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Pure spin-3/2 representation with consistent interactions
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We have investigated the use of a pure spin-3/2 propagator with consistent interaction Lagrangians to
describe the property of spin-3/2 resonance. For this purpose, we use the antisymmetric tensor spinor
representation. By using the primary and secondary constraints, we obtain the interaction fields that have the
correct degrees of freedom. To visualize the result, we calculate the contribution of spin-3/2 � resonance to
the total cross section of pion scattering and pion photoproduction off the nucleon. The result confirms that
the scattering and photoproduction amplitudes obtained from the pure spin-3/2 representation with consistent
interaction Lagrangians exhibit the required property of resonance. Therefore, the formalism can be used for
phenomenological investigations in the realm of nuclear and particle physics.
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I. INTRODUCTION

In nuclear and particle physics, the formulation of spin-3/2
particle constitutes an arduous and long-standing problem. So
far, such a particle is commonly represented by the Rarita-
Schwinger (RS) field [1], which is described by the tensor
product of vector ( 1

2 , 1
2 ) and Dirac ( 1

2 , 0) ⊕ (0, 1
2 ) fields.

Mathematically, the result of this product is well known, i.e.,
(1, 1

2 ) ⊕ ( 1
2 , 1) ⊕ ( 1

2 , 0) ⊕ (0, 1
2 ) [2], which shows that the RS

field contains two fields: the (1, 1
2 ) ⊕ ( 1

2 , 1) and the Dirac
fields. The latter can be eliminated by using an orthogonality
relation and as a result we obtain a spin-3/2 field that simul-
taneously contains a spin-1/2 background: the (1, 1

2 ) ⊕ ( 1
2 , 1)

field.
The RS field has also another fundamental problem called

the Velo-Zwanziger problem [3]. This problem originates
from the noncausal propagation of the wave front when the
derivative terms of the RS field are gauged with the electro-
magnetic field. It was shown that the Velo-Zwanziger problem
is related to the violation of constraints [4]. The interaction
of spin-3/2 field with other fields should be constructed to
have the same symmetry as the free field Lagrangian in order
to preserve the correct degrees of freedom. For example, the
earliest version of the πN� coupling that has an off-shell
parameter [5] does not possess the local symmetry of the
RS field [6]. Such a problem could be solved by introduc-
ing the gauge-invariant (GI) interaction to decouple the un-
physical spin-1/2 background from the calculated transition
amplitude [6].

Actually, the formalism of spin-3/2 particle can be pre-
sented by the pure spin-3/2 field ( 3

2 , 0) ⊕ (0, 3
2 ), which is

clearly free from the spin-1/2 background. However, the
problem with this field is that it uses an eight-dimensional
spinor since the spin-3/2 operator is represented by 4 × 4
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matrices. The free eight-dimensional field has been formu-
lated by Weinberg [7], and it was still intricate enough to
construct the corresponding interaction Lagrangian due to the
noncovariant form of the eight-dimensional field, until Acosta
et al. [8] could embed the pure spin-3/2 field into a totally
antisymmetric tensor of second rank. Since the components
of the tensor are spinor, such representation is called the
antisymmetric tensor spinor (ATS). The ATS representation is
formed by a tensor product of antisymmetric field and Dirac
spinor

[(1, 0) ⊕ (0, 1)] ⊗ [(
1
2 , 0

) ⊕ (
0, 1

2

)]
= [(

3
2 , 0

) ⊕ (
0, 3

2

)] ⊕ [(
1, 1

2

) ⊕ (
1
2 , 1

)]
⊕[(

1
2 , 0

) ⊕ (
0, 1

2

)]
. (1)

In the ATS representation, the pure spin-3/2 field is projected
out by the Lorentz projection operator.

In the previous paper, we have briefly reported the use
of pure spin-3/2 propagator to describe the � resonance in
the πN scattering [9]. It was shown that the conventional
GI interaction Lagrangian cannot describe the resonance be-
havior of the spin-3/2 � baryon, unless the interaction was
modified by adding an extra momentum dependence. Obvi-
ously, there was a lack of theoretical basis to support this
solution. Furthermore, the theoretical consistency of such an
ad hoc interaction Lagrangian could be questioned. In this
paper, we present the complete results of our investigation
on the pure spin-3/2 formalism. We first discuss the ATS
formalism and its problem in describing the properties of
a resonance. In Ref. [8], this problem was not observed
since the proposed phenomenological application is Compton
scattering, in which the spin-3/2 particle is on shell and
does not resonate. For the sake of simplicity, we choose
the π -N scattering to visualize the present problem. Then,
we search for the consistency requirement in the interaction
Lagrangians and present an example of consistent interaction
Lagrangians for hadronic and electromagnetic interactions.
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By using these Lagrangians and the pure spin-3/2 propagator,
we show that this formalism can be used for the purpose of
phenomenological applications.

