The rate of energy density dissipation is given by [27,48]

dε

dt
= ω2

2

(

n

nB

)2

ζ . (26)

Using Eq. (24), the energy dissipation time is

τdiss ≡ ε

dε/dt
= (κS )−1

ω2ζ
. (27)

Note that one can also define [49] a decay time for the
amplitude, which would be longer by a factor of 2 since the
energy of an oscillation goes as the square of the amplitude.

In Fig. 6, we plot the dissipation time of a 1-kHz density
oscillation as a function of density and temperature for two
different EoSs, using the exact Urca rates. We first discuss the
physical content and implications of the exact results (Fig. 6)
and then compare them to the Fermi surface approximation,
shown in Fig. 7.

1. Temperature dependence

The adiabatic compressibility is relatively independent of
temperature, so the bulk viscosity dominates the temperature
dependence of the dissipation time. As discussed in Sec. V B,
for a given density, the bulk viscosity increases, reaches a
resonant maximum when the β reequilibration rate γ matches
the oscillation frequency ω, and then decreases as temperature
increases. This leads to minimum dissipation time at approxi-

mately the temperature at which the bulk viscosity reaches its
maximum, for a given density.

2. Density dependence

The adiabatic inverse compressibility strongly increases
as a function of density, as seen in Fig. 5. While the bulk
viscosity was weakly dependent on density, the dissipation
time at high density is strongly increased due to the several
orders of magnitude rise of the adiabatic inverse compress-
ibility. Physically, oscillations in high-density nuclear matter
have a lot of energy due to the high incompressibility of dense
nuclear matter [see Eq. (24)]. Thus, it takes correspondingly
longer time for those high-energy oscillations to damp. As a
result of the behavior of the compressibility of nuclear matter,
the minimum of dissipation time is likely to be located at a
low density.

It is worth noting that the bulk viscosity varies non-
monotonically with density. It rises as density increases from
0.5nsat, reaches a peak at several times nsat, and then falls off
at high density. This can be seen by noting that the maximum
bulk viscosity is ζmax = (1/2ω)C2/B [Eq. (23)], which is plot-
ted in Fig. 3. It is clear that the particular features of the rise
and fall in bulk viscosity as a function of density depend on
the EoS. Throughout the range of densities that we consider,
the bulk viscosity prefactor C2/B varies by one to two orders
of magnitude. However, the inverse compressibility rises by
three orders of magnitude over that density range, so it has
a more substantial effect on the density dependence of the
dissipation time.

For the DD2 EoS, as seen in Fig. 6(a), the minimum
dissipation times lie around temperatures of 3 MeV for all
densities, indicating that the re-equilibration rate does not
change strongly with density, which is expected since only
modified Urca and below-threshold direct Urca are acting.
As a function of density, the dissipation times get longer as
density increases. This behavior comes from the dramatic
monotonic rise of the inverse compressibility as a function
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(a) (b)

FIG. 7. Dissipation time τdiss of a 1-kHz density oscillation, using the DD2 EoS (a) and the IUF EoS (b), calculated in the Fermi surface
approximation.

of density. The bulk viscosity prefactor C2/B rises by one
order of magnitude from 0.5nsat to 3 or 4nsat, and then slightly
decreases at higher densities, but it does not vary rapidly
enough to compete with the rise of the inverse compressibility,
and thus the dissipation time rises monotonically with density.
DD2 has a minimum dissipation time of about 6 ms, which
occurs only at low density (0.5nsat) at temperatures of just
under 3 MeV. Only fluid elements with densities under twice
saturation density would dissipate energy on timescales rele-
vant for mergers.

As seen in Fig. 6(b), the behavior of the dissipation time
scale for the IUF EoS is more complicated. The lowest dissi-
pation times do occur at temperatures of around 3 MeV, since
the resonant peak of bulk viscosity is around that temperature.
However, the nonmonotonic behavior of C2/B as a function
of density is more dramatic for the IUF EoS than for DD2, so
it competes with the rapidly rising inverse compressibility as
density increases, leading to two minima in the dissipation
time. The first is at low density, where the nuclear inverse
compressibility is decreasing rapidly as the density decreases
to the lowest value for which we trust our equation of state,
n = 0.5nsat. There, energy dissipation can occur in as little as
5 ms. There is also a local minimum around n = 2nsat, where
the bulk viscosity prefactor C2/B has a local maximum [see
Fig. 3(b)] and dissipation times reach down to 19 ms. For
the IUF EoS, dissipation occurs on merger timescales in fluid
elements up to four times saturation density, in contrast to the
behavior of DD2.

It is interesting to compare the Fermi surface approximate
results (Fig. 7) and the exact results (Fig. 6) for each EoS. For
DD2, the use of the exact Urca rates just increases the total
Urca rate and thus the bulk viscosity is maximized at a lower
temperature than would be predicted by the Fermi surface
approximation. For IUF, the Fermi surface approximate result
would predict a sharp change in the behavior of the bulk
viscosity at the direct Urca threshold, n = 4nsat (for a generic
example of this behavior, see Fig. 1 in Ref. [22]). However, at

the temperatures of interest to us, the exact Urca rates show a
gradual increase with density and thus the bulk viscosity does
not change suddenly at the threshold density.

D. Higher frequency oscillations

There is evidence from simulations [50–56] (see also the
review [57]) that eccentric binary neutron star mergers excite
oscillations at frequencies above 1 kHz. We plot the dissi-
pation times for 3- and 5-kHz oscillations in Figs 8 and 9.
We see that at these higher frequencies, bulk viscosity plays a
bigger role and density oscillations can be damped in as little
as 1 ms, and for a broad range of temperatures and densities,
oscillations can be damped in less than 25 ms.

