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Muon capture in nuclei: An ab initio approach based on Green’s function Monte Carlo methods
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An ab initio Green’s function Monte Carlo (GFMC) method is introduced for calculating total rates of muon
weak capture in light nuclei with mass number A � 12. As a first application of the method, we perform a
calculation of the rate in 3H and 4He in a dynamical framework based on realistic two- and three-nucleon
interactions and realistic nuclear charge-changing weak currents. The currents include one- and two-body
terms induced by π - and ρ-meson exchange, and N-to-� excitation, and are constrained to reproduce the
empirical value of the Gamow-Teller matrix element in tritium. We investigate the sensitivity of theoretical
predictions to current parametrizations of the nucleon axial and induced pseudoscalar form factors as well as to
two-body contributions in the weak currents. The large uncertainties in the measured 4He rates obtained from
bubble-chamber experiments (carried out over 50 years ago) prevent us from drawing any definite conclusions.
No data exist for 3H, but results are compared to those of a recent Faddeev calculation as a validation of the
present GFMC method.

DOI: 10.1103/PhysRevC.100.035502

I. INTRODUCTION

Negative muons passing through matter can be captured
into high-lying atomic orbitals, from where they rapidly cas-
cade down into the 1s orbital. There they either decay via
the process μ− → e− νe νμ with a rate which is almost the
same as in free space [1] or are captured by the nucleus in a
weak-interaction process, resulting in the change of one of the
protons into a neutron at a rate that is proportional to Z4 [2],
where Z is the nucleus’ proton number and which, at least for
light nuclei, is much smaller than the free decay rate.

In the nuclear capture, the muon rest mass (mμ) is
converted in energy shared by the emitted (muon) neutrino
and recoiling final nucleus. Since mμ ≈ 105 MeV, a
calculation of the total inclusive rate—i.e., summed over all
final states—requires, in principle, knowledge of both the
low-lying discrete states and higher-energy continuum
spectrum of the final nucleus. In ab initio dynamical
approaches based on realistic nuclear interactions, the solution
of the scattering problem poses a significant challenge, even
for capture in nuclei as light as 3He and 3H. Indeed, while
accurate theoretical estimates of the 3He(μ−, νμ)3H rate (a
transition only involving bound states) have been made since
the early 1990s [3–6], it is only recently that studies based on
the Faddeev method and accounting for the contributions to
the rate from the breakup channels of 3He (into 2H + n and
1H + 2 n) and 3H (into 3 n) have appeared in the literature,
respectively in Refs. [7] and [8].

The other important aspect of muon capture has to do with
the description of the nuclear charge-changing weak current
responsible for the p-n conversion. Its dominant one-body

term is associated with the matrix element 〈n|d γ μ(1 − γ5)|p〉
and is parametrized in terms of four form factors (FFs). Two
of these, F1(q2) and F2(q2) (q2 is the lepton four-momentum
transfer), enter the vector component and are related to
the isovector electromagnetic FFs by the conserved-vector-
current (CVC) constraint. The remaining two, the axial and
induced pseudoscalar FFs, respectively GA(q2) and GP(q2),
characterize the axial component. The F1(q2) and F2(q2) FFs
are well known over a broad range of momentum transfers
from elastic electron scattering off protons and deuterons
[9]. The value gA of the axial FF at vanishing q2 is pre-
cisely determined from neutron β decay, gA = 1.2723(23)
[10], while the q2 dependence is parametrized by a dipole
form with a cutoff �A ≈ 1 GeV as obtained in analyses of
pion electroproduction data [11] and direct measurements of
νμ/νμ-p [12] and quasielastic νμ-d [13–15] scattering cross
sections. A recent measurement of muon capture in hydrogen
by the MuCap collaboration at Paul Scherrer Institute [16]
has led to a precise determination of the GP(q2) FF (the least
well experimentally known of the four) albeit at the single
kinematical point q2

0 = −0.88 m2
μ: GP(q2

0 ) = 8.06 ± 0.55, a
value that is consistent with theoretical predictions derived
from chiral perturbation theory [17–19].

