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Explicit derivation of the completeness condition in pseudoscalar meson photoproduction
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By exploiting the underlying symmetries of the relative phases of the pseudoscalar meson photoproduction
amplitude, we provide a consistent and explicit mathematical derivation of the completeness condition for the
observables in this reaction. In particular, we determine all the possible sets of four double-spin observables
that resolve the phase ambiguity of the amplitude in transversity basis up to an overall phase. The present work
substantiates and corroborates the original findings of Chiang and Tabakin [Phys. Rev. C 55, 2054 (1997)]. It is
found, however, that the completeness condition of four double-spin observables to resolve the phase ambiguity
holds only when the relative phases do not meet the condition of equal magnitudes. In situations where this
condition occurs, it is shown that one needs extra chosen observables, resulting in the minimum number of
observables required to resolve the phase ambiguity reaching up to eight, depending on the particular set of four
double-spin observables considered. Furthermore, a way of gauging when the condition of equal magnitudes
occurs is provided.
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I. INTRODUCTION

The issue of model-independent determination of the
pseudoscalar meson photoproduction amplitude has attracted
much attention since the early stage of investigation of this
reaction process. In particular, early papers on the minimum
number of experimental observables required to determine
the pseudoscalar meson photoproduction amplitude—the so-
called complete experiments—have resulted in contradictory
findings (for a brief account on these, see Ref. [1]). Barker,
Donnachie, and Storrow [1] have cleared up this situation, by
deriving the necessary and sufficient conditions for determin-
ing the full photoproduction amplitude up to discrete ambigu-
ities. They also provided the rules for choosing further mea-
surements to resolve these ambiguities. According to these
authors, for a given kinematics (total energy of the system
and meson production angle), one requires nine observables to
determine the full reaction amplitude up to an arbitrary overall
phase. Keaton and Workman [2], however, have realized that
there are cases obeying the rules given in Ref. [1] that still
leave unsolved ambiguities. Finally, Chiang and Tabakin [3],
have shown that, instead of nine observables as claimed in
Ref. [1], one requires a minimum of eight carefully chosen
observables for a complete experiment. Apart from solving
for the amplitude magnitudes and phases directly, Chiang and
Tabakin [3] in their study also used a bilinear helicity product
formulation to map an algebra of measurements over to the
well-known algebra of the 4 × 4 gamma matrices. This latter
method leads to an alternate proof that eight carefully chosen
experiments suffice for determining the transversity ampli-
tudes completely. The issue of complete experiments has been
also discussed by Moravcsik [4] in the context of a general
reaction process. There, a very similar approach to that of
Ref. [3] is used for resolving the discrete phase ambiguities
of the reaction amplitude with a geometrical interpretation.

Sandorf et al. [5] have concluded among other things that,
while a mathematical solution to the problem of determining
an amplitude free of ambiguities may require eight observ-
ables [3], experiments with realistically achievable uncertain-
ties will require a significantly larger number of observables.
Also, the Gent group has expended much effort along this
line [6–8]. Recently, with the advances in experimental tech-
niques, many spin observables in photoproduction reactions
became possible to be measured, and this has attracted much
interest in constraints on partial-wave analysis in the context
of complete experiments [9–14]. Of particular interest in this
connection is the issue of whether the baryon resonances can
be extracted model independently or with minimal model in-
puts. Efforts in this direction are currently in progress [12–14].

In this work, we revisit the problem of complete experi-
ments in pseudoscalar meson photoproduction from a mathe-
matical point of view, i.e., under ideal experiments with zero
uncertainties. Thus, it is most directly related to the work of
Ref. [3]. We tackle this problem by solving for the amplitude
magnitudes and phases directly, as has been done in Ref. [3].
In doing so, we shall reveal and exploit the underlying sym-
metries of the relative phases of the photoproduction am-
plitude, which allows a consistent and explicit mathematical
derivation of the completeness condition for the observables
covering all the relevant cases. The completeness condition
of a set of four double-spin observables to resolve the phase
ambiguity of the transversity amplitude is shown to hold, ex-
cept in situations where the equal-relative-phase-magnitudes
relation—as specified in Eq. (48) later in Sec. VI—occur. It
will be shown that, when this situation occurs, one needs up
to seven chosen double-spin observables, instead of four, to
resolve the phase ambiguity. Furthermore, in the particular sit-
uation where the relative phases vanish, eight chosen double-
spin observables are required to resolve the phase ambiguity.
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The paper is organized as follows. In Sec. II, we introduce
the notations used throughout this work and express the ob-
servables as bilinear combinations of the four basic transver-
sity amplitudes. In addition, we group the observables and
classify them in cases which are convenient for determining
the possible sets of four observables that resolve the phase
ambiguity. In Secs. III, IV, and V, we determine these sets of
four double-spin observables, according to the classification
introduced in Sec. II. There, we also consider the cases where
the restriction on the relative phases for the completeness
condition of the four observables is not satisfied. In Sec. VI,
we discuss how to identify when this restriction is violated.
Finally, a summary is given in Sec. VII.

II. NOTATIONS

The basic four independent amplitudes, Mj ( j = 1, . . . , 4),
that constitute the full pseudoscalar photoproduction ampli-
tude can be expressed as

Mj = r je
iφ j ,

{
r j = magnitude,
φ j = phase. (1)

Then, following Ref. [3], the 16 nonredundant observables
can be expressed in terms of these amplitudes Mj in transver-
sity basis and grouped according to

S =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dσ/d� = 1
2 [|r1|2 + |r2|2 + |r3|2 + |r4|2],

� = 1
2 [|r1|2 + |r2|2 − |r3|2 − |r4|2],

T = 1
2 [|r1|2 − |r2|2 − |r3|2 + |r4|2],

P = 1
2 [−|r1|2 + |r2|2 − |r3|2 + |r4|2],

(2)

BT =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Oa
1+ ≡ −G = B13 sin φ13 + B24 sin φ24,

Oa
1− ≡ F = B13 sin φ13 − B24 sin φ24,

Oa
2+ ≡ E = B13 cos φ13 + B24 cos φ24,

Oa
2− ≡ H = B13 cos φ13 − B24 cos φ24,

(3)

BR =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ob
1+ ≡ Oz = B14 sin φ14 + B23 sin φ23,

Ob
1− ≡ −Cx = B14 sin φ14 − B23 sin φ23,

Ob
2+ ≡ −Cz = B14 cos φ14 + B23 cos φ23,

Ob
2− ≡ −Ox = B14 cos φ14 − B23 cos φ23,

(4)

T R =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Oc
1+ ≡ −Lx = B12 sin φ12 + B34 sin φ34,

Oc
1− ≡ −Tz = B12 sin φ12 − B34 sin φ34,

Oc
2+ ≡ −Lz = B12 cos φ12 + B34 cos φ34,

Oc
2− ≡ Tx = B12 cos φ12 − B34 cos φ34,

(5)

where

Bi j ≡ rir j and φi j ≡ φi − φ j . (6)

In the following we refer to φi j as the relative phase.
The observables in S include the unpolarized cross section,

dσ/d�, and single-spin observables � (beam asymmetry), T
(target asymmetry), and P (recoil asymmetry). It is clear from
Eq. (2) that, together, they determine uniquely the magnitudes
of the basic four amplitudes in transversity basis. Throughout
this work, these four observables are assumed to be measured,
so that the magnitudes of the basic transversity amplitudes are
known. The remaining observables given in Eqs. (3), (4), and
(5) are all double-spin observables, and some combinations of
them will serve to determine the phases of the four transversity
amplitudes up to an overall phase, i.e., the three relative
phases φi j involved. We refer to the observables in each of
BT (beam-target asymmetry), BR (beam-recoil asymmetry)
and T R (target-recoil asymmetry) as a group. We use a = BT ,
b = BR and c = T R.

In Ref. [3], the unnormalized spin asymmetries are de-
noted by �̌β , i.e., �̌β ≡ (dσ/d�)�β , where �β stands for
a given spin asymmetry specified by the index β. Throughout
this work, we simply use the same notation �β for the un-
normalized spin asymmetries [(dσ/d�)�β → �β] to avoid
overloading the notations. For example, � in Eq. (2) actually
stands for (dσ/d�)�, and so on.

From the above list of observables, one sees that all pos-
sible sets of four double-spin observables can be obtained by
considering the following cases:

(1) (2 + 2) case: two pairs of observables, each pair from
distinct groups.

(2) (2 + 1 + 1) case: a pair of observables from one group
and two other observables, one from each of the re-
maining two groups.

(3) (3 + 1) case: three observables from one group and
one observable from another group.

(4) 4 case: all four observables from one group.

In the following we shall consider each of the cases listed
above.