We note that, at a given density, a higher temperature is
required to make the re-equilibration rate γ match a density
oscillation which has a frequency above 1 kHz, and thus
the region of maximum bulk viscosity is moved to higher
temperatures. For example, a 5-kHz density oscillation has
maximum bulk viscosity (and thus minimum damping time)
at about T = 4 MeV (see Fig. 9), while a 1-kHz density
oscillation has maximum bulk viscosity at around T = 3 MeV
(see Fig. 6).

VI. CONCLUSIONS

We have calculated the bulk-viscous dissipation time in
nuclear matter at temperatures and densities relevant to neu-
tron star mergers. We assumed the material was transparent to
neutrinos, which should be valid for temperatures up to about
5 MeV, and we studied the damping of oscillations with fre-
quencies in the 1-kHz range, which are seen in simulations of
mergers. The main uncertainty in our result is the form of the
nuclear matter equation of state at supranuclear densities, so
we performed calculations for two different equations of state,
one stiffer, DD2, and one softer, IUF, which differ in their
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(a) (b)

FIG. 8. Dissipation time scale for 3-kHz oscillations in nuclear matter with the DD2 EoS (a) or IUF EoS (b). The exact Urca rates are used.

treatment of the nucleon-meson interaction (see Sec. V A).
Our main results are displayed in Fig 6.

Bulk viscous damping will play a significant role at den-
sities and temperatures where the dissipation time is com-
parable to or less than the typical timescale of the merger,
which is in the range of tens of milliseconds. Both equations
of state show a similar overall pattern: Bulk viscosity damps
oscillations on timescales comparable to a merger for nuclear
matter at temperatures of 2–4 MeV and for densities between
0.5nsat to 2nsat, with IUF also exhibiting fast damping for den-
sities up to 4nsat. Both EoSs have minimum dissipation times
of about 5 ms, occurring at 0.5nsat, while IUF has another
local minimum of dissipation time, about 20 ms, occurring at
2nsat. The occurrence of dissipation times in the 10-ms range
leads us to conclude that bulk viscous damping should be
seriously considered for inclusion in future simulations. The

strong dissipation that we see at low density may be relevant to
the density oscillations that were found to be associated with
mass ejection in the outer regions of the merger (see Fig. 9 of
Ref. [58]).

There are several directions in which this topic could be
further developed. In parallel with this work, an analogous
calculation of the bulk viscosity for nuclear matter with
trapped neutrinos was conducted [59]. This is appropriate
for nuclear matter at temperatures well above 5 MeV and is
relevant to mergers because temperatures up to 80 or even
100 MeV are predicted by simulations. It should be noted that
the neutrino-transparent and neutrino-trapped regimes are the
simplified extremes of a continuum, the whole of which is
probably realized at different regions and stages of a merger.
Between these extremes lies the regime where the spectrum
of neutrinos includes a low-energy population that escapes, a

(a) (b)

FIG. 9. Dissipation time scale for 5-kHz oscillations in nuclear matter with the DD2 EoS (a) or IUF EoS (b). The exact Urca rates are used.
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high-energy tail that is trapped, and an intermediate-energy
range where the mean free path is comparable to the distance
scale of the fluid flows, requiring explicit inclusion of neutri-
nos in the dynamics of the nuclear fluid [60–65].

Another limitation of our calculation is the assumption of
low-amplitude density oscillations. We calculated the “sub-
thermal” bulk viscosity, but simulations show high-amplitude
density oscillations [13] for which the suprathermal bulk
viscosity [27] is relevant. This could extend the region of large
bulk viscosity down to lower temperatures, since suprathermal
effects allow high-amplitude oscillations to experience the
maximum bulk viscosity ζmax [Eq. (23)] at lower temperatures
[27].

Our discovery of short bulk-viscous dissipation times at
densities below nuclear saturation density, primarily due to
the low inverse compressibility, underscores the need for
a detailed understanding of the structure of nuclear matter
below saturation density. The DD2 and IUF EoSs predict
uniform nuclear matter down to densities of 0.25 to 0.4nsat

respectively, which is why we restricted our calculations to
densities above 0.5nsat. However, a sequence of mixed “pasta”
phases has been predicted at densities between 0.2 and 0.7 nsat

[66–70]. It has been noted [71,72] that the appearance of free
protons in certain pasta phases would open up the direct Urca
process, albeit with such a reduced rate that it would take
temperatures of tens of MeV—which is well above the pasta
melting temperature of a few MeV [73]—to reach the resonant
peak of bulk viscosity. Thus, it is important to know how and
at what densities and temperatures nuclear matter transforms
from a uniform phase to a mixed phase. Based on our findings
above, we expect subthermal bulk viscosity to be large for
these low densities, down to the density at which uniform
nuclear matter transitions to a pasta or spherical nuclei phase.

As mentioned in Sec. II, we did not consider Urca pro-
cesses involving muons and did not include muons in the
EoSs. The presence of muon Urca processes would increase
the equilibration rate γ for densities at which muons are
present. In addition, muon-electron conversion would give
rise to a separate contribution to the bulk viscosity [74]. The
calculation of bulk viscous damping time in Ref. [13] uses
EoSs that contain muons. Above the onset density for muons,
the nuclear matter susceptibilities are larger, which would
lead to larger bulk viscosity and thus shorter dissipation times
compared to the muonless EoSs considered in this work. We
are therefore planning to perform a full study of bulk viscous
dissipation in EoSs that include muons.