In the nuclear charge-changing weak current, in addition to
one-body, there are two-body terms that arise quite naturally
in the conventional meson-exchange picture; for reviews see
Refs. [20,21], as well as in more modern approaches based
on chiral effective field theory [22–29]. Those in the vector
sector are related by CVC to the isovector two-body electro-
magnetic currents, notably the long-range currents induced
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by pion exchange. By now, there is a substantial body of
experimental evidence for their presence from a variety of
photo- and electronuclear transitions in nuclei, including,
among others, thermal neutron radiative captures on hydrogen
and helium isotopes, magnetic moments, and M1 transition
rates in light nuclei, elastic, and transition magnetic form
factors of few-nucleon systems, and, last, transverse response
functions measured in quasielastic (e, e′) scattering off light
nuclei (see Refs. [30–32] for reviews which include extensive
listings of original references). In the axial sector, however,
this evidence is not as well established, in that discrepan-
cies between experimental data and theoretical predictions
obtained with one-body currents are not as large as in the
electromagnetic case and concern, primarily, the very low
momentum and energy transfers of relevance in β decays of
very light nuclei [33–35] and, recently, some heavier nuclei
as well [36]. In particular, it is worthwhile noting here that the
relative sign between the one- and two-body axial corrections,
at least in the mass range 3 < A � 10, is calculated to be
the same in Ref. [35] but generally opposite in Ref. [36] (the
tritium and 8He Gamow-Teller matrix elements, the former of
which is actually fitted, are the only exceptions). The origin of
this difference is yet to be clarified. Carrying out benchmark
calculations with different interactions, currents, and many-
body methods would be very helpful. We should also point out
that results from earlier studies [37–39] of muon-capture rates
in 12C, 16O, and 40Ca, based on the continuum random-phase
and quasi-particle random-phase approximations, reproduce
the experimental data without requiring a quenching of gA.

Given the above context, the objectives of the present
work are twofold: (i) to formulate a Green’s function Monte
Carlo (GFMC) method for calculating, ab initio, inclusive
muon-capture rates in nuclei in the mass range A = 3–12
and (ii) to test our present modeling of the nuclear charge-
changing weak current by comparing theoretical results with
available experimental data. This will validate the modeling in
a range of momentum and energy transfers that is intermediate
between those relevant, at the low end, in β decays and, at the
high end, in neutrino scattering. We begin by establishing the
kinematics of the process and expressing the rate in a form
amenable to a GFMC calculation, and then focus on muon
capture in 3H and 4He as first practical applications of the
method.

II. METHODOLOGY

The muon is captured by the nucleus from an atomic
orbital, and its momentum and energy are denoted by kμ

and Eμ, with the understanding that kμ → 0, since the muon
orbital velocity is of order Z α � 1 for light atoms. The
muon-neutrino momentum and energy are denoted as kν and
Eν (Eν = kν), and the masses of the proton and neutron as mp

and mn. In the capture process a proton in the initial atom is
converted into a neutron, and energy conservation requires

�m + Ei = Eν + E f , �m = mμ + mp − mn, (1)

where Ei is the internal energy (of electrons and nucleons)
of the initial atom, and E f is the energy of the final atom
including both its internal and recoil energies. Of course,

binding energies of electrons, at least for light atoms, are
of the order of tens of eV’s, and therefore negligible when
compared to those of nucleons.

The transition amplitude for capture at leading order is
given by

Tf i = GV√
2

ψ (0)
[
ukνhν

γσ (1 − γ5)ukμsμ

]
jσf i(−kν ), (2)

where GV is the vector coupling constant for semileptonic
weak interactions (GV ≈ 1.1363 × 10−5 GeV−2 [40]), ukμsμ

and ukνhν
are the spinors (normalized here as u†u = 1) of,

respectively, the muon with spin projection sμ and neutrino
with helicity hν , and jσf i is the matrix element of the hadronic
charge-lowering weak current,

jσf i(−kν ) = 〈−kν, f |
∫

dx e−ikν ·x jσ (x)|i, JiMi〉. (3)

Since the matrix element 〈 f | jσ (x)|i〉 is localized over length
scales of a few fm’s, the atomic wave function ψ (x) of
the muon has been approximated by its value at the origin,
ψ (0) = (Zαμ)3/π , where α is the fine structure constant
and μ is the reduced mass of the muon relative to the initial
nucleus with Z protons. Note that the two-component spin-
state χsμ

of the muon has been replaced by the spinor, which
is justified in the limit kμ → 0 (and also helpful for carrying
out the sums over spins by standard trace techniques). Finally,
|i, JiMi〉 and | − kν, f 〉 are, respectively, the initial nuclear
state with spin and spin-projection JiMi and the final nuclear
state recoiling with momentum −kν with quantum numbers
collectively specified by the label f .

