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The excitations of nucleon resonances with hidden charm, N∗
cc̄, in γ p reactions are investigated by

using the predictions from the available meson-baryon (MB) coupled-channel models of N∗
cc̄, with MB =

ρN, ωN, J/ψ N, D̄�c, D̄∗�c, D̄�c, D̄∗�c, D̄�∗
c . For the γ p → J/ψ p process, we first apply the model of

Donnachie and Landshoff to calculate the Pomeron-exchange amplitudes with the parameters determined from
fitting the available total cross section data up to invariant mass W = 300 GeV. We then add the resonant
γ p → N∗

cc̄ → J/ψ p amplitudes to examine the effects of N∗
cc̄ excitations on the cross sections of γ p → J/ψ p

in the near threshold energy region covered by the recent experiments at Jefferson Lab. The N∗
cc̄ → MB transition

matrix elements are determined from the partial decay widths predicted by the considered meson-baryon
coupled-channel models of N∗

cc̄. The γ p → N∗
cc̄ transition amplitudes are calculated from the vector meson

dominance (VMD) model as γ p → V p → N∗
cc̄ with V = ρ, ω, J/ψ . The total γ p → J/ψ p amplitudes then

depend on an off-shell form factor, parametrized as FV (q2) = �4
V /[�4

V + (q2 − m2
V )2], which is needed to

account for the q2 dependence of the photon-vector meson coupling constant
e m2

V
fV

of the VMD model. It was
found that, with �V = 0.55 GeV, the predicted total cross sections are within the range of the data in the energy
region near the J/ψ production threshold. We then demonstrate that the N∗

cc̄ can be most easily identified in the
differential cross sections at large angles where the contribution from Pomeron exchange becomes negligible.
With the same VMD model and the same coupled-channel models of N∗

cc̄, we also calculate the resonant
amplitudes for the γ p → V p → N∗

cc̄ → D̄0�+
c (D̄∗0�+

c ) processes. By adding the nonresonant amplitudes due to
the exchange of D̄∗0 (D̄0), we then predict the cross sections of γ p → D̄0�+

c (D̄∗0�+
c ) for additional experimental

tests of the available meson-baryon coupled-channel models of N∗
cc̄.

DOI: 10.1103/PhysRevC.100.035206

I. INTRODUCTION

It is well recognized that the interaction between a nucleon
(N) and a cc̄ system of a charm quark (c) and an anticharm
quark (c̄) is mainly due to gluon-exchange mechanisms. All
of the earlier investigations [1–8] indicated that the cc̄-N
interaction is attractive. This implies the possible existence
of nuclear systems with hidden charm, as investigated in
Refs. [8–10]. For the baryon number B = 1 system, it was
proposed [11] in 2010 that there exist excited nucleons with
cc̄ components in the mass range of 4.0–5.0 GeV within
a meson-baryon coupled-channel model. Such baryons with
hidden charm were subsequently also predicted [12–18] as
molecular states made of anticharmed mesons and charmed
baryons (such as D̄(∗)�(∗)

c ). Alternatively, they are described
as compact pentaquark states made of colored quark clus-
ters [19] or a mixture of the two configurations [20]. The
masses from these earlier predictions are qualitatively con-
sistent with the mass (m) and width (�) of two pentaquark
states (Pc) identified from analyzing the J/ψ-p invariant mass
distributions of the �∗

c → KJ/ψ p decays measured by the
LHCb Collaboration [21,22] in 2015. Their results are listed
in the left part of Table I.

The resonance peaks in the J/ψ-p invariant mass distri-
butions from the LHCb measurement [21] motivated a lot of

theoretical efforts [24–68]. Roughly speaking, there are three
different interpretations of these peaks:

(1) They are due to the excitations of meson-baryon
molecular systems which could be made of (1) an-
ticharm mesons and charm baryons [24–46], (2)
baryons and charmonium [47,48], (3) the mix-
ture [49,50] of (1) and (2).

(2) They could be multiquark states within the conven-
tional constituent quark model [51,52,54] or cluster
states pictured as a diquark-diquark-antiquark sys-
tem [55–58] or a diquark-triquark system [59].

(3) Pc(4450) may not be a resonance state because it is
close to the Triangle Singularity (TS) [60–62] and the
observed narrow peak is purely due to the kinematic
effect, although for some quantum numbers of the Pc

state preferred in Ref. [21], such as 3/2− or 5/2+, the
TS cannot explain the peak as shown in Ref. [63].

With the the new results from the LHCb Collabora-
tion [23], these theoretical interpretations can be better tested.
By analyzing the data, which are about a factor of 9 larger than
what they analyzed in 2015, the LHCb Collaboration obtained
three clean peaks which are interpreted as the excitations of
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TABLE I. The masses [m (MeV)] and total widths [� (MeV)] of Pc reported in Refs. [21–23].

2015 2019

Pc m � Pc m �

Pc(4312) 4311.9 ± 0.7+6.8
−0.6 9.8 ± 2.7+3.7

−4.5
Pc(4380) 4380 ± 8 ± 29 205 ± 18 ± 86
Pc(4450) 4449.8 ± 1.7 ± 2.5 39 ± 5 ± 19 Pc(4440) 4440.3 ± 1.3+4.1

−4.7 20.6 ± 4.9+8.7
−10.1

Pc(4457) 4457.3 ± 0.6+4.1
−1.7 6.4 ± 2.0+5.7

−1.9

three pentaquark states, as listed in the right part of Table I.
Comparing with their results of 2015, the main features of
these new data are (1) Pc(4312) could be a new pentaquark
state near the �cD̄ threshold; (2) Pc(4440) and Pc(4457) are
two narrow states which could not be resolved in the 2015
determination of Pc(4450); and (3) Pc(4380), with about 200
MeV width according to the 2015 analysis, could be a very
broad state, and is not given mass and width in this analysis.
It is important to note that these three narrow states are all
just below the corresponding anticharmed meson-charmed
baryon threshold, and hence the simplest interpretation is that
they are made of meson-baryon components, as suggested in
Refs. [69–82].