There is evidence that properly including in-medium ef-
fects in the nucleon propagator can lead to a large increase
in the modified Urca rate just below the direct Urca threshold
[75]. We have not included this in our analysis, but it could
potentially lead to a shift of the resonant peak of bulk viscosity
to lower temperatures for a range of densities near the direct
Urca threshold.
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APPENDIX: ADIABATIC AND
ISOTHERMAL OSCILLATIONS

Most previous works use the isothermal susceptibilities

BT = − 1

nB

∂μ


∂xp

∣∣∣∣
nB,T

, (A1)

CT = nB
∂μ


∂nB

∣∣∣∣
xp,T

, (A2)

often only considering the zero temperature case
[24,27,29,32,71]. As discussed in Sec. III B, because thermal
equilibration is so slow in neutrino-transparent nuclear
matter in merger conditions, we must use the adiabatic
susceptibilities

B = − 1

nB

∂μ


∂xp

∣∣∣∣
nB,s/nB

, (A3)

C = nB
∂μ


∂nB

∣∣∣∣
xp,s/nB

. (A4)

Note that at zero temperature, adiabatic and isothermal quanti-
ties become equivalent [44,76]. Often, it is convenient to work
with thermodynamic derivatives at constant temperature T ,
baryon density nB, or proton fraction xp. In particular, these
three variables are the degrees of freedom in the CompOSE
database of EoSs [45]. Using a Jacobian coordinate transfor-
mation [76], we can relate adiabatic derivatives (derivatives
at constant entropy per baryon) to isothermal derivatives. The
adiabatic susceptibility derivatives are related to the isother-
mal susceptibility derivatives by

∂μ


∂nB

∣∣∣∣
s/nB,xp

= ∂μ


∂nB

∣∣∣∣
T,xp

−
∂ (s/nB )

∂nB

∣∣
T,xp

∂μ


∂T

∣∣
nB,xp

∂ (s/nB )
∂T

∣∣
nB,xp

, (A5)

∂μ


∂xp

∣∣∣∣
s/nB,nB

= ∂μ


∂xp

∣∣∣∣
T,nB

−
∂ (s/nB )

∂xp

∣∣
T,nB

∂μ


∂T

∣∣
nB,xp

∂ (s/nB )
∂T

∣∣
nB,xp

. (A6)

The isothermal compressibility is

κ−1
T = nB

∂P

∂nB

∣∣∣∣
xp,T

(A7)

and the adiabatic compressibility is given by

κ−1
S = nB

∂P

∂nB

∣∣∣∣
xp,s/nB

. (A8)

The adiabatic derivative can be obtained from the isothermal
derivative by

∂P

∂nB

∣∣∣∣
s/nB,xp

= ∂P

∂nB

∣∣∣∣
T,xp

−
∂ (s/nB )

∂nB

∣∣
T,xp

∂P
∂T

∣∣
nB,xp

∂ (s/nB )
∂T

∣∣
nB,xp

. (A9)
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Above nsat, the adiabatic and isothermal derivatives are
within 25% of each other for all temperatures consid-
ered here. For nuclear matter that is below nsat with T >

5 MeV, there are noticeable differences between the isother-
mal and adiabatic suseptibility C and the compressibility
κ . The susceptibility B is not sensitive to differences be-
tween adiabaticity and isothermality (the differences are
below 10%).

Below nsat, the adiabatic C is greater than the isothermal
C by as much as a factor of 2.5 (DD2) or 5.5 (IUF). These
large differences are at temperatures above 5 MeV. Thus, the
adiabatic C2/B is larger than the isothermal version by factors
of up to 6 (DD2) or 30 (IUF). However, these large differ-
ences occur at low densities (≈0.5nsat) and high temperatures

(T ≈ 10 MeV) where the bulk viscosity is small anyway,
since the equilibration rate γ is much faster than a 1-kHz
density oscillation. In the regions where bulk viscosity is
large, the difference between adiabatic and isothermal suscep-
tibilities is at most a factor of 2 in the quantity C2/B.

At the densities and temperatures where bulk viscosity is
large, the isothermal compressibility is at most 20% larger
than the adiabatic compressibility, which means that adiabatic
density oscillations would lose energy slightly more slowly
than isothermal density oscillations. At densities below nsat

and temperatures above 5 MeV, the isothermal compressibility
can be up to 40% (DD2) or 80% (IUF) larger than the
adiabatic value, but the bulk viscosity is too small for fluid
elements under these conditions for this to matter.

[1] B. P. Abbott et al. (LIGO Scientific, Virgo Collaboration),
GW170817: Observation of Gravitational Waves from a Binary
Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017).

[2] B. P. Abbott et al. (LIGO Scientific, Virgo Collaboration),
GW170817: Measurements of Neutron Star Radii and Equation
of State, Phys. Rev. Lett. 121, 161101 (2018).

[3] P. Landry and R. Essick, Nonparametric inference of the neu-
tron star equation of state from gravitational wave observations,
Phys. Rev. D 99, 084049 (2019).

[4] A. Perego, S. Bernuzzi, and D. Radice, Thermodynamics con-
ditions of matter in neutron star mergers, Eur. Phys. J. A 55, 124
(2019).

[5] M. Hanauske, J. Steinheimer, A. Motornenko, V. Vovchenko,
L. Bovard, E. R. Most, L. J. Papenfort, S. Schramm, and H.
Stöcker, Neutron star mergers: Probing the EoS of hot, dense
matter by gravitational waves, Particles 2, 44 (2019).

[6] M. Hanauske, J. Steinheimer, L. Bovard, A. Mukherjee, S.
Schramm, K. Takami, J. Papenfort, N. Wechselberger, L.
Rezzolla, and H. Stöcker, Concluding remarks: Connecting
relativistic heavy ion collisions and neutron star mergers by the
equation of state of dense hadron- and quark matter as signalled
by gravitational waves, J. Phys. Conf. Ser. 878, 012031 (2017).