III. PHASE FIXING FOR THE (2 + 2) CASE

We start by noticing that there are two basic types of
combination of a pair of observables (Om

nν, Om
n′ν ′) in a given

group, one type with n = n′ and the other with n �= n′. Here,
(m = a, b, c), (n, n′ = 1, 2), and (ν, ν ′ = ±). A pair of ob-
servables of the type (Om

n+, Om
n−) leads to a fourfold phase

ambiguity, with twofold ambiguity in each of the relative
phases involved, φi j and φkl . There are two distinct pairs of
this type (n = 1, 2) in each group. On the other hand, a pair
of observables of the type (Om

1ν, Om
2ν ′ ), leads only to a 2-fold

phase ambiguity. There are four distinct pairs of this type
(ν, ν ′ = ±) in each group.

To see the properties mentioned above, consider all the
possible pairs one can form in a given group, say, group
a = BT . For the pair (Oa

1+, Oa
1−) = (−G, F ), we have from

Eq. (3)

Oa
1+ = B13 sin φ13 + B24 sin φ24,

Oa
1− = B13 sin φ13 − B24 sin φ24, (7)
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which leads to

sin φ13 = Oa
1++Oa

1−
2B13

�⇒ φ13 =
{
α13,

π − α13,

sin φ24 = Oa
1+−Oa

1−
2B24

�⇒ φ24 =
{
α24,

π − α24,
(8)

where −π/2 � α13, α24 � +π/2; αi j’s are uniquely defined.
In the following, we use the notation φλ

i j to designate

φ+
i j = αi j, φ−

i j = π − αi j . (9)

Note that a (relative) phase is meaningful only modulo 2π .
Analogously, for the pair (Oa

2+, Oa
2−) = (E , H ), we have

from Eq. (3)

Oa
2+ = B13 cos φ13 + B24 cos φ24,

Oa
2− = B13 cos φ13 − B24 cos φ24, (10)

which leads to the twofold ambiguity

φ+
i j = αi j, φ−

i j = −αi j, (11)

where αi j is uniquely defined with 0 � αi j � π .
Next we consider the pair (Oa

1+, Oa
2−) = (−G, H ). From

Eq. (3),

Oa
1+ = B13 sin φ13 + B24 sin φ24,

Oa
2− = B13 cos φ13 − B24 cos φ24. (12)

We first combine the above two expressions into

Oa
1+

2 + Oa
2−

2 = B2
13 + B2

24 − 2B13B24 cos(φ13 + φ24). (13)

Now, we define angle ζ ≡ ζ m
nν,n′ν ′ through1

cos ζ ≡ Om
nν

N
, sin ζ ≡ Om

n′ν ′

N
, (14)

with N ≡ Nm
nν,n′ν ′ ≡ √

Om
nν

2 + Om
n′ν ′ 2. In the following we sim-

ply use ζ and N to avoid the heavy notation, but it should be
kept in mind that they depend on the given pair of observables.
For the pair under consideration, we have

cos ζ ≡ Oa
1+

N
, sin ζ ≡ Oa

2−
N

, (15)

with N ≡
√

Oa
1+

2 + Oa
2−

2 .
Then, Eq. (12) can be expressed in terms of ζ as

N cos ζ = B13 sin φ13 + B24 sin φ24,

N sin ζ = B13 cos φ13 − B24 cos φ24. (16)

Multiplying the first equality in the above equation by sin φ24

and the second one by cos φ24 and subtracting the second from
the first, we arrive at

cos(φ13 + φ24) = B24 + N sin(ζ − φ24)

B13
. (17)

1ζ m
nν,n′ν′ has a geometrical interpretation as the polar angle of a

vector in a two-dimensional coordinate system, where Om
nν defines

the x coordinate and Om
n′ν′ , the y coordinate. This provides an intuitive

understanding of the fact that such an angle, ζ m
nν,n′ν′ , can indeed

always be found.

Inserting the above result into Eq. (13) yields

sin(ζ − φ24) = B2
13 − B2

24 − N2

2NB24
, (18)

leading to the following twofold ambiguity for φ24:

φ24 =
{
ζ − α24,

ζ − π + α24.
(19)

Analogously, from Eqs. (13) and (16), we find that

sin(ζ + φ13) = B2
13 − B2

24 + N2

2NB13
, (20)

leading to the twofold ambiguity

φ13 =
{−ζ + α13,

−ζ + π − α13.
(21)

Note that, in Eqs. (19) and (21), phases α24 and α13 are
uniquely defined by

sin(α24) = B2
13 − B2

24 − N2

2NB24
,

sin(α13) = B2
13 − B2

24 + N2

2NB13
, (22)

with −π/2 � α13, α24 � +π/2.
Equations (19) and (21) show that φ13 and φ24 have a

twofold ambiguity each. However, there is another constraint
that cos(φ13 + φ24) is uniquely defined by Eq. (13). Then,
first we note that the sum of φ13 and φ24 should be of the
form φ13 + φ24 = ±α̃. Combining this with Eqs. (19) and (21)
leads to the following possibilities for α̃:

α̃ =
{

λ
(
φλ

13 + φλ
24

) = (α13 − α24),

λ
(
φλ

13 + φλ′
24

) = (α13 + α24 − π ) ,
(23)

where the notation introduced in Eq. (9) has been used. Here,
λ, λ′ = ± and λ �= λ′.

Next, we calculate cos(φ13 + φ24) = cos(±α̃), with α̃

given in Eq. (23). For α̃ = α13 − α24, we obtain

cos(φ13 + φ24) = cos[±(α13 − α24)]

= cos α13 cos α24 + sin α13 sin α24

=
√

(1 − sin2 α13)(1 − sin2 α24)

+ sin α13 sin α24

= B2
13 + B2

24 − N2

2B13B24
, (24)

where Eq. (22) has been used. This result coincides with
Eq. (13). For α̃ = α13 + α24 − π , on the other hand, it is
immediately seen that the result for cos(φ13 + φ24) does not
agree with Eq. (13) since, in this case, apart from an overall
sign, all that changes from the α̃ = α13 − α24 case is the
change in the sign of the term sin α13 sin α24, which is nonzero
in general, in Eq. (24).

Thus, we conclude that Eq. (13), together with Eqs. (19)
and (21), leads to

φ13 + φ24 = ±(α13 − α24), (25)
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i.e., we end up with only twofold ambiguity for φ13 and φ24,
viz.,{

φ13 = −ζ + α13,

φ24 = ζ − α24,
or

{
φ13 = −ζ − α13 + π,

φ24 = ζ + α24 − π.
(26)

For the pair (Oa
1−, Oa

2−) = (F, H ),

Oa
1− = B13 sin φ13 − B24 sin φ24,

Oa
2− = B13 cos φ13 − B24 cos φ24, (27)

the results can be readily obtained by simply changing the
sign of φ24 everywhere in the results of the previous case of
(Oa

1+, Oa
2−). We obtain{

φ13 = −ζ + α13,

φ24 = −ζ + α24,
or

{
φ13 = −ζ − α13 + π,

φ24 = −ζ − α24 + π.
(28)

For the pair (Oa
1−, Oa

2+) = (F, E ),

Oa
1− = B13 sin φ13 − B24 sin φ24,

Oa
2+ = B13 cos φ13 + B24 cos φ24, (29)

the only change from the previous case of (Oa
1+, Oa

2−), is in
the sign of B24. Thus, we can simply follow the steps of
the derivation for the case of (Oa

1+, Oa
2−), making there the

replacement B24 → −B24. This leads to the change in the
constraint given by Eq. (25) to

φ13 + φ24 = ±(α13 − α24 + π ). (30)

Thus, we obtain the twofold ambiguity{
φ13 = −ζ − α13 + π,

φ24 = ζ + α24,
or

{
φ13 = −ζ + α13,

φ24 = ζ − α24 + π.
(31)

For the pair (Oa
1+, Oa

2+) = (−G, E ),

Oa
1+ = B13 sin φ13 + B24 sin φ24,

Oa
2+ = B13 cos φ13 + B24 cos φ24, (32)

we simply flip the sign of φ24 in Eq. (31). We have{
φ13 = −ζ − α13 + π,

φ24 = −ζ − α24,
or

{
φ13 = −ζ + α13,

φ24 = −ζ + α24 − π.

(33)

To avoid any confusion, we emphasize that, in all the
cases discussed above, (Oa

1±, Oa
2±) (with the signs ± being

independent), the phases α13 and α24 are uniquely defined and
given by Eq. (22).