The nucleon resonances with hidden charm, called N∗
cc̄

from now on in this paper, can also be investigated by using
the electromagnetic production of J/ψ from the nucleon,
such as e + p → e′ + J/ψ + p studied in Refs. [11,12].
The prediction of γ p → N∗

cc̄ → J/ψ p cross section within
the coupled-channel model of Ref. [12] was then made in
Ref. [83] by using the vector meson dominance (VMD)
model to generate vector (V ) mesons, ρ, ω, and J/ψ , from
photons. A few more predictions of γ p → N∗

cc̄ → J/ψ p had
been made [84–90] within the meson-baryon coupled-channel
model since 2015. The differences among these works are
in their choices of N∗

cc̄ model, vector mesons included in
the VMD, and the background amplitudes which could be
calculated from Pomeron exchange or two-gluon and three-
gluon exchange models.

In parallel to these theoretical efforts, an experi-
ment [91,92] [JLab(E12-16-007)] on γ p → J/ψ p near
threshold at the Thomas Jefferson National Accelerator Facil-
ity (JLab) was approved in 2016, and the data from this effort
will soon become available. A separate effort at JLab using the
GlueX detector [93] recently published [94] their measured
total cross sections of γ p → J/ψ p. The main purpose of
this work is to provide information for examining whether
the N∗

cc̄ predicted by the available meson-baryon coupled-
channel models can be observed in the data from these two
experiments.

To proceed, it is necessary to first recognize that Pc states
reported by the LHCb Collaboration are from the measure-
ments of the J/ψ-p invariant mass distribution of the �c →
K + J/ψ + p decay. Thus the information one can use to
test the available N∗

cc̄ models consists of the total widths
and masses of the reported Pc states. The spins and parities
of these states cannot be determined since a partial-wave
analysis of �c → K + J/ψ + p decays requires detailed an-
gular distribution data, not just the invariant mass distribu-
tions. Accordingly, one cannot determine the partial decay

width for each possible meson-baryon channel of N∗
cc̄ →

J/ψ N, ρN, ωN, D̄�c, D̄∗�c, D̄�c, D̄∗�c, . . . . Here we also
mention that two of the resonance peaks reported by the
LHCb Collaboration are near the threshold of the D̄(∗)�c

channel and thus the identification of resonances in this region
must account for the cusp effect in a analysis constrained
by three-body unitarity. The importance of three-body uni-
tarity in analyzing the three-body decays of heavy mesons
was demonstrated [95] recently, but is not considered in the
analysis by the LHCb Collaboration. Therefore, no attempt
will be made here to revise the considered meson-baryon
models to reproduce the resonance peaks of the LHCb data.
Instead, we will only consider the available models which
have predicted N∗

cc̄ with masses within the range of the LHCb
data. Furthermore, there is no new theoretical prediction of the
partial decay widths, which are needed in our investigations,
for the N∗

cc̄ states after the new LHCb results published in
2019. Thus, in the current work, we will only employ the
theoretical models based on the old LHCb data published in
2015. By using the spins, parities, and partial decay widths
from those models, we can then use the VMD to predict the
amplitudes of γ p → N∗

cc̄ → J/ψ p. Here we notice that the
VMD coupling constant gγ ,V = e m2

V / fV for the γ → V tran-
sitions for V = ρ, ω, J/ψ are conventionally determined from
the decay widths of V → γ → e+e− with q2 = m2

V of the
intermediate γ . In the situation of γ p → V p → N∗

cc̄, we have
q2 = 0, i.e., the intermediate vector is far off mass shell, and
thus the VMD parameter gγ ,V must be modified to account
for this q2 dependence. Ideally, this q2 dependence should be
calculated from a QCD model as done in Ref. [96]. Here we
will treat it as a phenomenological part of our calculation by
introducing an off-shell form factor FV = �4

V /[�4
V + (q2 −

m2
V )2] with �V determined by the available total cross section

data, as will be explained in Sec. III. We also make sure
that the parametrization of VMD is gauge invariant when the
off-shell form factor is included.

To predict the cross sections of γ p → J/ψ p, it is nec-
essary to include the nonresonant amplitudes due to the
gluon-exchange mechanisms. In this work, we use the model
of Donnachie and Landshoff [7] within which the gluon-
exchange mechanism is phenomenologically parametrized as
Pomeron exchange within the Regge phenomenology of high
energy reactions. By fitting the total cross section data up to
very high energy W = 300 GeV, the Pomeron parameters are
well determined and can be used to define the nonresonant
amplitudes in the near-threshold region of our interest in this
paper. Our approach is therefore different from the approaches
using the models of two-gluon and three-gluon exchange of
Refs. [97], as will be discussed later.
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For additional studies of N∗
cc̄ excitations, we also explored

other meson photoproduction processes which do not have
Pomeron-exchange mechanisms. We found that experiments
on γ p → D̄0�+

c (D̄∗0�+
c ) could be useful. With the same

VMD model and the same coupled-channel models of N∗
cc̄,

we calculated the resonant amplitudes for the γ p → V p →
N∗

cc̄ → D̄0�+
c (D̄∗0�+

c ) processes. By adding the nonresonant
amplitudes due to the exchange of D̄∗0 (D̄0), we then predicted
the cross sections of γ p → D̄0�+

c (D̄∗0�+
c ) for additional

experimental tests of the available meson-baryon coupled-
channel models of N∗

cc̄.
The paper is organized as follows. In Sec. II, we give for-

mulas for calculating the cross sections of γ p → J/ψ p, and
we present formulas for calculating the Pomeron-exchange
amplitude and the γ p → N∗

cc̄ → J/ψ p resonant amplitudes.
In Sec. III, we present our results for γ p → J/ψ p. The results
for γ p → D̄0�c, D̄∗0�c are given in Sec. IV. The discussion
and summary will be given in the last section.