[7] L. Baiotti and L. Rezzolla, Binary neutron star mergers: A
review of Einstein’s richest laboratory, Rept. Prog. Phys. 80,
096901 (2017).

[8] W. Kastaun, R. Ciolfi, A. Endrizzi, and B. Giacomazzo, Struc-
ture of stable binary neutron star merger remnants: Role of
initial spin, Phys. Rev. D 96, 043019 (2017).

[9] S. Bernuzzi, D. Radice, C. D. Ott, L. F. Roberts, P. Mösta, and
F. Galeazzi, How loud are neutron star mergers?, Phys. Rev. D
94, 024023 (2016).

[10] F. Foucart, R. Haas, M. D. Duez, E. O’Connor, C. D. Ott, L.
Roberts, L. E. Kidder, J. Lippuner, H. P. Pfeiffer, and M. A.
Scheel, Low mass binary neutron star mergers: Gravitational
waves and neutrino emission, Phys. Rev. D 93, 044019 (2016).

[11] K. Kiuchi, Y. Sekiguchi, K. Kyutoku, and M. Shibata, Gravi-
tational waves, neutrino emissions, and effects of hyperons in
binary neutron star mergers, Class. Quant. Grav. 29, 124003
(2012).

[12] Y. Sekiguchi, K. Kiuchi, K. Kyutoku, and M. Shibata, Gravita-
tional Waves and Neutrino Emission from the Merger of Binary
Neutron Stars, Phys. Rev. Lett. 107, 051102 (2011).

[13] M. G. Alford, L. Bovard, M. Hanauske, L. Rezzolla, and
K. Schwenzer, Viscous Dissipation and Heat Conduction in
Binary Neutron-Star Mergers, Phys. Rev. Lett. 120, 041101
(2018).

[14] M. G. Alford and S. P. Harris, β equilibrium in neutron star
mergers, Phys. Rev. C 98, 065806 (2018).

[15] L. F. Roberts and S. Reddy, Charged current neutrino interac-
tions in hot and dense matter, Phys. Rev. C 95, 045807 (2017).

[16] P. Haensel and A. J. Jerzak, Mean free paths of non-degenerate
neutrinos in neutron star matter, Astron. Astrophys. 179, 127
(1987).

[17] R. F. Sawyer and A. Soni, Transport of neutrinos in hot neutron-
star matter, Astrophys. J. 230, 859 (1979).

[18] R. F. Sawyer, Neutrino opacity of neutron star matter, Phys.
Rev. D 11, 2740 (1975).

[19] D. G. Yakovlev, A. D. Kaminker, O. Y. Gnedin, and P. Haensel,
Neutrino emission from neutron stars, Phys. Rept. 354, 1
(2001).

[20] S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs,
and Neutron Stars: The Physics of Compact Objects (Wiley-
VCH, Hoboken, New Jersey, 1983).

[21] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevC.100.035803 for tabulated data presented in
our figures.

[22] P. Haensel, K. P. Levenfish, and D. G. Yakovlev, Bulk viscosity
in superfluid neutron star cores. 2. Modified Urca processes in
npe μ matter, Astron. Astrophys. 372, 130 (2001).

[23] Y.-F. Yuan, Electron positron capture rates and the steady
state equilibrium condition for electron-positron plasma with
nucleons, Phys. Rev. D 72, 013007 (2005).

[24] P. Haensel, K. P. Levenfish, and D. G. Yakovlev, Bulk viscosity
in superfluid neutron star cores. I. Direct Urca processes in npe
μ matter, Astron. Astrophys. 357, 1157 (2000).

[25] P. Haensel, Non-equilibrium neutrino emissivities and opacities
of neutron star matter, Astron. Astrophys. 262, 131 (1992).

[26] A. Finzi and R. A. Wolf, Hot, vibrating neutron stars,
Astrophys. J. 153, 835 (1968).

[27] M. G. Alford, S. Mahmoodifar, and K. Schwenzer, Large
amplitude behavior of the bulk viscosity of dense matter, J.
Phys. G 37, 125202 (2010).

[28] A. Schmitt and P. Shternin, Reaction rates and transport in
neutron stars, Astrophys. Space Sci. Libr. 457, 455 (2018).