The transition rate, when averaged over the spin projec-
tions of the initial nucleus and muon, and summed over those
of the final nucleus, is independent of the k̂ν direction and
reduces to the well-known expression in terms of Coulomb,
longitudinal, electric, and magnetic multipoles (see, for ex-
ample, Ref. [41]). In the present context, however, we find
it convenient to express this rate (differential in the emitted
neutrino energy, but integrated over the solid angle) in terms
of five response functions,

d

dEν

= G2
V

2π
|ψ (0)|2 E2

ν [R00(Eν ) + Rzz(Eν ) + R0z(Eν )

+ Rxx(Eν ) − Rxy(Eν )], (4)

with

R00(Eν ) =
∑
i, f

δ(· · · )
∣∣ j0

f i(−kν )
∣∣2

, (5)

Rzz(Eν ) =
∑
i, f

δ(· · · ) | j‖f i(−kν )|2, (6)

R0z(Eν ) = −
∑
i, f

δ(· · · ) 2 Re
[

j0
f i(−kν ) j‖ ∗

f i (−kν )
]
, (7)

Rxx(Eν ) =
∑
i, f

δ(· · · ) | j⊥f i(−kν )|2, (8)

Rxy(Eν ) = i
∑
i, f

δ(· · · ) k̂ν · [ j⊥f i(−kν ) × j⊥∗
f i (−kν )], (9)
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TABLE I. The inclusive muon rates in 4He obtained by including one-body (1b) only and both one- and two-body (2b) terms in the vector
(V) and axial (A) components of the charge-changing (CC) weak current. The 1b and 2b rates obtained with the full CC current and the C̃C
current without the induced pseudoscalar term are compared to available experimental values and older theoretical estimates.

V-1b V-2b A-1b A-2b CC-1b CC-2b C̃C-1b C̃C-2b Expt. [53] Expt. [54] Expt. [55] Th [56] Th [57]

(s−1) 65 ± 1 73 ± 1 171 ± 6 200 ± 6 265 ± 9 306 ± 9 310 ± 12 355 ± 12 336 ± 75 375+30
−300 364 ± 46 345 ± 110 278

where we have introduced the unit vector k̂ν = kν/Eν ,
the longitudinal and transverse components of the current,
respectively j‖f i = k̂ν · j f i and j⊥f i = j f i − k̂ν j‖f i, and the
short-hand notation δ(· · · ) for the energy-conserving δ func-
tion resulting from Eq. (1). The bar over the summation
symbol implies the average over (nuclear) spin projections
indicated earlier.

As they stand, a calculation of these response functions by
GFMC methods [32,42–45] is not possible, since the lepton
momentum and energy transfers, respectively q and ω, in the
weak capture (like in a photoabsorption process) are not inde-
pendent variables; indeed, q = −Eν k̂ν and ω = mμ − Eν . To
circumvent this difficulty, we consider instead (in a schematic
notation)

Rαβ (q, ω) =
∑

i f

δ(ω + Ei − E f ) Oα
f i(q) Oβ∗

f i (q), (10)

with q = −Eν k̂ν and ω taken as independent variables. We
carry out the Laplace transform

Eαβ (q, τ ) =
∫ ∞

0
d ω e−τ ω Rαβ (q, ω)

=
∑

i

〈i|Oβ†(q)e−τ (H−Ei )Oα (q)|i〉, (11)

by evaluating the expectation value in the second line above
with stochastic techniques [46], invert the resulting Euclidean
response function Eαβ (q, τ ) by maximum-entropy methods
[43,47,48] to obtain back Rαβ (q, ω), and, finally, interpolate
the latter at ω = ω + mp − mn = �m − Eν to determine the
response Rαβ (Eν ) of interest here. No approximations are
made beyond those inherent to the modeling of the nuclear
Hamiltonian and weak current; in particular, interaction ef-
fects in the discrete and continuum spectrum of the final
nuclear system are fully and exactly accounted for.

The dynamical framework adopted in the present work
is based on a realistic Hamiltonian including the Argonne
v18 two-nucleon [49] (AV18) and Illinois-7 three-nucleon
[50] (IL7) interactions and on realistic charge-changing weak
currents with one- and two-body terms, see Ref. [51] for
a recent overview and a listing of explicit expressions. The
(vector and axial) one-body terms jσ1b follow from a nonrel-
ativistic expansion of the single-nucleon (charge-changing)
weak current, in which corrections proportional up to the
inverse-square of the nucleon mass are retained. The two-
body currents jσ2b consist of contributions associated with
(effective) π - and ρ-meson exchanges and N-to-� excitation
terms, treated in the static limit. In the axial component,
a ρπ transition mechanism is also included. Configuration-
space representations of these currents (used in the actual
calculations below) are regularized by a prescription which,