From the preceding considerations in this section, we
conclude that

(i) Any pair of observables of the form (Om
1+ , Om

1−) leads
to a fourfold phase ambiguity of the form given by
Eq. (9), while any pair of the form (Om

2+ , Om
2−) leads

to a fourfold ambiguity of the form given by Eq. (11).
These result in [in view of the consistency relations
given by Eq. (41) that shall be used later on to help

resolve the phase ambiguity]

(
Oa

1+, Oa
1−

)
:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ+
13 − φ+

24 = (α13 − α24),

φ+
13 − φ−

24 = [(α13 + α24)− π ],

φ−
13 − φ+

24 = −[(α13 + α24)− π ],

φ−
13 − φ−

24 = −(α13 − α24),

φ+
13 + φ+

24 = (α13 + α24),

φ+
13 + φ−

24 = (α13 − α24) + π,

φ−
13 + φ+

24 = −(α13 − α24) + π,

φ−
13 + φ−

24 = −(α13 + α24),
(34)

and

(
Oa

2+, Oa
2−

)
:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ+
13 − φ+

24 = (α13 − α24),

φ+
13 − φ−

24 = (α13 + α24),

φ−
13 − φ+

24 = −(α13 + α24),

φ−
13 − φ−

24 = −(α13 − α24),

φ+
13 + φ+

24 = (α13 + α24),

φ+
13 + φ−

24 = (α13 − α24),

φ−
13 + φ+

24 = −(α13 − α24),

φ−
13 + φ−

24 = −(α13 + α24),

(35)

(ii) Any pair of observables of the form (Om
1±, Om

2∓) =
(Om

1+, Om
2−) or (Om

1−, Om
2+) leads to a twofold ambi-

guity of the form given by Eqs. (26) and (31), while
any pair of the form (Om

1ν, Om
2ν ) leads to a twofold

ambiguity of the form given by Eqs. (28) and (33).
These result in [recall that (relative) phases are modulo
2π ]

(
Oa

1−, Oa
2−

)
:

{
φλ

13 − φλ
24 = λ(α13 − α24),

φλ
13 + φλ

24 = −2ζ + λ(α13 + α24),
(36)

(
Oa

1+, Oa
2−

)
:

{
φλ

13 − φλ
24 = −2ζ + λ(α13 + α24),

φλ
13 + φλ

24 = λ(α13 − α24),
(37)

with λ = ±, and

(
Oa

1+, Oa
2+

)
:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ+
13 − φ−

24 = (α13 − α24) + π,

φ−
13 − φ+

24 = −(α13 − α24) + π,

φ+
13 + φ−

24 = −2ζ + (α13 + α24) − π,

φ−
13 + φ+

24 = −2ζ − (α13 + α24) + π,

(38)

(
Oa

1−, Oa
2+

)
:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ+
13 − φ−

24 = −2ζ + (α13 + α24) − π,

φ−
13 − φ+

24 = −2ζ − (α13 + α24) + π,

φ+
13 + φ−

24 = −(α13 − α24) + π,

φ−
13 + φ+

24 = (α13 − α24) + π.

(39)

From the results obtained above for the pairs of observables
(Oa

nν, Oa
n′ν ′ ) [n, n′ = 1, 2 and ν, ν ′ = ± with (nν) �= (n′ν ′)] in

group a = BT [cf. Eq. (3)], it is straightforward to obtain the
corresponding results for the pairs of observables in other two
groups b = BR and c = T R [cf. Eqs. (4) and (5)]. All one has
to do is to replace (Oa

nν, Oa
n′ν ′ ) by (Om

nν, Om
n′ν ′ ) (m = b, c) and
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the relative phases φ13 and φ24, respectively, by φ14 and φ23 in
the case m = b or by φ12 and φ34 in the case m = c.

The discrete ambiguities exhibited by the relative phases
so far in this section [cf. Eqs. (34)–(39)] cannot be resolved
without further constraint. This is provided by the property
obeyed by the relative phases (φi j ≡ φi − φ j):2

φ12 + φ23 + φ34 = φ14. (40)

Here, it should be emphasized that this relation is satisfied
up to addition of multiples of 2π , because phases are mean-
ingful only modulo 2π . We refer to the above relation as the
consistency relation, because it is going to be used to check
on the “consistency” among the relative phases with discrete
ambiguities, as we have shown in our considerations up to this
point. As the reader shall see, the consistency relation allows
one to resolve the discrete ambiguities for certain sets of four
chosen observables. Equation (40) can be rewritten as

φ24 − φ13 = φ34 − φ12 (a ←→ c), (41a)

φ24 + φ13 = φ14 + φ23 (a ←→ b), (41b)

φ34 + φ12 = φ14 − φ23 (c ←→ b). (41c)

The first relation in the above equations is used to relate
the observables in group a = BT to those in group c = T R,
while the second relation connects the observables in group
a to those in group b = BR. The third relation connects
the observables in group b to those in group c. Note that,
apart from an irrelevant overall factor, Eq. (40) leads to a
unique relation which connects the relative phases belonging
to two specific groups of observables as exhibited in Eq. (41).
Equation (41) has been also used by the authors of Refs. [3,4]
in their analyses.

The logic for determining whether a given set of four
observables can or cannot resolve the phase ambiguity is as
follows. From the chosen set of four observables, using the
appropriate consistency relation in Eq. (41), form all possi-
ble solutions due to the discrete ambiguities of the relative
phases which, for the (2 + 2) case, are given by Eqs. (34)–
(39). Then, check if these solutions are linearly independent
(nondegenerate) or dependent (degenerate). If there is no
degeneracy in the possible solutions (i.e., they are all linearly
independent), then, only one of them will be satisfied, in
general, once the set of unique values of the phases αi j and
ζ (= ζ m

nν,n′ν ′) is provided by the measurements of the four
observables in consideration.3 The precise relation of each αi j

to the corresponding φi j is known once the correct solution
among the possible solutions is identified, thus resolving the
ambiguity of φi j . Hence, this set of four observables resolves
the phase ambiguity. If the degeneracy occurs among the

2Equation (40) may be seen as a direct consequence of the fact that
a complex number can be represented by a vector in the complex
plane and that the sum of all angles between neighboring vectors in
a given set of vectors is 2π (or zero since phases are modulo 2π ).

3Recall that the unpolarized cross section and single-spin observ-
ables are assumed to be measured. They fix the magnitudes of the
four basic transversity amplitudes which enter in the determination
of αi j’s [cf. Eq. (22)].

possible solutions, then, this set of observables cannot resolve
the ambiguity. The logic just described applies to all cases
(1)–(4) specified at the end of the previous section. Only the
discrete ambiguities of the relative phases are case dependent,
as shown later in Secs. IV and V.

It should be clear from the above consideration that,
whether a set of four observables resolves the phase ambi-
guity or not rests on the linear independence of the possible
solutions provided by the consistency relation [cf. Eqs. (41)]
for that set of four observables.

We are now prepared to identify the possible sets of four
double-spin observables that resolve the phase ambiguity of
the transversity amplitude in the (2 + 2) case defined in item
(1) of the preceding section. There are three basic combina-
tions of the pairs of observables to be considered:

(aa) two pairs from item (i) above with 4 × 4 = 16-fold
phase ambiguity: (Om

n+ , Om
n−) and (Om′

n′+ , Om′
n′−) with

m �= m′.
(bb) two pairs from item (ii) above with 2 × 2 = 4-fold

phase ambiguity: (Om
1ν , Om

2ν ′ ) and (Om′
1μ , Om′

2μ′ ) with
m �= m′.

(ab) one pair from item (i) and one pair from item (ii)
with 4 × 2 = 8-fold phase ambiguity: (Om

n+ , Om
n−)

and (Om′
1μ , Om′

2μ′ ) with m �= m′.

A. Case (aa)

First, consider case (aa). To be concrete, choose the set of
pairs [(Oa

2+, Oa
2−), (Oc

2+, Oc
2−)]. From Eqs. (3) and (4), the

observables in group a contain relative phases φ13 and φ24,
while those in group c contain relative phases φ12 and φ34.
Then, using Eq. (41a), we have

φλ
13 − φλ′

24 = φλ′′
12 − φλ′′′

34 , (42)

where the indices on which these relative phases depend have
been written explicitly. Inserting the corresponding fourfold
phase ambiguity given by Eq. (35) into the above relation, we
end up with 16 possible solutions:

±α13 ± α24 = ±α12 ± α34, (43)

where all four signs ± are independent. The 16 possible
solutions given above are not all linearly independent. For
example, consider the solution α13 + α24 = α12 + α34

corresponding to (λ, λ′, λ′′, λ′′′) = (+,−,+,−) in Eq. (42).
This solution is degenerate, with the solution −(α13 +
α24) = −(α12 + α34) corresponding to (λ, λ′, λ′′, λ′′′) =
(−,+,−,+). Hence, the phase ambiguity cannot be resolved
in this case. It is also straightforward to see that none of the
other combinations of the pairs of observables in case (aa)
resolve the ambiguity. This includes the corresponding sets
of pairs of observables from group a and group b and from b
and c, in which cases we use the consistency relations given
by Eqs. (41b) and (41c), respectively.