035803-11

https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevD.99.084049
https://doi.org/10.1103/PhysRevD.99.084049
https://doi.org/10.1103/PhysRevD.99.084049
https://doi.org/10.1103/PhysRevD.99.084049
https://doi.org/10.1140/epja/i2019-12810-7
https://doi.org/10.1140/epja/i2019-12810-7
https://doi.org/10.1140/epja/i2019-12810-7
https://doi.org/10.1140/epja/i2019-12810-7
https://doi.org/10.3390/particles2010004
https://doi.org/10.3390/particles2010004
https://doi.org/10.3390/particles2010004
https://doi.org/10.3390/particles2010004
https://doi.org/10.1088/1742-6596/878/1/012031
https://doi.org/10.1088/1742-6596/878/1/012031
https://doi.org/10.1088/1742-6596/878/1/012031
https://doi.org/10.1088/1742-6596/878/1/012031
https://doi.org/10.1088/1361-6633/aa67bb
https://doi.org/10.1088/1361-6633/aa67bb
https://doi.org/10.1088/1361-6633/aa67bb
https://doi.org/10.1088/1361-6633/aa67bb
https://doi.org/10.1103/PhysRevD.96.043019
https://doi.org/10.1103/PhysRevD.96.043019
https://doi.org/10.1103/PhysRevD.96.043019
https://doi.org/10.1103/PhysRevD.96.043019
https://doi.org/10.1103/PhysRevD.94.024023
https://doi.org/10.1103/PhysRevD.94.024023
https://doi.org/10.1103/PhysRevD.94.024023
https://doi.org/10.1103/PhysRevD.94.024023
https://doi.org/10.1103/PhysRevD.93.044019
https://doi.org/10.1103/PhysRevD.93.044019
https://doi.org/10.1103/PhysRevD.93.044019
https://doi.org/10.1103/PhysRevD.93.044019
https://doi.org/10.1088/0264-9381/29/12/124003
https://doi.org/10.1088/0264-9381/29/12/124003
https://doi.org/10.1088/0264-9381/29/12/124003
https://doi.org/10.1088/0264-9381/29/12/124003
https://doi.org/10.1103/PhysRevLett.107.051102
https://doi.org/10.1103/PhysRevLett.107.051102
https://doi.org/10.1103/PhysRevLett.107.051102
https://doi.org/10.1103/PhysRevLett.107.051102
https://doi.org/10.1103/PhysRevLett.120.041101
https://doi.org/10.1103/PhysRevLett.120.041101
https://doi.org/10.1103/PhysRevLett.120.041101
https://doi.org/10.1103/PhysRevLett.120.041101
https://doi.org/10.1103/PhysRevC.98.065806
https://doi.org/10.1103/PhysRevC.98.065806
https://doi.org/10.1103/PhysRevC.98.065806
https://doi.org/10.1103/PhysRevC.98.065806
https://doi.org/10.1103/PhysRevC.95.045807
https://doi.org/10.1103/PhysRevC.95.045807
https://doi.org/10.1103/PhysRevC.95.045807
https://doi.org/10.1103/PhysRevC.95.045807
https://doi.org/10.1086/157146
https://doi.org/10.1086/157146
https://doi.org/10.1086/157146
https://doi.org/10.1086/157146
https://doi.org/10.1103/PhysRevD.11.2740
https://doi.org/10.1103/PhysRevD.11.2740
https://doi.org/10.1103/PhysRevD.11.2740
https://doi.org/10.1103/PhysRevD.11.2740
https://doi.org/10.1016/S0370-1573(00)00131-9
https://doi.org/10.1016/S0370-1573(00)00131-9
https://doi.org/10.1016/S0370-1573(00)00131-9
https://doi.org/10.1016/S0370-1573(00)00131-9
http://link.aps.org/supplemental/10.1103/PhysRevC.100.035803
https://doi.org/10.1051/0004-6361:20010383
https://doi.org/10.1051/0004-6361:20010383
https://doi.org/10.1051/0004-6361:20010383
https://doi.org/10.1051/0004-6361:20010383
https://doi.org/10.1103/PhysRevD.72.013007
https://doi.org/10.1103/PhysRevD.72.013007
https://doi.org/10.1103/PhysRevD.72.013007
https://doi.org/10.1103/PhysRevD.72.013007
https://doi.org/10.1086/149708
https://doi.org/10.1086/149708
https://doi.org/10.1086/149708
https://doi.org/10.1086/149708
https://doi.org/10.1088/0954-3899/37/12/125202
https://doi.org/10.1088/0954-3899/37/12/125202
https://doi.org/10.1088/0954-3899/37/12/125202
https://doi.org/10.1088/0954-3899/37/12/125202
https://doi.org/10.1007/978-3-319-97616-79
https://doi.org/10.1007/978-3-319-97616-79
https://doi.org/10.1007/978-3-319-97616-79
https://doi.org/10.1007/978-3-319-97616-79


MARK G. ALFORD AND STEVEN P. HARRIS PHYSICAL REVIEW C 100, 035803 (2019)

[29] P. Haensel and R. Schaeffer, Bulk viscosity of hot-neutron-star
matter from direct URCA processes, Phys. Rev. D 45, 4708
(1992).

[30] A. Reisenegger, Deviations from chemical equilibrium due to
spindown as an internal heat source in neutron stars, Astrophys.
J. 442, 749 (1995).

[31] B. L. Friman and O. V. Maxwell, Neutron star neutrino emis-
sivities, Astrophys. J. 232, 541 (1979).

[32] R. F. Sawyer, Bulk viscosity of hot neutron-star matter and the
maximum rotation rates of neutron stars, Phys. Rev. D 39, 3804
(1989).

[33] M. Hempel and J. Schaffner-Bielich, Statistical model for a
complete supernova equation of state, Nucl. Phys. A 837, 210
(2010).

[34] S. Typel, G. Ropke, T. Klahn, D. Blaschke, and H. H. Wolter,
Composition and thermodynamics of nuclear matter with light
clusters, Phys. Rev. C 81, 015803 (2010).

[35] F. J. Fattoyev, C. J. Horowitz, J. Piekarewicz, and G. Shen,
Relativistic effective interaction for nuclei, giant resonances,
and neutron stars, Phys. Rev. C 82, 055803 (2010).

[36] X. Roca-Maza and J. Piekarewicz, Impact of the symmetry
energy on the outer crust of non-accreting neutron stars, Phys.
Rev. C 78, 025807 (2008).

[37] https://compose.obspm.fr/eos/18/ and https://compose.obspm.
fr/eos/22/

[38] N. Glendenning, Compact Stars: Nuclear Physics, Particle
Physics, and General Relativity, Astronomy and Astrophysics
Library (Springer, New York, 2000).

[39] M. Dutra, O. Lourenço, S. S. Avancini, B. V. Carlson, A.
Delfino, D. P. Menezes, C. Providencia, S. Typel, and J. R.
Stone, Relativistic mean-field hadronic models under nuclear
matter constraints, Phys. Rev. C 90, 055203 (2014).