albeit model dependent, is nevertheless designed to make, by
construction, their short-range behavior consistent with that of
the two-nucleon interaction—the AV18. In the N-to-� axial
current, the value for the transition (axial) coupling constant
is determined by reproducing the measured Gamow-Teller
matrix element contributing to tritium β decay [51] (within
the present dynamical framework). The level of quantitative
success these currents have achieved, when used in combina-
tion with the AV18+IL7 Hamiltonian, in accurately predict-
ing many electroweak properties of s- and p-shell nuclei up to
12C is illustrated in Refs. [30,32] and references therein.

III. RESULTS AND CONCLUSIONS

Having set up the formalism and specified the dynamical
framework, we now proceed to discuss an application of the
method to muon capture in 3H and 4He. There are no experi-
mental data for 3H, and the main reason for calculating its rate
is to benchmark the present method against the Faddeev ap-
proach used in Ref. [8]. In the case of 4He, as noted by Meas-
day in his review [52], the only available measurements of the
total rate are from experiments in the 1960s with helium bub-
ble chambers and helium gas scintillating targets [53–55] and
have large errors, see Table I. The only theoretical estimates
we are aware of are from Caine and Jones [56] and Walecka
[57]; the former based on closure approximations is rather un-
certain, while the latter obtained with the Foldy-Walecka sum
rules for the giant dipole excitation turns out to be remarkably
close to the value we calculate almost 50 years later!

The calculation of the 3H and 4He Euclidean responses in
Eq. (11) is carried out with GFMC methods [42–45] similar
to those used in projecting out the exact ground state of a
Hamiltonian from a trial state [58]. It proceeds in two steps.
First, an unconstrained imaginary-time propagation of the ini-
tial bound state state |i〉, represented here by accurate 3H and
4He variational Monte Carlo wave function (rather than their
exact GFMC counterparts), is performed and saved. Next,
the states Oα (q)|i〉 are evolved in imaginary time following
the path previously saved. During this latter imaginary-time
evolution, scalar products of exp[−(H − Ei )τi]Oα (q)|i〉 with
Oβ (q|i〉 are evaluated on a grid of τi values, and from these
scalar products estimates for Eαβ (q, τi ) are obtained. Since
nuclear charge is not conserved in the process, the need
arises to propagate intermediate states with a different number
of protons and neutrons relative to the ground state—how
this is implemented in the present calculations is discussed
briefly in the Supplemental Material [59]. The statistical
errors associated with the GFMC evolution remain modest,
even at values of τ as large as 0.1 MeV−1, the endpoint of
the τ grid. Maximum entropy methods are employed “to in-
vert” Eαβ (q, τ ) and obtain the corresponding Rαβ (q, ω) [43].
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FIG. 1. The differential rates obtained with one-body (1b) only
and both one- and two-body (2b) terms in the vector (V) and axial
(A) components of the charge-changing (CC) weak current, and full
CC current, are displayed for 4He as function of the νμ energy in
the allowed kinematical range. The full CC 1b and 2b results for
3H are compared to the CC 1b results of Ref. [8] in the inset. The
theoretical uncertainites resulting from combining statistical errors
in the GFMC calculation with errors associated with the maximum-
entropy inversion of the imaginary-time data are shown by the bands.
The arrow indicates the kinematically maximum allowed Eν , see text
for further explanations.

Their implementation is also summarized in the Supplemental
Material [59].

Predictions for the total rate in 4He are compared to the
experimental values and older theoretical estimates mentioned
above in Table I, and the differential rates as functions of the
energy of the muon neutrino emitted in the capture are shown
for both 3H and 4He in Fig. 1. For 4He, results obtained by
considering only the vector (V) or axial (A) components of
the charge-changing (CC) weak current and by including one-
body (1b) terms only or both one- and two-body (2b) terms
in these currents are listed in Table I, and displayed in Fig. 1,
separately. Note that the response function Rxy(Eν ) in Eq. (9)
involves interference between the matrix elements of the V
and A currents, and therefore only contributes when both are
present. As a consequence, (CC) = (V) + (A); indeed,
this V-A interference leads to an increase in the (V) + (A)
result by ≈10% in both the 1b- and 2b-based calculations.
For 3H, only the full CC 1b and 2b GFMC, and full CC 1b
Faddeev [8] differential rates are displayed in the inset of
Fig. 1. While their shapes differ somewhat in the threshold
region (see below), the corresponding integrated rates are in
excellent agreement with each other: the GFMC 1b result
is 32.4(6) s−1, to be compared to the 32.6 s−1 reported in
Ref. [8]. Two-body currents increase the total rate to 35.1(9)
s−1. We focus on 4He hereafter.