II. CROSS SECTION FORMULA FOR VECTOR MESON
PHOTOPRODUCTION REACTION ON THE NUCLEON

We consider the photoproduction of a meson-baryon (MB)
system: γ (q) + p(p) → M(q′) + B(p′). In the center-of-mass
system, the four-momenta of these particles can be defined as

q = (k, �k),

q′ = (EM (k′), �k′),

p = (EN (k),−�k),

p′ = (EB(k),−�k′),

P = q + q′ = p + p′ = (W, �0),

where k (k′) is the length of three-momenta �k (�k′), Ea(k) =√
m2

a + k2 is the energy of a particle with mass ma, and W
is the invariant mass of the system. For a given W and angle
(	) between �k and �k′, all of the above kinematic variables
are determined by W = k + EN (k) = EM (k′) + EB(k′). The
differential cross section can then be written as

dσ

d	
= (2π )4

k2
ργ N (k)ρMB(k′)

× 1

4

∑
λγ ,λM

∑
ms,m′

s

|〈�k′λ′
Mm′

s|T (W )|�kλγ ms〉|2, (1)

where λ′
M (λγ ) is the helicity of the meson M (photon γ ),

ms(m′
s) is the z component of the spin of initial proton p (final

baryon B). The phase space factors in Eq. (1) are

ργ N (k) = k2EN (k)

W
,

ρMB(k′) = k′EM (k′)EN (k′)
W

. (2)

The reaction amplitude is written as

〈�k′λ′
Mm′

s|T (W )|�kλγ ms〉

= 1

(2π )3

√
mN mB

4kEN (k)EM (k′)EB(k′)
εν (q, λγ )

× [
jνλ′

M , m′
s, ms

(q′, p′, q, p)
]
, (3)

(a) (b)

FIG. 1. Gluon-exchange mechanism of γ N → J/ψ + N .

where εν (q, λγ ) is the polarization vector of photon, and
jν
λ′

M , m′
s, ms

(q, p, q′, p′) is a Lorentz covariant current matrix
element. For the vector meson photoproduction γ p → J/ψ p
(M = J/ψ and B = N) process, the current matrix element
can be written as

jνλ′
J/ψ , m′

s, ms
(q, p, q′, p′)

= ūp(p′, m′
s)ε∗

μ(q′, λ′
J/ψ )Mμν (q, p, q′, p′)up(p, ms), (4)

where ua(p, ms) is the spinor of the baryon a [with the
normalization ūa(p, ms)ua(p, m′

s) = δms,m′
s
] and εν (q, λ′

J/ψ )
is the polarization vector of J/ψ . The current matrix element
must satisfy the gauge invariance condition jνqν = 0.

In this work, we assume that the J/ψ photoproduction
amplitudes Mμν (q, p, q′, p′) of Eq. (4) can be written as

Mμν (q, p, q′, p′) = Mμν

P (q, p, q′, p′) + Mμν
N∗ (q, p, q′, p′),

(5)

where Mμν

P (q, p, q′, p′) is the Pomeron-exchange amplitude
of Donnachie and Landshoff, and Mμν

N∗ (q, p, q′, p′) is the
γ N → N∗

cc̄ → J/ψ N amplitude. In the following, we will
describe the calculations of these two amplitudes.

A. Pomeron-exchange mechanism

It is well recognized that the photoproduction of J/ψ from
the nucleon is mainly due to a gluon-exchange mechanism,
such as the leading two-gluon exchange mechanism illustrated
in Fig. 1(a). It is also known that Pomeron exchange is
an essential element in Regge phenomenology. Within the
model of Donnachie and Landshoff (DL) [7], it is assumed
that the Pomeron (P ) can be identified with gluons and
the Pomeron-exchange mechanism can be parametrized in
terms of Pomeron-quark coupling constant βq and appropriate
form factors at the P J/ψ → J/ψ and P N → N vertices.
The DL model is illustrated in Fig. 1(b). Following a study
of nonperturbative two-gluon exchanges [98], they further
adopted the Pomeron-photon analogy that the Pomeron can
be treated as a C = +1 isoscalar photon to parametrize the
quark-Pomeron vertex. Thus the P N → N vertex can be
expressed in term of the isoscalar electromagnetic form factor
of the nucleon. Following Ref. [99], the Pomeron-exchange
amplitude in Eq. (5) is written as

Mμν

P (q, p, q′, p′) = GP (s, t )T μν

P (q, p, q′, p′) (6)

with

T μν

P (q, p, q′, p′)

= i12
eM2

V

fV
βqV FV (t )βu/d F1(t )[q/ gμν − qμγ ν], (7)
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FIG. 2. Total cross sections of photoproduction of J/ψ on the
proton target. The solid curve is from the DL model of Pomeron
exchange. The dotted (dash-dotted) curves are from the two-gluon
exchange (two-gluon + three-gluon exchange) model. The experi-
mental data can be found in Ref. [9], except the blue open squares
are from Ref. [93].

where βqV (βu/d ) defines the coupling of the Pomeron with the
quark qV (u or d) in the vector meson V (nucleon N). Here we
have introduced the form factor for the Pomeron-vector meson
vertex as

FV (t ) = 1

M2
V − t

(
2μ2

0

2μ2
0 + M2

V − t

)
, (8)

where t = (p − p′)2. By using the Pomeron-photon analogy
mentioned above, the form factor for the Pomeron-nucleon
vertex is defined by the isoscalar electromagnetic form factor
of the nucleon as