[40] M. Oertel, M. Hempel, T. Klähn, and S. Typel, Equations of
state for supernovae and compact stars, Rev. Mod. Phys. 89,
015007 (2017).

[41] L. F. Roberts, S. Reddy, and G. Shen, Medium modification of
the charged current neutrino opacity and its implications, Phys.
Rev. C 86, 065803 (2012).

[42] W.-j. Fu, G.-h. Wang, and Y.-x. Liu, Electron capture and its
reverse process in hot and dense astronuclear matter, Astrophys.
J. 678, 1517 (2008).

[43] L. B. Leinson, Direct Urca processes on nucleons in cooling
neutron stars, Nucl. Phys. A 707, 543 (2002).

[44] D. Schroeder, An Introduction to Thermal Physics (Addison
Wesley, New York, 1999).

[45] Compose reference manual, https://compose.obspm.fr/manual/
[46] A. Schmitt, Dense matter in compact stars: A pedagogical

introduction, Lect. Notes Phys. 811, 1 (2010).
[47] V. A. Dexheimer, C. A. Z. Vasconcellos, and B. E. J. Bodmann,

On the density-dependent nuclear matter compressibility, Phys.
Rev. C 77, 065803 (2008).

[48] R. F. Sawyer, Damping of neutron star pulsations by weak
interaction processes, Astrophys. J. 237, 187 (1980).

[49] C. Cutler, L. Lindblom, and R. J. Splinter, Damping times for
neutron star oscillations, Astrophys. J. 363, 603 (1990).

[50] K. Hotokezaka, K. Kiuchi, K. Kyutoku, T. Muranushi, Y.-I.
Sekiguchi, and M. Shibata, Remnant massive neutron stars of
binary neutron star mergers: Evolution process and gravitational
waveform, Phys. Rev. D 88, 044026 (2013).

[51] S. V. Chaurasia, T. Dietrich, N. K. Johnson-McDaniel, M.
Ujevic, W. Tichy, and B. Brügmann, Gravitational waves and
mass ejecta from binary neutron star mergers: Effect of large
eccentricities, Phys. Rev. D 98, 104005 (2018).

[52] J. A. Clark, A. Bauswein, N. Stergioulas, and D. Shoemaker,
Observing gravitational waves from the post-merger phase of
binary neutron star coalescence, Class. Quant. Grav. 33, 085003
(2016).

[53] L. Rezzolla and K. Takami, Gravitational-wave signal from
binary neutron stars: A systematic analysis of the spectral
properties, Phys. Rev. D 93, 124051 (2016).

[54] T. Dietrich, M. Ujevic, W. Tichy, S. Bernuzzi, and B.
Brugmann, Gravitational waves and mass ejecta from binary
neutron star mergers: Effect of the mass ratio, Phys. Rev. D 95,
024029 (2017).

[55] F. Maione, R. De Pietri, A. Feo, and F. Löffler, Spectral analysis
of gravitational waves from binary neutron star merger rem-
nants, Phys. Rev. D 96, 063011 (2017).

[56] A. Bauswein, N.-U. F. Bastian, D. B. Blaschke, K.
Chatziioannou, J. A. Clark, T. Fischer, and M. Oertel, Identi-
fying a First-Order Phase Transition in Neutron Star Mergers
through Gravitational Waves, Phys. Rev. Lett. 122, 061102
(2019).

[57] L. Baiotti, Gravitational waves from neutron star mergers and
their relation to the nuclear equation of state, Prog. Part. Nucl.
Phys. 109, 103714 (2019), doi: 10.1016/j.ppnp.2019.103714.

[58] R. De Pietri, A. Drago, A. Feo, G. Pagliara, M. Pasquali, S.
Traversi, and G. Wiktorowicz, Merger of compact stars in the
two-families scenario, Astrophys. J. 881, 122 (2019).

[59] M. Alford, A. Harutyunyan, and A. Sedrakian, Bulk viscosity
of baryonic matter with trapped neutrinos, arXiv:1907.04192.

[60] R. Ardevol-Pulpillo, H. T. Janka, O. Just, and A. Bauswein, Im-
proved leakage-equilibration-absorption scheme (ILEAS) for
neutrino physics in compact object mergers, Mon. Not. Roy.
Astron. Soc. 485, 4754 (2019).

[61] A. Perego, E. Gafton, R. Cabezón, S. Rosswog, and M.
Liebendörfer, MODA: A new algorithm to compute optical
depths in multidimensional hydrodynamic simulations, Astron.
Astrophys. 568, A11 (2014).

[62] F. Galeazzi, W. Kastaun, L. Rezzolla, and J. A. Font, Implemen-
tation of a simplified approach to radiative transfer in general
relativity, Phys. Rev. D 88, 064009 (2013).

[63] Y. Sekiguchi, K. Kiuchi, K. Kyutoku, and M. Shibata, Current
status of numerical-relativity simulations in Kyoto, Prog. Theor.
Exp. Phys. 2012, 01A304 (2012).

[64] S. Rosswog and M. Liebendoerfer, High resolution calculations
of merging neutron stars. 2: Neutrino emission, Mon. Not. Roy.
Astron. Soc. 342, 673 (2003).

[65] A. Mezzacappa and O. E. B. Messer, Neutrino transport in core
collapse supernovae, J. Comp. Appl. Math. 109, 281 (1999).

[66] F. Grill, H. Pais, C. Providçncia, I. Vidaña, and S. S. Avancini,
Equation of state and thickness of the inner crust of neutron
stars, Phys. Rev. C 90, 045803 (2014).

[67] F. J. Fattoyev, C. J. Horowitz, and B. Schuetrumpf, Quantum
nuclear pasta and nuclear symmetry energy, Phys. Rev. C 95,
055804 (2017).