We organize this paper as follows. In Sec. II, we present
the formalism of ATS and the corresponding problem to
describe the resonance properties. In Sec. III, we explain the
construction of consistent interaction Lagrangians. Section IV
exhibits the numerical result and visualization of the reso-
nance behavior of the pure spin-3/2 representation in the
pion scattering and pion photoproduction processes. Finally,
in Sec. V, we summarize our investigation and conclude our
findings.

II. ATS AND ITS PROBLEM

In what follows, we briefly summarize the ATS formalism
and show that this formalism has trouble describing the prop-
erties of a resonance. We have discussed this topic in our pre-
vious Rapid Communication [9]. Let us start with the Casimir
operator F = 1

4 JμνJμν with Jμν being the angular momentum
operator. For the field |(a, b)〉, this Casimir operator has the
eigenvalue equation

F |(a, b)〉 = C(a, b)|(a, b)〉, (2)

with the eigenvalue C(a, b) = a(a + 1) + b(b + 1). By using
this Casimir operator, we can construct the projection operator
that can remove the (1, 1

2 ) ⊕ ( 1
2 , 1) and ( 1

2 , 0) ⊕ (0, 1
2 ) fields

from the ATS. The projection operator reads

P =
[
F − C

(
1, 1

2

)][
F − C

(
1
2 , 0

)]
[
C

(
3
2 , 0

) − C
(
1, 1

2

)][
C

(
3
2 , 0

) − C
(

1
2 , 0

)] . (3)

Acosta et al. [8] have shown that this projection operator can
be written as

Pαβγ δ = 1
8 (σαβσγ δ + σγ δσαβ ) − 1

12σαβσγ δ , (4)

with

σαβ = i

2
[γα, γβ ] . (5)

This projection operator assures that the ATS formalism has
only the ( 3

2 , 0) ⊕ (0, 3
2 ) representation. In the ATS represen-

tation, the pure spin-3/2 spinor is obtained by operating a pure
spin-3/2 projection operator to the GI RS spinor [8], i.e.,

wμν (p, λ) = 2Pμν
αβU αβ (p, λ) , (6)

where λ = − 3
2 ,− 1

2 ,+ 1
2 ,+ 3

2 are the z components of the spin-
3/2 operator eigenvalues and U αβ (p, λ) is the GI RS spinor,
given by

U αβ (p, λ) = 1

2m
[pαUβ (p, λ) − pβUα (p, λ)], (7)

with Uα (p, λ) being the RS vector spinor. Clearly, except
for the normalization constant (2m)−1, the GI RS spinor
U αβ (p, λ) given in Eq. (7) is identical to the GI RS field
tensor �μν = ∂μ�ν − ∂ν�μ given in Ref. [6]. Therefore, the
difference between the ATS and the GI RS representations
is in their projection operators. The ATS projection operator
is completely different from the common projection operator

in RS field. The former projects out the ( 3
2 , 0) ⊕ (0, 3

2 ) field,
whereas the latter projects out the (1, 1

2 ) ⊕ ( 1
2 , 1) field.

In the pure spin-3/2 representation, the corresponding
propagator can be written as [8]

Sαβγ δ (p) = �αβγ δ (p)

p2 − m2 + iε
, (8)

where

�αβγ δ (p) =
(

p2

m2

)
Pαβγ δ −

(
p2 − m2

m2

)
1αβγ δ , (9)

and 1αβγ δ is the identity in the ATS space, i.e.,

1αβγ δ = 1
2 (gαγ gβδ − gαδgβγ )14×4 . (10)

By using the orthogonality relation for the projection operator
γ μPμνρσ = 0, one may easily prove that the pure spin-3/2
spinor satisfies γμwμν (p, λ) = 0. This relation can be used to
reduce the number of degrees of freedom (DOF) in the ATS
representation, i.e., 6 × 4 = 24, by 4 × 4 = 16. As expected,
the pure spin-3/2 field in the ATS representation has 24–16 =
8 DOF.