F1(t ) = 4M2
N − 2.8t(

4M2
N − t

)
(1 − t/0.71)2

. (9)

Here t is in units of GeV2 and MN is the proton mass. Note

that the factor eM2
V

fV
in Eq. (7) implies a relation between the

DL model and the VMD.
The crucial ingredient of the Regge phenomenology is

the propagator GP for the Pomeron in Eq. (6). It is of the
following form:

GP =
(

s

s0

)αP (t )−1

exp

{
− iπ

2
[αP(t ) − 1]

}
, (10)

where s = (q + p)2 = W 2, αP(t ) = α0 + α′
Pt . By fitting the

data of ρ0, ω, and φ photo-production [99], the parameters
of the model have been determined: μ0 = 1.1 GeV2, βu/d =
2.07 GeV−1, βs = 1.6 GeV−1, α0 = 1.08, and α′

P = 1/s0 =
0.25 GeV−2. In our previous paper [9], we found that, with
the same μ2

0, βu/d , and α′
P, the J/ψ photoproduction data

can be fitted by setting βc = 0.84 GeV−1 and choosing a
larger α0 = 1.25. In the left side of Fig. 2, the results (black
solid curves) from the constructed Pomeron-exchange model
are compared with all of the the total cross section data
of γ p → J/ψ p up to invariant mass W = 300 GeV. Here
we note that the two-gluon (dotted curves) and three-gluon
(dot-dashed curves) exchange models, with the parameters
given in Refs. [97], cannot describe the data above about W =
10 GeV. The new data from the JLab GlueX Collaboration are
considerably larger in magnitude than the previous data, as

4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4
0.0

0.5

1.0

1.5

2.0

2.5

σ 
(n

b)

W(GeV)

FIG. 3. The total cross section of γ p → J/ψ + p via Pomeron
exchange with the center-of-mass energy W in the near-threshold
energy region. The experimental data are from Refs. [100–102].

can be seen more clearly in the right side of Fig. 2. While these
data can be better described by the two-gluon + three-gluon
exchange model, as also shown by the GlueX Collaboration,
they need further confirmation from separate experiments at
JLab. Thus our study of N∗

cc̄ starts with Fig. 3 in which the
data before 2018 are compared with the results calculated by
using the Pomeron-exchange model.

B. Excitation of N∗
cc̄ resonances

We focus on the N∗
cc̄ predicted by the meson-baryon

coupled-channel models with the parameters constrained by
the SU(4) symmetry and the fit to the meson-baryon reaction
data. Alternatively, N∗

cc̄ can be predicted by constituent quark
models or nonperturbative QCD models. These are, however,
not considered in this work.

In Table II, we list the predictions from most, if not
all, of the coupled-channel models of N∗

cc̄ in the literature.
The relative importance of the predicted N∗

cc̄ in determining
γ p → J/ψ p can be estimated by using a well known relation
between the total cross section σ (tot) at resonance energy W =
MR and the partial decay widths �N∗

cc̄,J/ψ p of N∗
cc̄ → J/ψ p,

�N∗
cc̄,γ p of N∗

cc̄ → γ p, and the total width �
(tot)
N∗,cc̄:

σ (tot)(W = MR) = 2J + 1

4

4π

q2
R

�N∗
cc̄,J/ψ p�N∗

cc̄,γ p[
�

(tot)
N∗

cc̄

]2 (11)

where J is the spin of N∗
cc̄, and qR is defined by the resonance

mass by MR =
√

M2
N + q2

R + qR. We note here that, except for
the model by Lin et al. [45], the decay width �N∗

cc̄,γ p to the
γ p channel is not predicted by the models listed in Table II.
Thus the only way we can use these models is to use the
VMD model to describe the excitation of N∗

cc̄ as the γ N →
V N → N∗

cc̄ mechanism with V = ρ, ωJ/ψ , as illustrated in
Fig. 4.

In Table II, we also see that the predicted N∗
cc̄ mainly decay

into channels associated with the D̄ meson and charmed �c

baryons, specified as the main channel (MC) in the table.
However, the available energy at JLab is not high enough to
investigate the γ p → D̄�c process. Instead the experiment
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TABLE II. The mass [m (MeV)], total width [� (MeV)], partial-decay widths to γ p [�pγ (keV)], and the partial dacay widths [�MB (MeV)]
for MB = J/ψ N , ρN , ωN , D̄�c, and D̄∗�c predicted by the available theoretical models are listed. MC denotes the main coupled channel
predicted by the model of each reference given in the last column. The results for Nos. 19 and 20 are from the experimental data. The masses
in Nos. 9, 10, 13, and 18 used in Ref. [42] are from the experimental data. All other listed masses are from the theoretical models.

No. JP m � �J/ψN �ρN �ωN �D̄�c �D̄∗�c �pγ MC Ref.

1 1
2

−
4262 35.6 10.3 0.01 D̄�c [17]

2 4308 7.1 1.2 0.02 1.4 D̄�c [103]

3 4412 47.3 19.2 3.2 10.4 D̄∗�c [11,12]

4 4410 58.9 52.5 0.8 0.7 D̄∗�c [17]

5 4460 6.2 3.9 1.0 0.3 D̄∗�c [103]

6 4481 57.8 14.3 1.02 0.3 D̄∗�∗
c [17]

7 3
2

−
4334 38.8 38.0 0.8 D̄�∗

c [17]

8 4375 2.4 1.5 0.9 D̄�∗
c [103]

9 4380 144.3 3.8 1.4 5.3 1.2 131.3 0.7 D̄�∗
c [42]

10 4380 69.9 16.6 0.15 0.6 17.0 35.3 D̄∗�c [42]

11 4412 47.3 19.2 3.2 10.4 D̄∗�c [11,12]

12 4417 8.2 4.6 3.1 D̄∗�c [17]