[68] H. Pais, C. Providência, W. G. Newton, and J. R. Stone, Core-
collapse supernova matter: Light clusters, pasta phase, and
phase transitions, arXiv:1503.08753.

035803-12

https://doi.org/10.1103/PhysRevD.45.4708
https://doi.org/10.1103/PhysRevD.45.4708
https://doi.org/10.1103/PhysRevD.45.4708
https://doi.org/10.1103/PhysRevD.45.4708
https://doi.org/10.1086/175480
https://doi.org/10.1086/175480
https://doi.org/10.1086/175480
https://doi.org/10.1086/175480
https://doi.org/10.1086/157313
https://doi.org/10.1086/157313
https://doi.org/10.1086/157313
https://doi.org/10.1086/157313
https://doi.org/10.1103/PhysRevD.39.3804
https://doi.org/10.1103/PhysRevD.39.3804
https://doi.org/10.1103/PhysRevD.39.3804
https://doi.org/10.1103/PhysRevD.39.3804
https://doi.org/10.1016/j.nuclphysa.2010.02.010
https://doi.org/10.1016/j.nuclphysa.2010.02.010
https://doi.org/10.1016/j.nuclphysa.2010.02.010
https://doi.org/10.1016/j.nuclphysa.2010.02.010
https://doi.org/10.1103/PhysRevC.81.015803
https://doi.org/10.1103/PhysRevC.81.015803
https://doi.org/10.1103/PhysRevC.81.015803
https://doi.org/10.1103/PhysRevC.81.015803
https://doi.org/10.1103/PhysRevC.82.055803
https://doi.org/10.1103/PhysRevC.82.055803
https://doi.org/10.1103/PhysRevC.82.055803
https://doi.org/10.1103/PhysRevC.82.055803
https://doi.org/10.1103/PhysRevC.78.025807
https://doi.org/10.1103/PhysRevC.78.025807
https://doi.org/10.1103/PhysRevC.78.025807
https://doi.org/10.1103/PhysRevC.78.025807
https://compose.obspm.fr/eos/18/
https://compose.obspm.fr/eos/22/
https://doi.org/10.1103/PhysRevC.90.055203
https://doi.org/10.1103/PhysRevC.90.055203
https://doi.org/10.1103/PhysRevC.90.055203
https://doi.org/10.1103/PhysRevC.90.055203
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/PhysRevC.86.065803
https://doi.org/10.1103/PhysRevC.86.065803
https://doi.org/10.1103/PhysRevC.86.065803
https://doi.org/10.1103/PhysRevC.86.065803
https://doi.org/10.1086/528361
https://doi.org/10.1086/528361
https://doi.org/10.1086/528361
https://doi.org/10.1086/528361
https://doi.org/10.1016/S0375-9474(02)00991-0
https://doi.org/10.1016/S0375-9474(02)00991-0
https://doi.org/10.1016/S0375-9474(02)00991-0
https://doi.org/10.1016/S0375-9474(02)00991-0
https://compose.obspm.fr/manual/
https://doi.org/10.1007/978-3-642-12866-0_1
https://doi.org/10.1007/978-3-642-12866-0_1
https://doi.org/10.1007/978-3-642-12866-0_1
https://doi.org/10.1007/978-3-642-12866-0_1
https://doi.org/10.1103/PhysRevC.77.065803
https://doi.org/10.1103/PhysRevC.77.065803
https://doi.org/10.1103/PhysRevC.77.065803
https://doi.org/10.1103/PhysRevC.77.065803
https://doi.org/10.1086/157858
https://doi.org/10.1086/157858
https://doi.org/10.1086/157858
https://doi.org/10.1086/157858
https://doi.org/10.1086/169370
https://doi.org/10.1086/169370
https://doi.org/10.1086/169370
https://doi.org/10.1086/169370
https://doi.org/10.1103/PhysRevD.88.044026
https://doi.org/10.1103/PhysRevD.88.044026
https://doi.org/10.1103/PhysRevD.88.044026
https://doi.org/10.1103/PhysRevD.88.044026
https://doi.org/10.1103/PhysRevD.98.104005
https://doi.org/10.1103/PhysRevD.98.104005
https://doi.org/10.1103/PhysRevD.98.104005
https://doi.org/10.1103/PhysRevD.98.104005
https://doi.org/10.1088/0264-9381/33/8/085003
https://doi.org/10.1088/0264-9381/33/8/085003
https://doi.org/10.1088/0264-9381/33/8/085003
https://doi.org/10.1088/0264-9381/33/8/085003
https://doi.org/10.1103/PhysRevD.93.124051
https://doi.org/10.1103/PhysRevD.93.124051
https://doi.org/10.1103/PhysRevD.93.124051
https://doi.org/10.1103/PhysRevD.93.124051
https://doi.org/10.1103/PhysRevD.95.024029
https://doi.org/10.1103/PhysRevD.95.024029
https://doi.org/10.1103/PhysRevD.95.024029
https://doi.org/10.1103/PhysRevD.95.024029
https://doi.org/10.1103/PhysRevD.96.063011
https://doi.org/10.1103/PhysRevD.96.063011
https://doi.org/10.1103/PhysRevD.96.063011
https://doi.org/10.1103/PhysRevD.96.063011
https://doi.org/10.1103/PhysRevLett.122.061102
https://doi.org/10.1103/PhysRevLett.122.061102
https://doi.org/10.1103/PhysRevLett.122.061102
https://doi.org/10.1103/PhysRevLett.122.061102
https://doi.org/10.1016/j.ppnp.2019.103714
https://doi.org/10.1016/j.ppnp.2019.103714
https://doi.org/10.1016/j.ppnp.2019.103714
https://doi.org/10.1016/j.ppnp.2019.103714
https://doi.org/10.1016/j.ppnp.2019.103714
https://doi.org/10.3847/1538-4357/ab2fd0
https://doi.org/10.3847/1538-4357/ab2fd0
https://doi.org/10.3847/1538-4357/ab2fd0
https://doi.org/10.3847/1538-4357/ab2fd0
http://arxiv.org/abs/arXiv:1907.04192
https://doi.org/10.1093/mnras/stz613
https://doi.org/10.1093/mnras/stz613
https://doi.org/10.1093/mnras/stz613
https://doi.org/10.1093/mnras/stz613
https://doi.org/10.1051/0004-6361/201423755
https://doi.org/10.1051/0004-6361/201423755
https://doi.org/10.1051/0004-6361/201423755
https://doi.org/10.1051/0004-6361/201423755
https://doi.org/10.1103/PhysRevD.88.064009
https://doi.org/10.1103/PhysRevD.88.064009
https://doi.org/10.1103/PhysRevD.88.064009
https://doi.org/10.1103/PhysRevD.88.064009
https://doi.org/10.1093/ptep/pts011
https://doi.org/10.1093/ptep/pts011
https://doi.org/10.1093/ptep/pts011
https://doi.org/10.1093/ptep/pts011
https://doi.org/10.1046/j.1365-8711.2003.06579.x
https://doi.org/10.1046/j.1365-8711.2003.06579.x
https://doi.org/10.1046/j.1365-8711.2003.06579.x
https://doi.org/10.1046/j.1365-8711.2003.06579.x
https://doi.org/10.1016/S0377-0427(99)00162-4
https://doi.org/10.1016/S0377-0427(99)00162-4
https://doi.org/10.1016/S0377-0427(99)00162-4
https://doi.org/10.1016/S0377-0427(99)00162-4
https://doi.org/10.1103/PhysRevC.90.045803
https://doi.org/10.1103/PhysRevC.90.045803
https://doi.org/10.1103/PhysRevC.90.045803
https://doi.org/10.1103/PhysRevC.90.045803
https://doi.org/10.1103/PhysRevC.95.055804
https://doi.org/10.1103/PhysRevC.95.055804
https://doi.org/10.1103/PhysRevC.95.055804
https://doi.org/10.1103/PhysRevC.95.055804
http://arxiv.org/abs/arXiv:1503.08753