Finally, for the purpose of the phenomenological applica-
tion, such as meson-nucleon scattering, it is important to note
that the free Lagrangian for the pure spin-3/2 field in the ATS
representation can be written as [8]

L = (∂μ�αβ )�μναβγ δ (∂ν�γδ ) − m2�μν�μν , (11)

where

�μναβγ δ = 4gσρPαβρμPσνγ δ (12)

and �μν is the ( 3
2 , 0) ⊕ (0, 3

2 ) field. The kinetic term of the
Lagrangian is invariant under the following gauge transfor-
mation,

�μν → �μν + ξμν , (13)

where the antisymmetric tensor ξμν is given by

ξμν = γ μ∂νξ − γ ν∂μξ . (14)

As stated in the introduction, we have found that the ATS
formalism has a problem in describing the properties of a
resonance. To explain this problem, let us consider the elastic
πN scattering with a � resonance in the intermediate state.
The corresponding Feynman diagram is displayed in Fig. 1,
in which the momenta of all involved particles are shown for
our convenience. In the literature, we note that the popular

ππ

( p’)N(p)N

(   )k’k

(   )

(  )

qΔ

FIG. 1. Feynman diagram for the elastic πN scattering with a �

resonance in the intermediate state.
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choice of Lagrangian for the πN� interaction reads [6]

LπN� =
(

gπN�

mπ

)
�̄μ�μν (z)N∂νπ + H.c. , (15)

where �μ, N , and π denote the �-baryon vector spinor,
nucleon spinor, and pion field, respectively. The tensor �μν (z)
is given by

�μν (z) = gμν − (
z + 1

2

)
γμγν . (16)

Note that the constant z in Eq. (16) is arbitrary and conven-
tionally called the off-shell parameter. As stated before, this
Lagrangian does not posses any local symmetries of the
RS field, and as a consequence it induces the unphysical
lower-spin DOF, which is called spin-1/2 background [6]. To
decouple this unphysical background from the �-exchange
amplitude, Pascalutsa and Timmermans introduce a GI inter-
action, which is given by [6]

LπN� =
(

gπN�

mπm�

)
N̄γ5γμ�̃μν∂νπ + H.c. , (17)

where �̃μν is the dual tensor of GI RS field tensor �μν . The
latter is given by

�μν = ∂μ�ν − ∂ν�μ . (18)

This GI interaction yields the �-exchange amplitude

�μ(k′)Sμν (q)�ν (k) = (gπN�/mπ )2

/q − m�

q2

m2
�

P(3/2)
μν (q)k′μkν ,

(19)

with P(3/2)
μν the spin-3/2 projection operator in the RS field,

i.e.,

P(3/2)
μν (q) = gμν − 1

3
γμγν − 1

3q2
(/qγμqν + qμγν/q) . (20)

In analogy to the GI interaction described above, we can
also construct the πN� interaction in the ATS formalism
by changing the GI RS field tensor to the ( 3

2 , 0) ⊕ (0, 3
2 )

representation,

LπN� = gπN�N̄γ5γμ�̃μν∂νπ + H.c. , (21)

where �μν is the ( 3
2 , 0) ⊕ (0, 3

2 ) field tensor and �̃μν

is its dual tensor. In terms of vertex factor used in
many phenomenological applications [10,11], the interaction
Lagrangian given in Eq. (21) can be translated as

�μν (k) = gπN�γ5γμkν . (22)

Thus, the �-exchange amplitude in the ATS formalism can be
written as �μν (k′)S̃μνρσ (q)�ρσ (k), where S̃μνρσ is defined by

�μν (k′)S̃μνρσ (q)�ρσ (k)

= 1
4 g2

πN�εμναβερσκλγ5γμSαβκλ(q)γργ5k′
νkσ . (23)

By using Eqs. (8) and (22), we can directly calculate Eq. (23),
and it is easy to show that the nonvanishing amplitude is only
the term obtained from the contraction with the identity 1αβκλ,
since on the right-hand side of Eq. (23) the contraction with
Pαβκλ vanishes due to the orthogonality relation γ αPαβκλ = 0

and the fact that σ̃ μν = −γ5σ
μν . By calculating this nonvan-

ishing �-exchange amplitude, we obtain that

�μν (k′)S̃μνρσ (q)�ρσ (k)

= g2
πN�

(
q2 − m2

�

)
m2

�(q2 − m2
� + iε)

(
gνσ + 1

2
γ νγ σ

)
k′
νkσ . (24)

Obviously, Eq. (24) does not show the behavior of a reso-
nance, since at the resonance pole (q2 = m2

�) the amplitude
is equal to zero, instead of being maximum. Thus, we may
conclude that the interaction Lagrangian given by Eq. (21)
cannot be used for calculating the resonance contribution.