B. Case (bb)

For case (bb), we start by considering the set of two pairs
[(Oa

1+, Oa
2−), (Oc

1−, Oc
2−)]. From Eqs. (3) and (4), the rela-

tive phases involved for this combination are (φ13, φ24) and
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(φ12, φ34). Then, inserting Eqs. (37) and (36) into Eq. (41a)
yields the following four possible solutions:

−2ζ + (α13 + α24) = (α12 − α34),

−2ζ + (α13 + α24) = −(α12 − α34),

−2ζ − (α13 + α24) = (α12 − α34),

−2ζ − (α13 + α24) = −(α12 − α34). (44)

Since the above possible solutions are all linearly indepen-
dent, there will be only one solution satisfied, in general, for
the set of unique values of α13, α24, α12, α34 and ζ (= ζ a

1+,2−),
once they are extracted from the measurements of the four
observables in question. The correct solution, then, will tell
us the exact relation of each αi j (i j = 13, 24, 12, 34) to the
corresponding φi j , resolving the ambiguity of φi j . Hence this
set of four observables will resolve the phase ambiguity.

Consider now the set of pairs [(Oa
1+, Oa

2−), (Oc
1+, Oc

2−)].
Again, with the help of Eq. (37), Eq. (41a) leads to

−2ζ + (α13 + α24) = −2ζ ′ + (α12 + α34),

−2ζ + (α13 + α24) = −2ζ ′ − (α12 + α34),

−2ζ − (α13 + α24) = −2ζ ′ + (α12 + α34),

−2ζ − (α13 + α24) = −2ζ ′ − (α12 + α34). (45)

Note that ζ is distinct from ζ ′ [cf. Eq. (14)]. As in the previous
case just discussed above, since the four possible solutions
here are all linearly independent, the same reasoning as in the
previous case applies, and we conclude that this set of four
observables also resolves the phase ambiguity.

Now, take the set [(Oa
1−, Oa

2−), (Oc
1−, Oc

2−)]. In this case,
we obtain the following results:

(α13 − α24) = (α12 − α34),

(α13 − α24) = −(α12 − α34),

−(α13 − α24) = (α12 − α34),

−(α13 − α24) = −(α12 − α34), (46)

and we see that this set of observables cannot resolve the
phase ambiguity, since there are degenerate (or linearly de-
pendent) solutions (first and fourth solutions and second and
third solutions).

Now, from Eqs. (36)–(39), we note that the two relative
phases, φi j and φkl , involved in a given pair of observables
from the same group, have the following properties (m =
a, b, c):

(
Om

1±, Om
2∓

) = (
Om

1+, Om
2−

)
or

(
Om

1−, Om
2+

) −→
{
φi j − φkl −→ ζ dependent,
φi j + φkl −→ ζ independent,

(
Om

1±, Om
2±

) = (
Om

1+, Om
2+

)
or

(
Om

1−, Om
2−

) −→
{
φi j − φkl −→ ζ independent,
φi j + φkl −→ ζ dependent.

(47)

Then, from the pattern exhibited by the above three sets
of four observables worked out explicitly and with the help
of Eq. (47), we can easily determine those sets of two
pairs of observables for case (bb) that cannot resolve the
phase ambiguity. They are the sets which yield the phase
relations in Eq. (41) being ζ independent. All the other
sets do resolve the ambiguity. The results are displayed in
Table I.

It should be noted, however, that there is a restriction
to the fact that those sets of two pairs of observables
can resolve the phase ambiguity. For example, for the set
[(Oa

1+, Oa
2−), (Oc

1−, Oc
2−)], from Eqs. (44) and (45), it is clear

that when α13 = −α24 and/or α12 = α34 no ambiguity can
be resolved since the possible solutions become degenerate.
The same is true for the set [(Oa

1+, Oa
2−), (Oc

1+, Oc
2−)] when

α13 = −α24 and/or α12 = −α34. It is easy to see that, had
we considered the set [(Oa

1+, Oa
2+), (Oc

1+, Oc
2+)] instead, we

would have found that when α13 = α24 and/or α12 = α34 no
phase ambiguity can be resolved [cf. Eqs. (38) and (41a)].
Thus, in these situations, we need to measure one or two
more extra observables to be able to resolve the phase am-
biguity. For example, for the set of two pairs of observables
[(Oa

1+, Oa
2−), (Oc

1−, Oc
2−)], we require the extra observable

Oa
1− to resolve the ambiguity in the case α13 = −α24 and the

extra observable Oc
1+ in the case α12 = α34. If α13 = −α24

and α12 = α34, simultaneously, then we require both extra

observables Oa
1− and Oc

1+. Note that Oa
1+ differs by a sign

of relative phase φ24 from Oa
1−. This later feature is true

for all the observables of the form Om
1ν . Thus, for the sets

of two pairs of the form [(Oa
1±, Oa

2ν ), (Oc
1±, Oc

2ν ′ )], we need
the extra observable Oa

1∓ and/or Oc
1∓ (here the ± signs are

not independent) to completely resolve the phase ambiguity,
depending on whether α13 = ±α24 and/or α12 = ±α34. This
means that we need a minimum of five or six chosen observ-
ables, instead of four, to resolve the phase ambiguity in these
situations of equal magnitudes of the relative phases αi j . It is
straightforward to extended the above considerations to other
sets of two pairs of observables involving groups a and b, and
groups b and c. The results are given in Table I. Explicitly, the
equal-relative-phase-magnitudes relations for the sets of two
pairs of observables, in general, are

|α13| = |α24| and/or |α12| = |α34| (a ←→ c),

|α13| = |α24| and/or |α14| = |α23| (a ←→ b),

|α12| = |α34| and/or |α14| = |α23| (c ←→ b). (48)

Even with the additional observables as discussed above,
the ambiguity still will not be resolved if α13 = α24 = 0
and/or α12 = α34 = 0. The only way to resolve the phase
ambiguity in this case is to measure a set of eight chosen
double-spin observables to determine both cos φi j and sin φi j
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TABLE II. Sets of two pairs of double-spin observables for case (ab) mentioned in the text.
√ = do resolve. X = do not resolve.

Observables indicated outside the parentheses are the additional ones required in case the equal-relative-phase-magnitudes condition, as given
by Eq. (48), is met for the pairs of observables (in parentheses) that do resolve the phase ambiguity otherwise. The additional observable
required is either one of the observables indicated for each pair, except for those indicated with ∗∗, which require two additional observables.

(Oa
1+, Oa

1−), Oa
2± (Oa

2+, Oa
2−), Oa

1± (Ob
1+, Ob

1−), Ob
2± (Ob

2+, Ob
2−), Ob

1± (Oc
1+, Oc

1−), Oc
2± (Oc

2+, Oc
2−), Oc

1±
(G, F ), E/H (E , H ), G/F (Oz,Cx ),Cz/Ox (Cz, Ox ), Oz/Cx (Lx, Tz ), Lz/Tx (Lz, Tx ), Lx/Tz

(Oa
1+, Oa

2+), Oa
1−

√
**

√
** X X

(G, E ), F
(Oa

1+, Oa
2−), Oa

1− X X
√ √

(G, H ), F
(Oa

1−, Oa
2+), Oa

1+ X X
√ √

(F, E ), G
(Oa

1−, Oa
2−), Oa

1+
√

**
√

** X X
(F, H ), G

(Ob
1+, Ob

2+), Ob
1−

√
**

√
** X X

(Oz,Cz ),Cx

(Ob
1+, Ob

2−), Ob
1− X X

√
**

√
**

(Oz, Ox ),Cx

(Ob
1−, Ob

2+), Ob
1+ X X

√
**

√
**

(Cx,Cz ), Oz

(Ob
1−, Ob

2−), Ob
1+

√
**

√
** X X

(Cx, Ox ), Oz

(Oc
1+, Oc

2+), Oc
1− X X

√
**

√
**

(Lx, Lz ), Tz

(Oc
1+, Oc

2−), Oc
1−

√ √
X X

(Lx, Tx ), Tz

(Oc
1−, Oc

2+), Oc
1+

√ √
X X

(Tz, Lz ), Lx

(Oc
1−, Oc

2−), Oc
1+ X X

√
**

√
**

(Tz, Tx ), Lx

for all four relative phases φi j associated with the four basic
photoproduction amplitudes.