DAMPING OF DENSITY OSCILLATIONS IN … PHYSICAL REVIEW C 100, 035803 (2019)

[69] H. Pais, W. G. Newton, and J. R. Stone, Phase transitions
in core-collapse supernova matter at sub-saturation densities,
Phys. Rev. C 90, 065802 (2014).

[70] K. Oyamatsu, Nuclear shapes in the inner crust of a neutron
star, Nucl. Phys. A 561, 431 (1993).

[71] D. G. Yakovlev, M. E. Gusakov, and P. Haensel, Bulk viscosity
in a neutron star mantle, Mon. Not. Roy. Astron. Soc. 481, 4924
(2018).

[72] M. E. Gusakov, D. G. Yakovlev, P. Haensel, and O. Y. Gnedin,
Direct Urca process in a neutron star mantle, Astron. Astrophys.
421, 1143 (2004).

[73] A. Roggero, J. Margueron, L. F. Roberts, and S. Reddy, Nuclear
pasta in hot dense matter and its implications for neutrino
scattering, Phys. Rev. C 97, 045804 (2018).

[74] M. G. Alford and G. Good, Leptonic contribution to the bulk
viscosity of nuclear matter, Phys. Rev. C 82, 055805 (2010).

[75] P. S. Shternin, M. Baldo, and P. Haensel, In-medium enhance-
ment of the modified Urca neutrino reaction rates, Phys. Lett. B
786, 28 (2018).

[76] R. Swendsen, An Introduction to Statistical Mechanics and
Thermodynamics, Oxford Graduate Texts (Oxford University
Press, Oxford, UK, 2012).

035803-13

https://doi.org/10.1103/PhysRevC.90.065802
https://doi.org/10.1103/PhysRevC.90.065802
https://doi.org/10.1103/PhysRevC.90.065802
https://doi.org/10.1103/PhysRevC.90.065802
https://doi.org/10.1016/0375-9474(93)90020-X
https://doi.org/10.1016/0375-9474(93)90020-X
https://doi.org/10.1016/0375-9474(93)90020-X
https://doi.org/10.1016/0375-9474(93)90020-X
https://doi.org/10.1093/mnras/sty2639
https://doi.org/10.1093/mnras/sty2639
https://doi.org/10.1093/mnras/sty2639
https://doi.org/10.1093/mnras/sty2639
https://doi.org/10.1051/0004-6361:20040288
https://doi.org/10.1051/0004-6361:20040288
https://doi.org/10.1051/0004-6361:20040288
https://doi.org/10.1051/0004-6361:20040288
https://doi.org/10.1103/PhysRevC.97.045804
https://doi.org/10.1103/PhysRevC.97.045804
https://doi.org/10.1103/PhysRevC.97.045804
https://doi.org/10.1103/PhysRevC.97.045804
https://doi.org/10.1103/PhysRevC.82.055805
https://doi.org/10.1103/PhysRevC.82.055805
https://doi.org/10.1103/PhysRevC.82.055805
https://doi.org/10.1103/PhysRevC.82.055805
https://doi.org/10.1016/j.physletb.2018.09.035
https://doi.org/10.1016/j.physletb.2018.09.035
https://doi.org/10.1016/j.physletb.2018.09.035
https://doi.org/10.1016/j.physletb.2018.09.035