The source of problem is coming from the GI interaction
Lagrangian given by Eq. (21), i.e., the contraction between
γ matrix and the projection operator of pure spin-3/2 field
Pαβκλ vanishes. It is also obvious that this problem can be
easily solved by modifying the interaction Lagrangian, e.g.,
by replacing the γ matrix with a partial derivative,

LπN� =
(

gπN�

m�

)
N̄γ5∂

μ�μν∂
νπ + H.c. , (25)

with the corresponding vertex factor

�μν (k) =
(

gπN�

m�

)
γ5qμkν . (26)

By using this vertex factor, we can calculate the �-exchange
amplitude to obtain

�μν (k′)Sμνρσ (q)�ρσ (k)

=
(

gπN�

m�

)2

γ5qμSμνρσ (q)γ5qρk′νkσ

= g2
πN�k′νkσ

q2 − m2
� + iε

[
q4

4m4
�

P(3/2)
νσ (q)

−
(

q2 − m2
�

2m4
�

)
(q2gνσ − qνqσ )

]
, (27)

which is different from the result of GI interaction given by
Eq. (19) by the second term. This term is significant only at
energies far beyond the resonance pole and, as in Eq. (24),
does not show the property of a resonance. Nevertheless, the
result given by Eq. (27) is very interesting, because at the
resonance pole, i.e., q2 = m2

�, the second term vanishes and
the �-exchange amplitude is proportional to that obtained
from the GI RS interaction, i.e., Eq. (19).

To conclude this section, we may safely say that although
for certain types of interaction Lagrangians the ATS repre-
sentation cannot exhibit the property of a resonance required
for use in phenomenological studies of hadronic physics, we
are still able to choose different interactions to overcome this
issue. However, it is obvious that such a solution does not
have a strong theoretical basis and it is also possible that the
suitable interaction found in this way is not unique. Therefore,
we need a systematic mechanism to determine the genuine
interaction through a number of relevant constraints. This is
the topic of our discussion in the following section.
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III. CONSTRUCTION OF THE CONSISTENT
INTERACTION LAGRANGIANS

The problem of constraint in the interacting RS field can
be solved by constructing the interaction that has the same
symmetry as the free field one [12]. To this end, it is essential
to check the impact of the interaction Lagrangian on the
constraint and to carry out the Dirac-Faddeev quantization
[13]. This procedure can be generally applied to the higher
spin baryons such as nucleon resonances. In the case of the
interaction terms that are separable from the free field, i.e.,
L = Lfree + Lint , such procedure can be easily carried out.
However, in the case of the interaction terms that originate
from the gauged free field, we again face the Velo-Zwanziger
problem. Such a gauged spin-3/2 field represents the spin-3/2
lepton undergoing electroweak interaction with photon, W ±
and Z0 bosons. We note that the search for excited state of
leptons was performed by the ATLAS Collaboration [14].
It has been proposed that the excited state of leptons has a
spin-3/2 state [15]. To this end, we can use the pure spin-3/2
field to find the gauged electroweak Lagrangian of spin-3/2
lepton, as pure spin-3/2 field is free from the Velo-Zwanziger
problem [3].

We start again with the free Lagrangian for pure spin-3/2
in the ATS representation given by Eq. (11). The conjugate
momenta of the fields are given by

π̄γ δ = ∂L
∂ (∂0ψγδ )

= (∂μψ̄αβ )�μ0αβγ δ, (28)

πγδ = ∂L
∂ (∂0ψ̄γ δ )

= �0νγ δαβ (∂νψαβ ) , (29)

and they can be expressed as functions of the field “velocity”
v̄αβ = ∂0ψ̄αβ and vαβ = ∂0ψαβ , i.e.,

π̄μν = v̄αβPαβ
ρ

0(gμργν − gνργμ)γ0 + (∂ iψ̄αβ )�i0αβμν , (30)

πμν = γ0(γμgρν − γνgρμ)Pρ
0αβvαβ + �0 jμναβ (∂ jψαβ ). (31)

Because of the noninvertible property of idempotent oper-
ator Pαβγ δ , the “velocity” cannot be expressed as a linear
combination of conjugate momenta. The primary constraints
arise from the condition that not all momenta are linearly
independent, with the relations

θ̄ (1)
ρ = π̄ρσ γ σ , θ (1)

ρ = γ σπρσ . (32)

Next, the Hamiltonian density of pure spin-3/2 field is given
by

H3/2 = π̄γ δv
γ δ + v̄γ δπγ δ − L , (33)

and the total Hamiltonian reads

HT = λ̄ρθ (1)
ρ + θ̄ (1)