C. Case (ab)

We now turn attention to case (ab). In this case, it is
straightforward to see that any pair of double-spin observables
belonging to item (ii) that leads to the corresponding phase
relations as given by Eq. (41) being ζ dependent, resolves
the phase ambiguity, irrespective of the pair of observables
belonging to item (i). Otherwise the phase ambiguity cannot
be resolved. The results are displayed in Table II.

Analogous to the previous case (bb), here we have also
the restriction of no equal relative-phase magnitudes, |αi j |’s,
for the sets of two pairs of double-spin observables, as given
in Table II, to be able to resolve the phase ambiguity. This
case involves the pairs of observables (Om

n+, Om
n−) (n = 1, 2),

in addition to those encountered in case (bb).
In the case of [(Oa

1+, Oa
1−), (Oc

1+, Oc
2+)], e.g., from

Eqs. (34) and (41a), the extra observable required to resolve
the phase ambiguity is either Oa

2+ or Oa
2− when |α13| = |α24|.

Note that the relevant new pair of observables to help resolve
the phase ambiguity here is either (Oa

1+, Oa
2+) or (Oa

1−, Oa
2−)

[cf. Eqs. (38) and (36)]. When |α12| = |α34|, the extra observ-
able required is Oc

1− as in case (bb).
Now consider the set [(Oa

1+, Oa
1−), (Ob

1+, Ob
2+)]. In this

case, from Eqs. (34) and (41b), it requires both Oa
2+ and Oa

2−,
in addition, to resolve the phase ambiguity when |α13| = |α24|.
And, as above, extra observable Ob

1− when |α12| = |α34|.
The set [(Oc

1+, Oc
1−), (Ob

1+, Ob
2+)], from Eqs. (34) and

(41c), requires both Oc
2+ and Oc

2−, in addition, to resolve the
phase ambiguity when |α13| = |α24|, and Ob

1−, in addition,
when |α12| = |α34|.

The two pairs of observables involving (Oa
2+, Oa

2−), from
Eqs. (35) and (41), always require both Oa

1+ and Oa
1−, in

addition, to resolve the phase ambiguity when |α13| = |α24|,
irrespective of the other pair of observables from item (ii). The
latter requires one extra observable when the corresponding
relative phases have equal magnitudes.

We therefore see that in case (ab) the minimum number
of double-spin observables required to resolve the phase
ambiguity—when the magnitudes of the relative phases αi j

are equal—can be five, six or seven depending on the set of
two pairs of observables that, otherwise, resolves the phase
ambiguity. Based on the above considerations, the additional
observables required to resolve the phase ambiguity are indi-
cated in Table II.
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IV. PHASE FIXING FOR THE (2 + 1 + 1) CASE

We start by considering two observables from a given
group. For the sake of concreteness, consider the pair
(Oa

1+, Oa
1−) = (−G, F ). This pair of observables was exam-

ined in the previous section, with the phase ambiguity given
in Eqs. (8)and (9). Note that these two observables determine
sin φ13 and sin φ24 [cf. Eq. (8)]:

sin φ13 = Oa
1+ + Oa

1−
2B13

, sin φ24 = Oa
1+ − Oa

1−
2B24

. (49)

Appropriate combination of φλ
24 and φλ′

13 results in [cf.
Eq. (34)]

(
Oa

1+, Oa
1−

)
:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ+
24 − φ+

13 = (α24 − α13),

φ+
24 − φ−

13 = (α24 + α13) − π,

φ−
24 − φ+

13 = −(α24 + α13) + π,

φ−
24 − φ−

13 = −(α24 − α13).

(50)

Now we consider two observables from the remaining
two groups, b = BR and c = T R. For a given observable
in one of these two groups, say c = T R, there will be four
possible combinations of the pairs of observables one can
form involving another observable from group b = BR [cf
Eqs. (4) and (5)]. For example, for the observable Oc

1+, we
have the combinations (Ob

1−, Oc
1+), (Ob

1+, Oc
1+), (Ob

2−, Oc
1+),

and (Ob
2+, Oc

1+).

A. (Ob
1±, Oc

1±)

We start by considering the pair (Ob
1−, Oc

1+) =
(−Cx,−Lx ). From Eqs. (4) and (5),

Ob
1− = B14 sin φ14 − B23 sin φ23,

Oc
1+ = B12 sin φ12 + B34 sin φ34. (51)

Expressing φ14 and φ23 as

φ14 = φ24 + φ12,

φ23 = φ13 − φ12, (52)

we have

Ob
1− = Ac sin φ12 + As cos φ12, (53)

with

Ac ≡ B14 cos φ24 + B23 cos φ13,

As ≡ B14 sin φ24 − B23 sin φ13.
(54)

Using cos φi j = ±
√

1 − sin2 φi j , we solve Eq. (53) for sin φ12

to obtain

sin φ12 =
AcOb

1− ± As

√
D2 − (

Ob
1−

)
2

D2
, (55)

with

D2 ≡ A2
c + A2

s = B2
14 + B2

23 + 2B14B23 cos(φ24 + φ13). (56)

We now note that, while As is uniquely determined [cf.
Eq. (49)], Ac has a fourfold ambiguity because knowing only

sin φi j implies that cos φi j is known up to a sign. In particular,
according to the notation of (9),

knowing sin φλ
i j �⇒ cos φλ

i j = λ cos αi j . (57)

Since Ac depends on cos φλ
24 and cos φλ′

13 [cf. Eq. (54)], we
introduce the notations Aλλ′

c and Dλλ′ 2, such that

Aλλ′
c = B14 cos φλ

24 + B23 cos φλ′
13,

Dλλ′ 2 = B2
14 + B2

23 + 2B14B23 cos
(
φλ

24 + φλ′
13

)
.

(58)

and, from Eq. (55), we see that φ12, in turn, depends on λ and
λ′, i.e.,

sin φλλ′
12 (η) =

Aλλ′
c Ob

1− + η As

√
Dλλ′ 2 − (

Ob
1−

)
2

Dλλ′ 2
, (59)

where η takes the values ±1.
Due to Eq. (57), it is clear that

A++
c = −A−−

c and A+−
c = −A−+

c ,

D++ 2 = D−− 2 and D+− 2 = D−+ 2. (60)

Then, we have

sin φ++
12 (η) =

A++
c Ob

1− + η As

√
D++ 2 − (

Ob
1−

)
2

D++ 2
,

sin φ+−
12 (η) =

A+−
c Ob

1− + η As

√
D+− 2 − (

Ob
1−

)
2

D+− 2
,

sin φ−+
12 (η) =

−A+−
c Ob

1− + η As

√
D+− 2 − (

Ob
1−

)
2

D+− 2
,

sin φ−−
12 (η) =

−A++
c Ob

1− + η As

√
D++ 2 − (

Ob
1−

)
2

D++ 2
. (61)

From the above results, we see that there are, in general,
eight possible sin φλλ′

12 (η)’s (recall that λ, λ′, and η take two
possible values each), and each of them leads to a twofold
ambiguity

φλλ′
12 (η) =

{
αλλ′

12 (η),
π − αλλ′

12 (η).
(62)

An inspection of Eq. (61) reveals that

sin φ++
12 (±) = − sin φ−−

12 (∓),

sin φ+−
12 (±) = − sin φ−+

12 (∓), (63)

and, consequently,

α++
12 (±) = −α−−

12 (∓) and α+−
12 (±) = −α−+

12 (∓). (64)

Note that since all sin φλλ′
12 (η)’s are distinct from each other,

so are αλλ′
12 (η)’s.

Now, taking the equation for Oc
1+ in (51) and solving for

sin φ34 yields

sin φλλ′
34 (η) = Oc

1+ − B12 sin φλλ′
12 (η)

B34
, (65)

where we have displayed all the indices of the relative phases
φ12 and φ34 explicitly. The above result leads to the twofold
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ambiguity

φλλ′
34 (η) =

{
αλλ′

34 (η),
π − αλλ′

34 (η),
(66)

with all eight αλλ′
34 (η)’s being distinct from each other to

the extent that sin φλλ′
12 (η)’s are. However, αλλ′

34 (η) lacks the
symmetry exhibited by αλλ′

12 (η) in Eq. (64), i.e., αλλ′
34 (η)’s are

not related to each other in general.
Appropriate combinations of the relative phases φλλ′

34 (η)
and φλλ′

12 (η) involved in each pair contain, in general, a four-
fold ambiguity of the form given by

φλλ′
34 (η) − φλλ′

12 (η) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
αλλ′

34 (η) − αλλ′
12 (η)

)
,(

αλλ′
34 (η) + αλλ′

12 (η)
) − π,

−(
αλλ′

34 (η) + αλλ′
12 (η)

) + π,

−(
αλλ′

34 (η) − αλλ′
12 (η)

)
,

(67)

for a given set of {λ, λ′, η} (note that λ, λ′, and η take two
possible values each).