In the 4He capture, the neutrino energy is in the range
0 � Eν � Emax

ν ≈ 83.6 MeV; however, the distribution, on
account of the E2

ν -weighing factor present in the expression
for d/dEν , is skewed toward the high end, confirming the
expectation that the energy release in the capture process
is converted primarily into energy for the emitted neutrino
[52] with the remaining balance being absorbed by the final
nuclear system. In the present case, since 4H is not bound, the

possible final breakup channels are 3H + n (3+1), 2H + 2 n
(2+2), and 1H + 3 n (1+3), which have slightly different
thresholds. While the contributions of these channels are fully
accounted for here, they cannot be individually identified over
the allowed Eν range—a limitation intrinsic to the present
method and apparent from Eq. (11), which relies on closure
to remove the sum over final states. Despite relying on the
closure approximation, Caine and Jones [56] estimated the
branching ratios into the 3+1, 2+2, and 1+3 channels to be,
respectively, 97.75%, 2%, and 0.25%.

A related issue has to do with the behavior of the response
functions in the threshold region Eν � Emax

ν . The kinematical
constraint that Rαβ (Eν ) vanish for Eν larger than Emax

ν is not
imposed (for both 3H and 4He) when performing the inversion
(see supplemental material). Even though relatively high val-
ues of τ � τmax = 0.1 MeV−1 are calculated by GFMC, the
maximum-entropy procedure we utilize still produces some
strength beyond Emax

ν , as is apparent from Fig. 1. However,
the integrals of d/dEν , when evaluated over the whole Eν

range including the unphysical region, remain stable to within
1% for τmax = (0.1, 0.08, 0.05) MeV−1.

In Table I we also list the results for the 1b and 2b total
inclusive rates (indicated as C̃C) obtained with an incom-
plete CC weak current in which the term proportional to
the induced pseudoscalar form factor GP(q2) (in the axial
sector) is ignored. The effect is significant: Retaining this
term reduces the C̃C values by ≈15% (14%) in the 1b (2b)
calculations. The parametrization for GP(q2) adopted here
[51] is consistent with the recent determination of this form
factor by the MuCap collaboration [16]. It also leads, in
an accurate ab initio calculation based on essentially the
same dynamical inputs adopted here [60], to a prediction
for the 3He(μ−, νμ)3H total rate that is agreement with the
(remarkably precise) measurement of Ref. [61], 1496(4) s−1.
Thus, muon capture provides a sensitive test of the GP(q2)
form factor at low momentum transfers. By contrast, this
observable is only very marginally affected (at a fraction of
a 1% level) by changes in the parametrization of the nucleon
axial form factor, as we have explicitly verified by calculating
how the total rate changes when the cutoff �A is varied by
±10% about its central value of �A ≈ 1 GeV. The reason
is that GA(q2) = gA[1 + 2 q2/�2

A + · · · ], and q2/�2
A � 1 in

the allowed kinematical region.
In this work, we have formulated an ab initio GFMC

method for calculating inclusive muon-capture rates on light
nuclei (mass number A � 12), and have presented, as first
applications, calculations of the total rate in 3H and 4He. The
predicted value in 4He is consistent with the lower range of
available experimental determinations (see Table I). However,
these measurements from bubble chamber experiments of the
late 1960s have large errors, making it impossible to establish,
at a quantitative level, the validity of the model for the nuclear
charge-changing weak current we have adopted here. We hope
the present work will motivate our colleagues to carry out a
new experiment on 4He.

Future plans in this area include (i) the application of the
method to other (light) nuclei, especially in cases where more
accurate data are known [52], and (ii) its extension to more
fundamental dynamical approaches based on interactions and
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electroweak currents derived from chiral effective field theory.
The presence of discrete states in the final nuclear system
substantially complicates the calculation of the capture rate,
since the imaginary-time response functions Eαβ (q, τ ) would
have to be evaluated at large enough values of τ to reliably
resolve the contributions of these states in the threshold region
of the corresponding “inverted” Rαβ (Eν )—that is, when Eν is
close to the maximum kinematically allowed value. A similar
issue arose in the calculation of the longitudinal and transverse
electromagnetic response functions of 12C [44].
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