ρ λρ + H3/2

= λ̄ρθ (1)
ρ + θ̄ (1)

ρ λρ − (∂ iψ̄αβ )�i jαβγ δ (∂ jψγδ )

− [π̄γ δ − (∂ iψ̄αβ )�i0αβγ δ]

× [
πγδ − �0 j

γ δ
αβ

(∂ jψαβ )
] + m2ψμνψμν . (34)

The conditions of {θ̄ (1)
ρ ,HT } = 0 and {θ (1)

ρ ,HT } = 0 create
the secondary constraints

θ̄ (2)
ρ = ψ̄ρσ γ σ , θ (2)

ρ = γ σψρσ . (35)

Thus, the pure spin-3/2 fields end up with the secondary con-
straints, as the conditions of {θ̄ (2)

ρ ,HT } = 0 and {θ (2)
ρ ,HT } =

0 will be satisfied if the coefficients λρ and λ̄ρ fulfill the
relation 4λρ = γ ργμλμ and 4λ̄ρ = λ̄μγ ργμ.

In the case of massive pure spin-3/2 Lagrangian, the
number of DOF can be counted as follows. Each of the
fields ψμν and its conjugate momentum πμν have 6 × 4 = 24
components, so in total they have 48 components. Each of
the primary and secondary constraints reduces the DOF by
4 × 4 = 16 components. Hence, the number of independent
components is 48 − 2 × 16 = 16. This number describes the
number of independent components of the ( 3

2 , 0) ⊕ (0, 3
2 )

representation in phase space. Thus, each of the fields and
its conjugate momentum have eight independent components.
For the massless case, the primary constraints become the
first-class constraints as the conditions of {θ̄ (1)

ρ ,HT } = 0 and
{θ (1)

ρ ,HT } = 0 are identities. Therefore, the coefficients λρ

and λ̄ρ cannot be determined.
The general form of phase-space integral is

Z =
∫

DψμνDψ̄μν
√

det{θα, θβ}
2∏

n=1

δ(θn)δ(θ̄n)

× exp i
∫

d4x[π̄μνv
μν + v̄μνπμν − H3/2] . (36)

The Poisson bracket of all constraint combinations are inde-
pendent of the field. All constraints are proportional to the
field or conjugate momentum. There are only two possibilities
of the Poisson bracket of constraints, either zero or propor-
tional to the γ matrices. Therefore, the determinant factor is
just a normalizing constant that can be ruled out from the
integral.

Generally, the interaction Lagrangian with pure spin-3/2
field can be written as

L = L3/2 + J̄μν�
μν + �̄μνJμν . (37)

The interaction terms affect the secondary constraints, so the
latter becomes

θ̄ (2)
ρ = (m2ψ̄ρσ − J̄ρσ )γ σ ,

θ (2)
ρ = γ σ (m2ψρσ − Jρσ ) . (38)

Because the interaction terms consist of other fields, we
should constrain Jμν in such a way that it will not affect
the functional determinant of the constraints. To this end, we
pick the constraint as γ μ Jμν = 0 and J̄μνγ

ν = 0. In the pure
spin-3/2 field formalism, incidentally, the projection opera-
tor Pμνρσ has the orthogonality relation γ μPμνρσ = 0 and
Pμνρσ γ ρ = 0. As a consequence, the interaction Lagrangian
could contain such projection operator and for the simplest
consistent πN� interaction Lagrangian we have

LπN� =
(

gπN�

m�

)
N̄γ5Pμνρσ ∂ρψμν∂σπ + H.c. , (39)

whereas for the electromagnetic transition the corresponding
γ N� Lagrangian reads

Lγ N� = N̄ (g1Pρσμν + g2γρPσαμν∂
α )ψμνFρσ + H.c. (40)
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IV. NUMERICAL RESULT AND VISUALIZATION

As in the previous report [9], we can explore the behavior
of the pure spin-3/2 propagator by comparing the �(1232)
resonance contribution to the total cross section of elastic πN
scattering, obtained from the pure spin-3/2 propagator and the
conventional ones. For this purpose, it is important to include
the resonance width � in the resonance propagator, i.e., by
replacing iε → i�m�.