At this stage, in analogy to what we have done in the
(2 + 2) case in the previous section, we invoke the consistency
relation (40) reexpressed as [cf. Eq. (41a)]

φλ
24 − φλ′

13 = φλλ′
34 (η) − φλλ′

12 (η). (68)

Inserting Eq. (67) into the above equation, we arrive at the
possible solutions

φλ
24 − φλ′

13 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
αλλ′

34 (η) − αλλ′
12 (η)

)
,(

αλλ′
34 (η) + αλλ′

12 (η)
) − π,

−(
αλλ′

34 (η) + αλλ′
12 (η)

) + π,

−(
αλλ′

34 (η) − αλλ′
12 (η)

)
,

(69)

for a given set of {λ, λ′, η}. The left-hand side of the above
equation is given by Eq. (50). Since λ, λ′, and η take two pos-
sible values each, we have 2 × 2 = 4 distinct combinations on
the left-hand side of the above equation [cf. Eq. (50)] and, on
the right-hand side, we have 4 × 2 = 8 distinct combinations.
This is a total of 4 × 8 = 32 possible solutions. It happens
that these 32 solutions are all linearly independent, i.e., there
are no degenerate solutions among them. This follows from
the fact that all sin φλλ′

34 (η)’s—and, in turn, all αλλ′
34 (η)’s—are

distinct from each other as pointed out previously [see below
Eq. (66)]. Thus, once the unique values of α13, α24, and
the associated αλλ′

12 (η) and αλλ′
34 (η) are provided by the mea-

surements of the observables [(Oa
1+, Oa

1+), (Ob
1−, Oc

1+)], there
will be only one solution satisfying the consistency relation
(68). Therefore, we conclude that this set of observables will
resolve the phase ambiguity.

It is clear that the preceding results for the pair of
observables (Ob

1−, Oc
1+) actually hold for any of the pairs

(Ob
1±, Oc

1±), with the signs ± being independent, since the
only difference is the sign change of B23 and/or B34 according
to the particular combination of the observables in the pair
considered. These sign changes do not affect any of the
properties exhibited by the phases αλλ′

12 (η) and αλλ′
34 (η). Thus,

any one of the pairs of observables (Ob
1±, Oc

1±), together with
the pair (Oa

1+, Oa
1−), can resolve the phase ambiguity of the

transversity amplitude.

B. (Ob
2±, Oc

1±)

We now consider the pair (Ob
2−, Oc

1+) = (−Ox,−Lx ),

Ob
2− = B14 cos φ14 − B23 cos φ23,

Oc
1+ = B12 sin φ12 + B34 sin φ34. (70)

In this case, inserting Eq. (52) into the expression for Ob
2− in

the above equation, yields

Ob
2− = Ac cos φ12 − As sin φ12, (71)

with

Ac ≡ B14 cos φ24 − B23 cos φ13,

As ≡ B14 sin φ24 + B23 sin φ13. (72)

Solving Eq. (71) for sin φ12, we have

sin φ12 =
−Ob

2− As ± Ac

√
D2 − (

Ob
2−

)
2

D2
, (73)

where

D2 ≡ A2
c + A2

s = B2
14 + B2

23 − 2B14B23 cos(φ24 + φ13). (74)

Using the same notation introduced in Eq. (58), we write
Eq. (73) as

sin φλλ′
12 (η) =

−Ob
2− As + η Aλλ′

c

√
Dλλ′ 2 − (

Ob
2−

)
2

Dλλ′ 2
. (75)

Noticing that both Aλλ′
c and Dλλ′ 2 here have the same symme-

try as in Eq. (60), we can verify in this case that

sin φ++
12 (±) = sin φ−−

12 (∓),

sin φ+−
12 (±) = sin φ−+

12 (∓), (76)

and, consequently,

α++
12 (±) = α−−

12 (∓) and α+−
12 (±) = α−+

12 (∓). (77)

Also note that, for a given set of {λ, λ′, η}, Eq. (75) leads to a
twofold phase ambiguity as given by Eq. (62).

Solving now the equation for Oc
1+ in (70) for sin φ34, we

have

sin φλλ′
34 (η) = Oc

1+ − B12 sin φλλ′
12 (η)

B34
, (78)

leading to a twofold phase ambiguity as given by Eq. (66).
Here we note that, unlike in the case of the pair of observables
(Ob

1−, Oc
1+), where sin φλλ′

34 (η) has no symmetry, this quantity
given by Eq. (78) above exhibits the following symmetry:

sin φ++
34 (±) = sin φ−−

34 (∓),

sin φ+−
34 (±) = sin φ−+

34 (∓), (79)

where Eq. (76) has been used. Consequently,

α++
34 (±) = α−−

34 (∓) and α+−
34 (±) = α−+

34 (∓). (80)

The relative phases αλλ′
12 (η) and αλλ′

34 (η) derived here,
with the symmetry properties given by Eqs. (77) and (80),
should obey Eq. (69). It happens that the set of pairs
[(Ob

2−, Oc
1+), (Oa

1+, Oa
1−)] cannot resolve the phase ambiguity.

To see this, it suffices to consider the following two particular
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solutions from Eq. (69):
φ+

24 − φ+
13 = α++

34 (+) − α++
12 (+) �⇒ (α24 − α13) = [α++

34 (+) − α++
12 (+)],

φ−
24 − φ−

13 = α−−
34 (−) − α−−

12 (−) �⇒ −(α24 − α13) = −[α++
34 (+) − α++

12 (+)], (81)

where we have made use of Eqs. (50), (77), and (80). This
shows that these solutions are linearly dependent (degenerate)
and, consequently, the set of observables in consideration can-
not resolve the phase ambiguity. Degeneracy of the solutions
involving α+−

i j (±) and α−+
i j (∓) also occurs.

The above consideration shows that any of the pairs of
observables (Ob

2±, Oc
1±), together with the pair (Oa

1+, Oa
1−),

cannot resolve the phase ambiguity of the transversity ampli-
tude.

C. (Ob
2±, Oc

2±)

For (Ob
2−, Oc

2+) = (−Ox,−Lz ),

Ob
2− = B14 cos φ14 − B23 cos φ23,

Oc
2+ = B12 cos φ12 + B34 cos φ34, (82)

proceeding analogously to the case of (Ob
1−, Oc

1+), we have

cos φλλ′
12 (η) =

Aλλ′
c Ob

2− + η As

√
Dλλ′ 2 − (

Ob
2−

)
2

Dλλ′ 2
, (83)

where

As = B14 sin φ24 + B23 sin φ13,

Aλλ′
c = B14 cos φλ

24 − B23 cos φλ′
13,

Dλλ′ 2 = B2
14 + B2

23 − 2B14B23 cos
(
φλ

24 + φλ′
13

)
. (84)

It is clear that cosλλ′
12 (η) above exhibits the symmetry

cos φ++
12 (±) = − cos φ−−

12 (∓),

cos φ+−
12 (±) = − cos φ−+

12 (∓),
(85)

and, consequently,

α++
12 (±) = π + α−−

12 (∓) and α+−
12 (±) = π + α−+

12 (∓).

(86)

Now, solving the equation for Oc
2+ in (82) for cos φ23 yields

cos φλλ′
34 (η) = Oc

2+ − B12 cos φλλ′
12 (η)

B34
, (87)

which reveals that all eight possible values of it are distinct.
Consequently, all αλλ′

34 (η)’s are distinct, resulting in linear
independence of all possible solutions from the consistency
relation (41a). Then, it follows that any pair of observables
of the form (Ob

2±, Oc
2±) together with the pair (Oa

1+, Oa
1−) can

resolve the phase ambiguity.
Summarizing the results obtained in this section so far, we

have

(
Oa

1+, Oa
1−

)
and

(
Ob

n±, Oc
n±

)
(n = 1, 2) → do resolve the ambiguity,(

Oa
1+, Oa

1−
)

and
(
Ob

2±, Oc
1±

) → do not resolve the ambiguity. (88)

In the above relations, the ± signs are independent.