13 4450 139.8 16.3 0.14 0.5 41.4 72.3 D̄∗�c [42]

14 4450 21.7 0.03 1.4 6.8 D̄∗�c [48]

15 4450 16.2 11 0.6 4.2 � ′N [48]

16 4453 1.8 1.5 0.3 D̄�∗
c [103]

17 4481 34.7 32.8 1.2 D̄∗�∗
c [17]

18 5
2

+
4450 46.4 4.0 0.3 0.3 18.8 20.5 1.13 D̄∗�c [42]

19 3
2

−
, 5

2

+
4380±8

±29 205±18
±86 Expt. [21,22]

20 4450±2
±3 39±5

±19 Expt. [21,22]

on the process γ p → D̄�c may be possible. Thus we will
also consider the γ p → D̄�c reaction, which does not have
a Pomeron-exchange mechanism. This can be studied using
the models which also provide partial decay widths of N∗

cc̄ →
D̄�c, as also shown in Table II.

To proceed, we recall that the VMD is defined by the
following Lagrangian:

LVMD(x) = em2
V

fV
Aμ(x)φμ

V (x), (12)

where mV is the mass of the vector meson V , and Aμ and φ
μ
V

are the field operators for the photon and vector meson, re-
spectively. The width of V → e+e− can then be calculated by

�V →e+e− = 1

3
α2mV

4π

f 2
V

. (13)

By using the data of �V →e+e− , the decay constants of Eq. (12)
can be determined: fρ = 5.33, fω = 15.2, fφ = 13.4, and

FIG. 4. The diagram for γ p → Ncc̄ → J/ψ p with the VMD by
ρ, ω, and J/ψ coupled with γ .

fJ/ψ = 11.2. For our later discussions, we here note that
these coupling constants are determined at the photon
four-momentum q2 = m2

V . Thus, in order to use the
Lagrangian (12) in other processes with real photon q2 = 0,
a model must be used to account for the off-shell effects on
these coupling constants. In our calculations, we thus will set

1

fV
→ 1

fV
FV (q2), (14)

FV
(
m2

V

) = 1. (15)

Ideally FV (q2) should be calculated from the quark-loop
mechanism V → qq̄ → γ (q2) within a nonperturbative QCD
model. Here, we will determine it phenomenologically, as
will be specified later.

With VMD, the γ N → N∗
cc̄ amplitude can be calculated

from γ N → VVMDN → N∗
cc̄, where VVMD = ρ, ω, J/ψ , and

VVMDN → N∗
cc̄ is calculated from the considered meson-

baryon coupled-channel models of N∗
cc̄. The full amplitude

γ N → N∗
cc̄ → V N can then calculated by using N∗

cc̄ → V N
generated from the same coupled-channel models of N∗

cc̄. In
the following subsections, we will give formulas for calcu-
lating these amplitudes. With the calculated �N∗

cc̄,γ p and the
predicted widths �N∗

cc̄,J/ψ p and �
(tot)
N∗

cc̄
listed in Table II, we then

can use Eq. (11) to estimate the predicted σ (tot) for each model
and then select only the cases where the estimated σ (tot) are
close to the available data to make predictions.
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TABLE III. Coupling constants g2J V and g̃2J V are determined from fitting the partial decay widths listed in Table II. The number shown in
the first column indicates that the results for the model are from using the widths given for the same number specified in Table II. �γ p are the
partial decay widths calculated from g̃2J V within VMD, as explained in the text. Thus the resulting values of �γ p for models No. 9 and No. 18
are different from the values obtained in Ref. [42] which used a different mechanism, as explained in the text. σ (tot) is the total cross section of
γ p → J/ψ p calculated from using Eq. (20) by choosing �V = 0.55 GeV for the off-shell form factor FV (q2).

g2J V g̃2J V g̃2J V g̃2J V

No. JP m �tot J/ψ p J/ψ p ρp ωp �pγ (kev) σ (tot) (nb) MC Ref.

1 1
2

−
4262 35.6 0.39 0.32 3.9 × 10−5 1.9 × 10−4 D̄�c [17]

2 4308 7.1 0.13 0.11 4.5 × 10−6 5.9 × 10−9 D̄�c [103]

3 4412 47.3 0.46 0.38 0.078 0.14 1.14 5.4 D̄∗�c [11,12]

4 4410 58.9 0.75 0.62 1.5 × 10−4 1.3 × 10−3 D̄∗�c [17]

5 4460 6.2 0.20 0.16 1.1 × 10−5 6.2 × 10−4 D̄∗�c [103]

6 4481 57.8 0.37 0.31 3.8 × 10−5 8.8 × 10−5 D̄∗�∗
c [17]

7 3
2

−
4334 38.8 1.19 0.98 1.3 × 10−4 3.7 × 10−3 D̄�∗

c [17]

8 4375 2.4 0.23 0.19 4.6 × 10−6 1.4 × 10−3 D̄�∗
c [103]

9 4380 144.3 0.36 0.30 0.090 0.17 0.53 0.11 D̄∗�c [42]

10 4380 69.9 0.75 0.62 0.039 0.059 0.060 0.23 D̄∗�c [11,12]

11 4412 47.3 0.79 0.65 0.14 0.24 1.1 10.8 D̄∗�c [17]

12 4417 8.2 0.39 0.32 1.4 × 10−5 1.0 × 10−3 D̄∗�c [42]

13 4450 139.8 0.71 0.58 0.028 0.053 0.054 0.048 D̄∗�c [42]

14 4450 21.7 0.030 0.025 8.4 × 10−8 5.8 × 10−9 D̄∗�c [48]

15 4450 16.2 0.58 0.48 3.1 × 10−5 1.4 × 10−3 � ′N [48]