The elastic πN scattering amplitude is traditionally written
as

M = ū(p′, s′)(A + B/Q)u(p, s) , (41)

with Q = (k + k′)/2. By using the RS propagator with GI in-
teraction, the amplitude obtained from the Feynman diagram
depicted in Fig. 1, i.e., Eq. (19), can be decomposed into

A = G1
{
mN

(
3k′ · k − 2p · k − m2

π − 2q · k′q · k/q2
)

+ m�

(
3k′ · k − 2p · k − m2

π − 2m2
πq · Q/q2

)}
, (42)

B = G1
{
3k′ · k − m2

π + 2m2
N − 2q · k′q · k/q2

+ q(k′ − k) + 2m�mN (1 − q · Q/q2)
}
, (43)

with

G1 = q2 g2
πN�

/[
3m2

πm2
�

(
q2 − m2

� + i�m�

)]
. (44)

In the case of pure spin-3/2 propagator with the hadronic
vertex given by Eq. (26), i.e., Eq. (27), we obtain

A = G2
[(

q4
/

12m4
�

)(
3k′ · k − m2

π − 2p · k

− 2m2
π q · Q/q2

) − {(
q2 − m2

�

)/
2m4

�

}
× (q2k′ · k − q · kq · k′)

]
, (45)

B = (
q4mN G2

/
6m4

�

)
(1 − q · Q/q2) , (46)

with

G2 = g2
πN�

/[
q2 − m2

� + i�m�

]
. (47)

Finally, if we used the consistent interaction Lagrangian
given by Eq. (39), we noted that the scattering amplitude
becomes more simple, i.e.,

M = G3 ū(p′, s′) γ5 qμk′
ν Pμναβ γ5 qαk′

β u(p, s) , (48)

where

G3 = g2
πN�

m2
�

(
s − m2

� + im���

) . (49)

By decomposing Eq. (48) into Eq. (41), we obtain

A = G3
(
q2m2

π − q · k′2)/6, (50)

B = 0 . (51)

By using the standard method [16], we can calculate the
cross section from the scattering amplitude M given by
Eq. (41). Note that the amplitudes obtained from the three
different models are completely different. For the sake of
comparison, we use different coupling constants in order
to produce comparable total cross sections. Obviously, this
would not raise a problem since almost all of the coupling
constants in the phenomenological applications are fitted to
reproduce the experimental data.

By taking point-particle approximation, the total cross
sections obtained from the three models are depicted in
Fig. 2(a). The resonance behavior centered around W ≈ 1.25
GeV is produced by all models, including the background
phenomenon shown by the increase of total cross section as
the energy increases for W � 1.40 GeV. The phenomenon
originates from the momentum dependence in the numerator
of Eq. (27). The resonance background has another effect,
i.e., shifting the resonance peak slightly from its original
position at 1.232 GeV to higher energy. We also observe from
Fig. 2(a) that the backgrounds obtained from the pure spin-3/2
models are significantly smaller than that of the RS model at
W ≈ 1.40 GeV. The reason can be traced back to the second
term in the square bracket of Eq. (27). For W � 1.40 GeV,
the first term of Eq. (27) becomes dominant, since q4 = W 4,
and the total contribution starts to diverge. From Fig. 2(a) it
is also interesting to note that the pure spin-3/2 model with
consistent interaction yields moderate background compared
to the other two models and does not show a divergence
behavior at high energies.

In the covariant Feynman diagrammatic approach, the
phenomenon of large background contribution is found to be
natural. Alternatively, one can also interpret this background
as the contribution of a Z diagram [17], i.e., a production of a

1.1 1.2 1.3 1.4 1.5 1.6

(a)

σ t
ot

 (a
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. u
ni

ts
)

W (GeV)
1.1 1.2 1.3 1.4 1.5 1.6

(b)

W (GeV)

Pure spin 3/2 consistent
Pure spin 3/2 modified

Rarita-Schwinger GI

FIG. 2. Contribution of the �(1232) resonance to the πN → πN scattering total cross section in arbitrary units (arb. units) calculated by
using the pure spin-3/2 models with consistent [Eq. (39)] and modified [Eq. (25)] interaction Lagrangians as well as the Rarita-Schwinger
model with GI interaction as a function of total c.m. energy W . Panels (a) and (b) are obtained from the calculations without and with hadronic
form factors in the hadronic vertices, respectively. Note that to simplify the comparison we do not use the same value of coupling constant in
all calculations.
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particle and an antiparticle in the intermediate state not con-
sidered in Fig. 1. Note that the phenomenon does not exist in
the multipoles approach, where a perfect resonance structure
can be produced by using the Breit-Wigner parameterization
[18].