D. (Oa
2+, Oa

2−)

We now turn attention to the case of the pair of observables
from group a being (Oa

2+, Oa
2−) = (E , H ),

Oa
2+ = B13 cos φ13 + B24 cos φ24,

Oa
2− = B13 cos φ13 − B24 cos φ24. (89)

The difference from the previous case of (Oa
1+, Oa

1−) is
that (Oa

2+, Oa
2−) determines cos φ24 and cos φ13 uniquely, in-

stead of sin φ24 and sin φ13. This implies that, for the pair
(Ob

1−, Oc
1+), the quantity Ac defined in Eq. (54) becomes

uniquely determined, while As will have a fourfold ambiguity
and the quantity D2 in Eq. (56) depends on (λλ′), but remains
unchanged otherwise, viz.,

Ac = B14 cos φ24 + B23 cos φ13,

Aλλ′
s = B14 sin φλ

24 − B23 sin φλ′
13,

Dλλ′ 2 = B2
14 + B2

23 + 2B14B23 cos
(
φλ

24 + φλ′
13

)
. (90)

Then, Eq. (59) changes to

sin φλλ′
12 (η) =

AcOb
1− + η Aλλ′

s

√
Dλλ′ 2 − (

Ob
1−

)
2

Dλλ′ 2
. (91)

Analogously, for the pair (Ob
2−, Oc

1+), Eq. (75) changes to

sin φλλ′
12 (η) =

−Ob
2− Aλλ′

s + η Ac

√
Dλλ′ 2 − (

Ob
2−

)
2

Dλλ′ 2
. (92)

In the above equation Ac, Aλλ′
c and Dλλ′ 2 are given by Eq. (90)

except for the change in the sign of B23.
It then, follows that the symmetry properties of sin φλλ′

12 (η)
given in the above two equations have interchanged from
the corresponding quantities in the case of (Oa

1+, Oa
1−). This,

in turn, interchanges the property of αλλ′
34 (η). One can now

see that the role of (Ob
1±, Oc

1±) and (Ob
2±, Oc

1±) interchanges
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in Eq. (88), i.e., (
Oa

2+, Oa
2−

)
and (Ob

n±, Oc
n±) (n = 1, 2) → do not resolve the ambiguity,(

Oa
2+, Oa

2−
)

and (Ob
2±, Oc

1±) → do resolve the ambiguity. (93)

E. (Oa
1±, Oa

2±)

In the case of (Oa
1±, Oa

2∓) (here the signs ± are not inde-
pendent), we note that φλ

24 − φλ′
13 is ζ dependent [cf. Eqs. (37)

and (39)]. Therefore, in this case, the phase ambiguity will
be resolved because the possible solutions in Eq. (69) will
all be linearly independent. For the case of (Oa

1±, Oa
2±) (not

independent ± signs), however, φλ
24 − φλ′

13 is ζ independent
[cf. Eqs. (36) and (38)] and the above argument valid for
(Oa

1±, Oa
2∓) does not apply. However, it happens that the

relative phases φ24 and φ13 in the (Oa
1±, Oa

2±) case are given
by [cf. Eqs. (28) and (33)]{

φ13 = −ζ + α13,

φ24 = −ζ + α24 − δ+π
(94)

or {
φ13 = −ζ − α13 + π,

φ24 = −ζ − α24 + δ−π
(95)

with twofold ambiguity. δ+ = 1 and δ− = 0 for (Oa
1+, Oa

2+)
and δ+ = 0 and δ− = 1 for (Oa

1−, Oa
2−). It is then easy to

see that all cos φi j (i j = 24, 34) are distinct from each other.
The same is true for sin φi j . This implies that the quantities
Ac and As entering into Eqs. (59) and (75) have all distinct
values, in general, as can be seen from their definitions in
Eqs. (54) and (72) for the cases (Ob

1−, Oc
1+) and (Ob

2−, Oc
1+),

respectively. Hence, all the phases αλλ′
12 (η) and αλλ′

34 (η) enter-
ing into Eq. (69) assume distinct values in general, resulting
in linearly independent possible solutions. Consequently, the
phase ambiguity can be resolved with the pairs (Oa

1±, Oa
2±) as

well.
We conclude that any pair of the form (Oa

1±, Oa
2±), together

with any pair of the form (Ob
1±, Oc

1±) or (Ob
2±, Oc

1±), will
resolve the phase ambiguity. Here all the signs ± are inde-
pendent.

This completes the analysis of all possible (2 + 1 + 1)
cases. Collecting the results for all the possibilities, the fol-
lowing sets of four observables will resolve the phase ambi-
guity in the (2 + 1 + 1) case:

(i) (Oa
1+ , Oa

1−) and [(Ob
1±, Oc

1±) or (Ob
2±, Oc

2±)].
(ii) (Oa

1± , Oa
2±) and [(Ob

1±, Oc
1±) or (Ob

2±, Oc
2±) or

(Ob
2±, Oc

1±)].
(iii) (Oa

2+ , Oa
2−) and (Ob

2±, Oc
1±).

with any permutation of a, b, c. Here, the ± signs are all
independent. The results are displayed in Table III for the case
[2(a) + 1(b) + 1(c)]. Other combinations can be obtained by
an appropriate permutation of a, b, c.

As in the (2 + 2) case discussed in preceding Sec. III,
here one has also the restriction of no equal-relative-phase-
magnitudes in order to enable the sets of two pairs of observ-
ables, as given in Table III, to resolve the phase ambiguity.

Analogous considerations for the (2 + 2) case allows one to
identify the additional observables required to resolve the
phase ambiguity when this restriction is not met. They are
indicated also in Table III for the case [2(a) + 1(b) + 1(c)].

V. PHASE FIXING FOR THE (3 + 1) AND 4 CASES

It is straightforward to show that no sets of observables
with the (3 + 1) or 4 cases can resolve the phase ambiguity.

Consider the (3 + 1) case of three observables from,
say, group a = BT and one from group b = BR. Then,
from Eqs. (3) and (4), one has the following possi-
ble sets of four observables: [(Oa

nν, Oa
n′ν ′ ), (Oa

n′′ν ′′ , Ob
n′′′ν ′′′ )],

with [n, n′, n′′, n′′′ = 1, 2; ν, ν ′, ν ′′, ν ′′′ = ± and (n, ν) �=
(n′, ν ′) and (n′′, ν ′′) �= (n, ν), (n′, ν ′)]. For concreteness, con-
sider the set [(Oa

1+, Oa
1−), (Oa

2+, Ob
1+)]. The pair of observ-

ables (Oa
1+, Oa

1−) determines sin φ13 and sin φ24 uniquely,
yielding the twofold ambiguity for each of the relative phases
φ13 and φ24 as given by Eq. (8). This, then, leads to the
following four possible expressions for the observable Oa

2+:

Oa
2+ = B13 cos φ13 + B24 cos φ24

=

⎧⎪⎨
⎪⎩

B13 cos α13 + B24 cos α24,

B13 cos α13 − B24 cos α24,

−(B13 cos α13 + B24 cos α24),
−(B13 cos α13 − B24 cos α24),

(96)

where Eq. (57) has been used. Since these expressions are
all linearly independent, only one of them will be satisfied—
except perhaps for a few special cases—once Oa

2+ is mea-
sured. That is, Oa

2+ should in principle be able to resolve
the discrete ambiguities of φ13 and φ24. The remaining
observable Ob

1+,

Ob
1+ = B14 sin φ14 + B23 sin φ23, (97)

however, can determine neither φ14 nor φ23, one of which is
needed, in addition to φ13 and φ24, for resolving the phase
ambiguity of the transversity amplitude up to an arbitrary
phase. The analogous reasoning applies to all other sets of
four observables in the (3 + 1) case. The reader may convince
himself/herself that none of these sets are capable of resolving
the phase ambiguity.

In the case of four observables from one given group (4)
case, say, [(Oa

1+, Oa
1−), (Oa

2+, Oa
2−)], it is clear from Eq. (3)

that they determine the relative phases φ13 and φ24 uniquely,
but no information about a third relative phase is available for
resolving the phase ambiguity.

VI. IDENTIFYING WHEN THE
EQUAL-RELATIVE-PHASE-MAGNITUDES

CONDITION OCCURS

As seen in Secs. III and IV, the completeness condition
for a set of four double-spin observables to resolve the phase

035208-12



EXPLICIT DERIVATION OF THE COMPLETENESS … PHYSICAL REVIEW C 100, 035208 (2019)

TABLE III. Sets of two pairs of double-spin observables for case [2(a) + 1(b) + 1(c)]. Other combinations can be obtained by appropriate
permutations of the indices a, b, c.

√ = do resolve. X = do not resolve. Observables indicated outside the parentheses are the additional ones
required in case the equal-relative-phase-magnitudes condition, as given by Eq. (48), is met for the pairs of observables (in parentheses) that
do resolve the phase ambiguity otherwise. The additional observable required is either one of the observables indicated for each pair, except
for those marked with ∗∗, which require any two additional observables from those indicated.