16 4453 1.8 0.21 0.18 4.2 × 10−6 2.2 × 10−3 D̄�∗
c [103]

17 4481 34.7 0.98 0.81 8.8 × 10−5 2.6 × 10−3 D̄∗�∗
c [17]

18 5
2

+
4450 46.4 0.35 0.27 0.016 0.016 8.3 × 10−2 0.25 D̄∗�c [42]

1. The N∗
cc̄ → NV transition amplitudes

Following the formulation of Refs. [104,105], the N∗
cc̄(JP, P) → N (pN ) + V (pV ) transitions for spin-parity JP = 1

2
−

, 3
2

−
, and

5
2

+
can be written as

MN∗( 1
2

−
)NV (P; pV pN ) = ūN (pN )γ5γ̃μuN∗ (P)ε∗

ν (pV )

[
g1V gμν − f1V

(
3

2

r̃μr̃ν

r̃2
− 1

2
g̃μν

N∗

)]
, (16)

MN∗( 3
2

−
)NV (P; pV pN ) = ūN (pN )uN∗ μ(P)ε∗

ν (pV )

[
g3V gμν − f3V

(
3

2

r̃μr̃ν

r̃2
− 1

2
g̃μν

N∗

)]

+ h3V εμνλδ ūNγ5
(
γ̃ μgβ

α + γ̃αgμβ
)
uN∗ βε∗

V ν

(
r̃α r̃λ

r̃2
− 1

3
g̃αλ

N∗

)
P̂δ, (17)

MN∗( 5
2

+
)NV (P; pV pN ) = ūN (pN )uN∗ μν (P)ε∗

α (pV )

[
g5V

mN
gαμr̃ν − f5V

mN

(
5

3

r̃μr̃ν r̃α

r̃2
− 1

3

(
g̃μν

N∗ r̃α + g̃να
N∗ r̃μ + g̃αμ

N∗ r̃ν
))]

+ h5V

mN
εμνλδ ūNγ5(γ̃ μgξαgσβ+γ̃ξ gσβgμβ+γ̃σ gμβgξβ )uαβ

N∗ ε
∗μ
V

(
r̃ξ r̃λr̃σ

r̃2
− 1

3

(
g̃ξσ

N∗ r̃λ+g̃σλ
N∗ r̃ξ+g̃λξ

N∗ r̃σ
))

P̂δ,

(18)

where

rμ = pμ
N − pmu

V , g̃μν
N∗ = gμν − PμPν

W 2
, (19)

r̃ν = rμg̃μν
N∗ , γ̃ ν = γμg̃μν

N∗ , (20)

P̂μ = Pμ/W. (21)

The terms with coupling constants f2J V and h2J V are the
contributions from higher partial waves. For simplicity, we
neglect these terms and set f2J V = h2J V = 0. We thus can use

the partial decay width �N∗
cc̄,NV listed in Table II to determine

the parameter g2J V by the following formula:

�N∗
cc̄NV = |p|

8πm2
N∗

cc̄

∣∣MN∗
cc̄NV

∣∣2
, (22)

where |p| is on-shell momentum of the final state vector in the
rest frame of N∗

cc̄.
The determined g2J V for V = J/ψ are listed in the fifth

column of Table III.
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2. The N∗
cc̄ → Nγ transition amplitudes

As illustrated in Fig. 4, we assume that the N∗
cc̄ → Nγ

transition amplitudes can be calculated by the γ → V tran-
sition defined by the VMD Lagrangian (12), the propagator
of V , and the V N → N∗

cc̄ amplitudes defined in Eqs. (16)–
(21). Since we can determine the parameters by using only
one value of �N∗

cc̄,γ N
predicted by a N∗

cc̄ model, we need to

make a simplification. Here we also need to make sure that
the simplified amplitudes are gauge invariant. We find that
this can be accomplished by setting h2J V = 0, like what we
have chosen in determining �N∗

cc̄
→ NV , but we need to keep

the f2J V term and set g2J V = f2J V = g̃2J V . For example, the
amplitude of N∗( 1

2
−

) → Nρ → Nγ with the simplification
h2J V = 0 is

MN∗( 1
2

−
)→Nρ→Nγ

(P; q = pρ pN ) = ie

fρ

−m2
ρ

q2 − m2
ρ + i�ρmρ

Mν (P; pρ pN )ε∗ ν
γ (q) (23)

with

Mν (P; q = pρ pN ) = uN∗ (P)γ5γ̃μuN (pN )

[
g1ρgμν ′ − f1ρ

(
3

2

r̃μr̃ν

r̃2
− 1

2
g̃μν ′

N∗

)]
g̃ρ ν ′ν (q). (24)

Obviously this amplitude will be gauge invariant if Mνqν = 0. However, it is straightforward to show that Mνqν ∼ (g1ρ −
f1ρ ) 
= 0. Therefore a simple way to have a gauge invariant amplitude is to set g2J V = f2J V = g̃2J V . This is part of the
phenomenology and needs to be improved in the future. For our present limited and exploratory purpose, this simplification
is sufficient.