The large background contribution can disturb the nature of
the resonance itself and might induce other difficulties such as
the problem to fit experimental data, especially in a covariant
isobar model [10], in which a large number of resonances
are included while the individual resonance peaks are no
longer distinguishable due to the proximity of their masses. To
alleviate this problem, it is customarily to use hadronic form
factor (HFF) in each hadronic vertex shown in Fig. 1. For a
brief discussion of the HFF along with its problem with the
gauge invariance, we refer the reader to Refs. [19,20].

In spite of the objection that the HFF introduces new
free parameters, it should be noted that the existence of
HFF is inevitable because the baryon is not a point particle.
Furthermore, the use of HFF is also important to eliminate the
divergence of the scattering amplitude. Thus, in the present
work we include the HFF and adopt the dipole HFF as in the
previous work in the form of [19]

F = �4
/[

�4 + (
q2 − m2

�

)2]
, (52)

where the hadronic cutoff is chosen to be � = 0.5 GeV in
order to produce a reasonable resonance structure in the total
cross section. By including this HFF, we obtain the result
shown in Fig. 2(b), in which a perfect resonance structure
for all models is displayed. Compared to the pure spin-3/2
models, the RS structure is slightly shifted to the right. This is
understandable if we compare the original contributions of all
models (without HFF) as shown in Fig. 2(a). Therefore, apart
from its different formulation, the pure spin-3/2 propagator
still shows the usual resonance structure as in the conventional
RS propagator. Furthermore, Fig. 2 clearly indicates that to
obtain the natural property of a resonance, the use of HFF is
mandatory in the covariant Feynman diagrammatic approach.

The next application of our present work is the contribution
of spin-3/2 � resonance to the pion photoproduction off a
nucleon. As shown in the previous work, the choice of inap-
propriate electromagnetic interaction could fail to generate the
correct property of a resonance in the cross section [9]. Thus,
in what follows we will calculate the � resonance contribution
to the total cross section with a consistent interaction and
compare the result with those of previous works.

The corresponding Feynman diagram is depicted in Fig. 3.
The hadronic vertex factor can be obtained from Eq. (39), i.e.,

�
μν
πN� = gπN�

m2
�

γ5(p + k)ρqσPμνρσ , (53)

whereas the electromagnetic one obtained from Eq. (40) can
be written as

�
αβ

γ N� = Pρσαβ

{
g1(kρεσ − ερkσ )

+ g2

m�

(p + k)σ (/kερ − kρ/ε)

}
. (54)

γ k(  )

p

π q

p+k

(  )N (    )p’N

(       )Δ

(  )

g π NΔ, g21g

FIG. 3. Feynman diagram for the πN photoproduction with a
� resonance in the intermediate state. The electromagnetic and
hadronic couplings are indicated in the diagram.

Note that in Eqs. (53) and (54) we have inserted additional m�

in the denominator to make the coupling constants dimension-
less. Furthermore, only two couplings are independent in this
case, since the dual tensor of ATS is proportional to the tensor
itself, i.e., �̃μν = −γ5�μν . This is different from the case of
GI interaction [6,10].

By using the propagator given in Eq. (8) and the interac-
tion vertex factors of Eqs. (53) and (54), we may write the
production amplitude as

M = ūN ′ �
ρσ
πN�

�ρσγ δ

s − m2
� + im���

�
γδ

γ N� uN

= ūN ′ γ5(p + k)μqν Pμναβ [G1(kαεβ − εαkβ )

+ G2 (/kεα − kα/ε)(p + k)β] uN , (55)

where m� and �� are the mass and width of �, respectively,
s = (p + k)2, and we have used the relation

Pρσμν�ρσγ δPαβγ δ = Pμναβ. (56)

Furthermore, in Eq. (55) we have defined

G1 = − g1 gπN�

m2
�

(
s − m2

� + im���

) , (57)

G2 = − g2 gπN�

m3
�

(
s − m2

� + im���

) . (58)

To calculate the total cross section, we decompose the reaction
amplitude M into the form functions Ai [10]

M = ūN (p′)
4∑

i=1

Ai(s, t, u) Mi uN (p), (59)

with the gauge and Lorentz invariant matrices Mi

M1 = γ5 ε/k/, (60)

M2 = 2γ5(q · εP · k − q · kP · ε), (61)

M3 = γ5(q · kε/ − q · εk/), (62)

M4 = iεμνρσ γ μqνερkσ , (63)
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where P = 1
2 (p + p′) and ε is the photon polarization. By

performing the decomposition, we obtain

A1 = 2
{
k · (q − p) − 2

3 m2
π + 2

3 q · (p + k)
}
G1

+ 1
3 mN

(
9p · k + 5m2

π − 8q · (p + k)
)
G2 , (64)

A2 = 0 , (65)

A3 = 2
3 mN G1 + {

s + 2
3 m2

π − 4
3 m2

N − 3q · (p + k)
}
G2 , (66)

A4 = − 4
3 mN G1 + {

2s + 2
3 m2

π − 4
3 m2

N

− 3q · (p + k)
}
G2 , (67)

from which we can calculate the total cross section [21]. Note
that the form functions Ai for non-ATS models can be found
in the previous works [10,22].