(Oa
1+, Oa

1−), Oa
2± (Oa

1+, Oa
2+), Oa

1− (Oa
1+, Oa

2−), Oa
1− (Oa

1−, Oa
2+), Oa

1+ (Oa
1−, Oc

2−), Oa
1+ (Oa

2+, Oa
2−), Oa

1±
(G, F ), E/H (G, E ), F (G, H ), F (F, E ), G (F, H ), G (E , H ), G/F

Ob
1−/Oc

1−, (Ob
1+, Oc

1+)
√ √ √ √ √

X
Cx/Tz, (Oz, Lx )
Ob

1−/Oc
1+, (Ob

1+, Oc
1−)

√ √ √ √ √
X

Cx/Lx, (Oz, Tz )

Ob
1−, (Ob

1+, Oc
2+) X

√ √ √ √ √
**

Cx, (Oz, Lz )

Ob
1−, (Ob

1+, Oc
2−) X

√ √ √ √ √
**

Cx, (Oz, Tx )

Ob
1+/Oc

1−, (Ob
1−, Oc

1+)
√ √ √ √ √

X

Oz/Tz, (Cx, Lx )

Ob
1+/Oc

1+, (Ob
1−, Oc

1−)
√ √ √ √ √

X

Oz/Lx, (Cx, Tz )

Ob
1+, (Ob

1−, Oc
2+) X

√ √ √ √ √
**

Oz, (Cx, Lz )

Ob
1+, (Ob

1−, Oc
2−) X

√ √ √ √ √
**

Oz, (Cx, Tx )

Oc
1−, (Ob

2+, Oc
1+) X

√ √ √ √ √
**

Tz, (Cz, Lx )

Oc
1+(Ob

2+, Oc
1−) X

√ √ √ √ √
**

Lx, (Cz, Tz )

Ob
1±/Oc

1±, (Ob
2+, Oc

2+) **
√

**
√ √ √ √

X

(Cz, Lz )

Ob
1±/Oc

1±, (Ob
2+, Oc

2−) **
√

**
√ √ √ √

X

(Cz, Tx )

Oc
1−, (Ob

2−, Oc
1+) X

√ √ √ √ √
**

Tz, (Ox, Lx )

Oc
1+, (Ob

2−, Oc
1−) X

√ √ √ √ √
**

Lx, (Ox, Tz )

Ob
1±/Oc

1±, (Ob
2−, Oc

2+) **
√

**
√ √ √ √

X

(Ox, Lz )

Ob
1±/Oc

1±, (Ob
2−, Oc

2−) **
√

**
√ √ √ √

X

(Ox, Tx )

ambiguity of the transversity amplitude holds, provided the
equal-relative-phase-magnitudes relation [cf. Eq. (48)] is not
met. This restriction would not cause a significant problem if
this is a rarely occurring situation. However, we find no reason
a priori to expect that this is indeed a rare case. This forces one
to verify if the no equal-relative-phase-magnitudes condition
is met for each kinematics (total energy of the system and me-
son production angle) where the four double-spin observables
are measured, for the completeness argument that only four
carefully selected double-spin observables are needed. Can

one know when the equal-magnitudes relation is realized? The
answer to this question is yes, as we show in the following.

To be concrete, consider the pair of observables of the form
(Oa

n±, Oa
n∓) (n = 1, 2), from Eqs. (7), (8), and (10). When the

corresponding phases satisfy α13 = ±α24, these observables
obey the relation

B13
(
Oa

n± − Oa
n∓

) = ±B24
(
Oa

n± + Oa
n∓

)
. (98)

Hence, by measuring the cross section and single-spin ob-
servables (which determine B13 and B24) and the double-spin
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observables in the above equation, we will be able to gauge if
the equal-magnitudes relation, |α13| = |α24|, is met. Note that
in the particular case of α13 = α24 = 0, we have

Oa
1+ = Oa

1− = 0 and
Oa

2−
Oa

2+
= B13 − B24

B13 + B24
. (99)

For the pair of observables of the form (Oa
1±, Oa

2±) (± signs
are independent), from Eq. (22), when α13 = ±α24, we have

Oa
1±

2 + Oa
2±

2 = (B13 ∓ B24)2. (100)

Note that the ± sign on the right-hand side of the above
equation goes with the ± sign of α24. In the particular case
of α13 = α24 = 0, we have

Oa
1± = Oa

2± = 0 and B13 = ±B24. (101)

For the pair (Ob
1−, Oc

1+), when αλλ′
12 (η) = ±αλλ′

34 (η), we
have, from Eqs. (59) and (65),

Aλλ′
c Ob

1− + η As

√
Dλλ′ 2 − (

Ob
1−

)
2

Dλλ′ 2
= Oc

1+
B12 ± B34

, (102)

where Aλλ′
c , As, and Dλλ′ 2 are given by Eqs. (54) and (59). In

the particular case of αλλ′
12 (η) = αλλ′

34 (η) = 0, we have

Oc
1+ = 0 and

∣∣Ob
1−

∣∣ = |As|, (103)

where Eq. (56) has been used too. Equations (102) and (103)
hold for all the pairs of observables of the form (Ob

n±, Oc
n±)

(n = 1, 2 and ± signs are independent) with the appropriate
signs of B23 and B34 in Aλλ′

c , As, and Dλλ′ 2, and also of B12

and B34.
Analogously, for the pair (Ob

2−, Oc
1+), from Eqs. (75) and

(78), we obtain when αλλ′
12 (η) = ±αλλ′

34 (η)

−Aλλ′
s Ob

2− + η Ac

√
Dλλ′ 2 − (

Ob
2−

)
2

Dλλ′ 2
= Oc

1+
B12 ± B34

, (104)

where Aλλ′
s , Ac, and Dλλ′ 2 are given by Eqs. (72) and (74). In

the particular case of αλλ′
12 (η) = αλλ′

34 (η) = 0, we have

Oc
1+ = 0 and

∣∣Ob
2−

∣∣ = |Ac|. (105)

Equations (104) and (105) hold for all the pairs of observables
of the form (Ob

2±, Oc
1±) (± signs are independent) with the

appropriate signs of B23 and B34 in Aλλ′
c , As, and Dλλ′ 2, and

also of B12 and B34.
Equations (98)–(105) enable one to gauge when the equal-

relative-phase-magnitudes relation is met for any of the sets of
two pairs of observables as listed in Table I, II, and III, which,
otherwise, can resolve the phase ambiguity.

VII. SUMMARY

By revealing and exploiting the underlying symmetries
of the relative phases of the pseudoscalar photoproduction
amplitude, we have provided a consistent and explicit math-
ematical derivation of the completeness condition for the
observables in this reaction covering all the relevant cases.
In particular, we have determined all the possible sets of
four observables that resolve the phase ambiguity of the

transversity amplitude up to an overall phase. The present
work substantiates and corroborates the original findings of
Ref. [3]. However, the completeness condition of a set of four
double-spin observables to resolve the phase ambiguity holds
only if the relative phases do not have equal magnitudes as
specified in Eq. (48). In situations where the equal-magnitudes
condition occurs, we have shown that one or two or even
three extra chosen observables are required, depending on the
particular set of two pairs of observables considered, as given
in Tables I, II, and III, resulting in five or six or seven as the
minimum number of chosen double-spin observables required
to resolve the phase ambiguity. In the particular case of
vanishing relative phases, one needs eight chosen observables
to resolve the phase ambiguity. This results in a minimum of
up to twelve chosen observables to determine the amplitude
up to an overall phase: four, to determine the magnitudes of
the basic four transversity amplitudes that comprise the full
photoproduction amplitude, and up to eight more to resolve
the phase ambiguity depending on the particular set of four
double-spin observables.

To apply the argument of the completeness condition of a
set of four double-spin observables to resolve the phase ambi-
guity of the photoproduction amplitude, we need to make sure
that the restriction of no equal-relative-phase-magnitudes, as
specified in Eq. (48), is satisfied. We have shown that it is
possible to gauge whether this restriction is satisfied or not for
each kinematics where the set of four double-spin observables
is measured, because these observables obey the well defined
relationships that are unique to the case of equal-relative-
phase-magnitudes, as seen in Sec.VI.

We also remark that quantum mechanics does not allow
one to determine the overall phase of the reaction amplitude
from experiment. For this, some physics input is required.
This fact must have a strong impact on partial-wave analysis in
the context of complete experiments for extracting the baryon
resonances since, if the overall phase of the amplitude is
unknown, the corresponding partial-wave amplitude is an ill
defined quantity. The issues related to the unknown overall
phase have been discussed earlier by several authors. In par-
ticular, Omelaenko [15] mentioned the overall phase problem
for photoproduction in the summary section of his paper
on discrete ambiguities in truncated partial-wave analysis. In
the classic review paper by Bowcock and Burkhardt [16],
this problem is discussed as well. Dean and Lee [17] also
investigated this problem mainly for the formalism of πN
scattering. Two recent publications [18,19] treat the same
problem, but mostly in the simpler context of spinless particle
scattering.

Finally, the present type of analysis may be applied to
other reaction processes where the interest in determining the
complete experiments exists.
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