By using Eqs. (16)–(18) and setting g2J V = f2J V = g̃2J V and h2J V = 0, we can then use Eq. (22) to determine g̃2J V by using
the partial decay withs listed in Table II. The resulting g̃2J V are listed in the columns 6–8 of Table III. Including the off-shell
form factor FV (q2) according to Eq. (14), we then get the following expressions for the N∗

cc̄ → V N → γ N transition amplitudes:

MN∗( 1
2

−
)→NV →Nγ

(P; q pN ) = ie

fV

−m2
V g̃1V

−m2
V + i�V mV

ūN (pN )γ5γ̃μuN∗ (P)

[
ε∗
γ ν

(
gμν − 3

2

r̃μr̃ν

r̃2
+ 1

2
g̃μν

N∗

)
FV (q2)

]
, (25)

MN∗( 3
2

−
)→NV →Nγ

(P; q pN ) = ie

fV

−m2
V g̃3V

−m2
V + i�V mV

ūN (pN )uN∗ μ(P)

[
ε∗
γ ν

(
gμν − 3

2

r̃μr̃ν

r̃2
+ 1

2
g̃μν

N∗

)
FV (q2)

]
, (26)

MN∗( 5
2

+
)→NV →Nγ

(P; q pN ) = ie

fV

−m2
V g̃5V /mN

−m2
V + i�V mV

ūN (pN )uN∗ μν (P)ε∗
γ αFV (q2)

(
gαμr̃ν − 5

3

r̃μr̃ν r̃α

r̃2
+ 1

3

(
g̃μν

N∗ r̃α+g̃να
N∗ r̃μ+g̃αμ

N∗ r̃ν
))

,

(27)

where pV = q is used to evaluate r̃ν and g̃αμ
N∗ according to

Eqs. (19) and (20). For the off-shell form factors, we assume

FV (q) = �4
V

�4
V + (

q2 − m2
V

)2 . (28)

Here we should emphasize that the above phenomenologi-
cal form for the off-shell form factor is very unsatisfactory.
One can see that, for a small value of �V ∼ mρ ∼ mω, the
contribution from J/� to FV (q2 = 0) is strongly suppressed.
The J/� contribution becomes significant only for large
�V ∼ mJ/ψ . This feature is rather uncertain because it has
no relation to the internal structure of the considered three
vector mesons. Because of this limitation, FV (q2) resulting
from our fit to the very specific total cross section data of
γ p → J/� p can only be used with caution to apply VMD
to investigate other photoproduction processes. Clearly our
naive phenomenological approach needs to be investigated
in the near future by using a QCD model. For example,
one can try to relate the off-shell form factor FV (q2) to
the QCD model calculations of the quark loop γ ∗ → qq̄ →
V by extending the approach developed in Refs. [96,106].
This, however, is nontrivial and is beyond the scope of
this work.

With the determined g̃V listed in Table III and a given
choice of the cutoff �V , we can use the N∗ → NV → Nγ

amplitudes given in Eqs. (25)–(27) to calculate the decay
width of N∗ → Nγ within VMD:

�N∗→Nγ = 1

8π

k

m2
N∗

∣∣∣∣∣
∑

V

MN∗→NV →Nγ

∣∣∣∣∣
2

. (29)

The cutoff �V is a parameter of the model. In Table III
we list the calculated �N∗→Nγ for each model by setting
�V = 0.55 GeV (the dependence on the value of �V will
be discussed in the next section). By using the partial decay
widths listed in Tables II and III we can use Eq. (11) to
estimate the total cross section σ (tot) of γ p → J/ψ p at the
resonance positions, as also given in the ninth column of
Table III.

3. The amplitude of γ p → N∗
cc̄ → J/ψ p

The amplitude γ p → N∗
cc̄ → J/ψ p is shown in Fig. 4.

By using the definition of vertexes of N∗ → NV as shown
Eqs. (16)–(18) and N∗ → NV → Nγ as shown Eqs. (25)–
(27), we can write the amplitude Mμν

N∗ (q, p, q′, p′), which is
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defined in Eq. (4):

Mμν

N∗( 1
2

−
)
(q, p, q′, p′) =

∑
V =J/ψ,ρ,ω

g1J/ψγ5γ̃α g̃αμ(q)
/q + /p + mN∗

cc̄

W 2 − m2
N∗

cc̄
+ i�N∗

cc̄
mN∗

cc̄

FV (0)
ie

fV

−m2
V g̃1V

−m2
V + i�V mV

γ5γ̃β

(
gβν − 3

2

r̃β r̃ν

r̃2
+1

2
g̃βν

N∗

)
,

(30)

Mμν

N∗( 3
2

−
)
(q, p, q′, p′) =

∑
V =J/ψ,ρ,ω

g3J/ψgμα

(
/q + /p + mN∗

cc̄

)
P

3
2

αβ (p + q)

W 2 − m2
N∗

cc̄
+ i�N∗

cc̄
mN∗

cc̄

FV (0)
ie

fV

−m2
V g̃3V

−m2
V + i�V mV

(
gβν − 3

2

r̃β r̃ν

r̃2
+ 1

2
g̃βν

N∗

)
, (31)

Mμν

N∗( 5
2

+
)
(q, p, q′, p′) =

∑
V =J/ψ,ρ,ω

g5J/ψ

mN
gμα r̃β

(
/q + /p + mN∗

cc̄

)
P

5
2

αβ α′β ′ (p + q)

W 2 − m2
N∗

cc̄
+ i�N∗

cc̄
mN∗

cc̄

FV (0)
ie

fV

−m2
V g̃5V /mN

−m2
V + i�V mV

×
(

gνα′
r̃β ′ − 5

3

r̃ν r̃α′
r̃β ′

r̃2
+ 1

3

(
g̃να′

N∗ r̃β ′ + g̃νβ ′
N∗ r̃α′ + g̃α′β ′

N∗ r̃ν
))

, (32)

where P
3
2

αβ (p) and P
5
2

αβ α′β ′ (p) are the Lorentz structure functions of propagators of 3/2 and 5/2 particles, respectively. Their
formulas are [105]

P
3
2

αβ (p) = −gαβ + 1

3
γμγν + 2

3

pμ pν

m2
N∗

+ 1

3mN∗
(γμ pν − γν pμ), (33)

P
5
2 αβ α′β ′

(p) = 1
2

(
g̃αα′

N∗ g̃ββ ′
N∗ + g̃αβ ′

N∗ g̃βα′
N∗

) − 1
5 g̃αβ

N∗ g̃α′β ′
N∗ − 1

10

(
γ̃ αγ̃ α′

g̃ββ ′
N∗ + γ̃ αγ̃ β ′

g̃βα′
N∗ + γ̃ β γ̃ α′

g̃αβ ′
N∗ + γ̃ β γ̃ β ′

g̃αα′
N∗

)
. (34)

III. PREDICTIONS FOR γ p → J/ψ p

In this section, we will first use the available total cross
section data to fix the cutoff parameter �V of the off-shell
form factor Eq. (28) of the γ p → N∗

cc̄ amplitude. We then
make predictions for using differential cross sections for
identifying the N∗

cc̄ from future experimental data.