Different from pion scattering, in pion photoproduction
there is only one hadronic vertex. Nevertheless, in the pho-
toproduction the hadronic form factor still plays an important
role to suppress the background contribution at high energies.
Note that a very soft form factor leads to very strong sup-
pression of the cross section. Although it produces an ideal
resonance bump, the resonance contribution could become
very small and might distort the physics behind it. On the other
hand, a very hard form factor could fail to suppress the cross
section at high energies and, as a consequence, could fail to
create the resonance bump. Thus, as in the previous exam-
ple, we include the hadronic form factor given by Eq. (52),
albeit with a different hadronic cutoff, i.e., � = 0.8 GeV,
to obtain reasonable values of photoproduction total cross
section.

In the present work, we scale all peaks of the total cross
sections to the same value. This is required merely for the sake
of comparison, but we believe that this is still acceptable since
we set all coupling constants to unity in the numerical calcula-
tion. Moreover, in this visualization, we merely want to see the
structure of a resonance produced by different representations
of spin 3/2. The result is shown in Fig. 4, where we compare
the contribution of the �(1232) resonance to the total cross
section of pion photoproduction off a nucleon according to
the model of pure spin 3/2 with consistent interaction, the RS
model with the GI interaction [12], the RS model with non-GI
interaction [22], and the modified RS with GI interaction
[23], where in the latter we only use two electromagnetic
couplings, instead of four as in the original version [6].
Obviously, all models exhibit a peak as the basic behavior
required for a resonance. Surprisingly, the pure spin-3/2 with
consistent interaction (ATS) and the Rarita-Schwinger with
non-GI interaction (RS2) prescriptions yield a similar struc-
ture. Presumably this is because the similar structure of the
two models. The Rarita-Schwinger with GI interaction (RS1)
indicates a larger background. Previously, we suspect that
this property originates from the larger number of coupling
constants used in this model. However, the use of only two
of these coupling constants (RS1r), i.e., only g1 and g2, does
not reduce the background. This is caused by the destructive
effect of the other two couplings, g3 and g4, that is missing
in the RS1r model. Nevertheless, the most important point
to note here is that the pure spin-3/2 model with consistent

 1.1  1.2  1.3  1.4  1.5  1.6  1.7  1.8

σ t
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FIG. 4. Total cross sections of the πN photoproduction calcu-
lated from the contribution of the �(1232) resonance in arbitrary
units according to the ATS prescription with consistent interac-
tion Lagrangians (ATS), Rarita-Schwinger with GI interaction (RS1
[12]), Rarita-Schwinger with non-GI interaction (RS2 [22]), and
Rarita-Schwinger with GI interaction with only two electromagnetic
couplings (RS1r), as a function of the total c.m. energy W . Note that
for the sake of comparison the total cross section peaks are scaled to
the same value.

interaction produces the correct property of resonance as in
the conventional models.

V. SUMMARY AND CONCLUSION

We have proposed the use of pure spin-3/2 propagator
along with the consistent interaction Lagrangians in the phe-
nomenological studies of nuclear and particle physics. To this
end, we employ the ATS representation to describe the cor-
responding projection operator. We have shown that the ATS
formalism has a problem to exhibit the resonance behavior,
unless the interaction Lagrangian is slightly modified, i.e.,
by replacing the γ matrix with a partial derivative. However,
the choice of a partial derivative seems to be arbitrary. To
obtain a more systematic procedure and the correct degrees
of freedom, we determine a number of constraints required by
the interaction. In this work, we give the simplest example of
consistent interactions that satisfy these constraints. To visual-
ize the result, we apply the pure spin-3/2 propagator and con-
sistent interactions to calculate the contribution of �(1232)
resonance in the pion scattering and pion photoproduction off
a nucleon. The obtained total cross sections in the two cases
indicate that the pure spin-3/2 propagator with consistent
interaction Lagrangians exhibits the required property of a
resonance. Thus, we have proven that the proposed spin-3/2
propagator along with the consistent interaction Lagrangian
can be directly used for phenomenological investigations in
the realm of nuclear and particle physics.
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