A. Total cross section

From Fig. 3, we see that the available data for γ p →
J/ψ p in the near-threshold region are below about 0.8 nb and
have some structure which may be due to the experimental
uncertainties, but may be due to the N∗

cc̄ excitations. In this
section we will make predictions for investigating the extent
to which these available data can accommodate the N∗

cc̄ exci-
tations predicted by the models listed in Tables I and II. In
particular, we are interested in the predictions of Ref. [42],
since this is the only model which predicts the partial decay
width to the γ p channel for the 3

2
−

(4380) and 5
2

+
(4450) states.

The triangular mechanism they used for γ N → N∗
cc̄(4380) is

similar to our model based on VMD, but for N∗
cc̄(4450) they

are different by one magnitude order.
Our first step is to determine the cutoff parameter �V of the

off-shell form factor Eq. (28). To compare with the results of
Ref. [42], we perform calculations including only 3

2
−

(4380)

and 5
2

+
(4450) using the parameters (No. 9 and No. 18 of

Ref. [42]) listed in Table III. We find that the calculated total
cross sections can be close to the available data shown in
Fig. 3 if we choose the cutoff in the range of 500 � �V � 650
MeV. In Fig. 5(a), we see that the choice �V = 550 MeV
gives results within the uncertainties of the available data.

The structure of the solid curve at W ≈ 4.35 GeV is due
to the interference between the Pomeron-exchange ampli-
tude (dotted curve) and the resonant amplitude (long dashed
curve). Furthermore, we also see that the resonant amplitude
is dominated by the 5

2
+

(4450) state, as shown in Fig. 5(b).
With the same cutoff �V = 550 MeV, we then calculate

�N∗
cc̄→γ N for all states, as listed in Table III. With the widths

given in Table III, we then estimate the total cross sections of
γ p → N∗

cc̄ → J/ψ p by using Eq. (11) for all models. We can
see in the last column of Table III that, except for the 3

2
−

(4380)

and 5
2

+
(4450) states of Ref. [42], all of the estimated total

cross sections are either too large or too small compared

4.0 4.2 4.4 4.6 4.8 5.0
0.00

0.08

0.16

0.24

0.32

0.40

4.0 4.2 4.4 4.6 4.8 5.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

σ 
(n

b)

W (GeV) W (GeV)(b)

σ 
(n

b)

(a)

FIG. 5. The total cross sections of γ p → J/ψ p plotted vs the
invariant mass of γ p. (a) The red dotted and blue dashed curves
are the contributions from the Pomeron exchange and N∗

cc̄ with
J p = 3/2− and 5/2+ with �V = 550 MeV, respectively. The black
solid line is for the coherent summation of all the above three
contributions. (b) The red dotted and blue dashed curves are the
contributions of N∗

cc̄ with J p = 3/2− and 5/2+ with �V = 550 MeV,
respectively. The solid black line is the coherent summation of two
N∗cc̄ and it is the same as the blue dashed curve in panel (a) here.
The experimental data are from Refs. [100,101].
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TABLE IV. Fitting the partial decay widths of the states included
in our predictions. �γ p are partial decay widths calculated from g̃V

within VMD, as explained in the text. σ (tot) is the total cross section
of γ p → J/ψ p calculated from using Eq. (20) by choosing �V =
0.55 GeV for the off-shell form factor FV (q2).

No. JP m �tot �J/ψ p �pγ (kev) σ (tot) (nb) Ref.

9 3
2

−
4380 144.3 3.8 0.53 0.11 This work

4380 144.3 3.8 0.70 0.15 [42]

18 5
2

+
4450 46.4 4.0 0.083 0.25 This work

4450 46.4 4.0 1.13 3.4 [42]

with the value ≈0.5 nb of the available data shown in
Fig. 5.

In Table IV, we compare our results for �γ p and σ (tot) of
γ p → N∗

cc̄ → J/ψ p with those of Ref. [42]. Here we see that
our result for the 5

2
+

(4450) state is much smaller than theirs.
The differences between this work and Ref. [42] are from
using rather different mechanisms to evaluate γ N → N∗

cc̄. It
is therefore useful to examine how our predictions depend
on the parameters of our model based on VMD. We first
examine the contribution from each of the intermediate vector
mesons, illustrated in Fig. 4, to the calculated total cross
sections of γ p → N∗

cc̄ → J/ψ p. Our results from including
the J = 3

2
−

(4380) and 5
2

+
(4450) states in the calculation are

shown in Fig. 6. Clearly the intermediate ρ gives the largest
contribution, and J/ψ is negligible. This can be understood
from the employed off-shell form factor (28) which depends
on the mass of the intermediate vector meson. This is also the
reason why the cross sections predicted by the models without
ρp channel listed in Table III are extremely small.

B. Differential cross sections

In Fig. 5, we see that the feature of N∗
cc̄ excitation in the

total cross section is not so pronounced because it interferes
with the background from the Pomeron-exchange amplitude,
which is very large in all energy regions. To extract the
peak of N∗

cc̄, we need to find other observables which are

4.0 4.2 4.4 4.6 4.8 5.0
0.00

0.03

0.06

0.09

0.12

0.15

4.0 4.2 4.4 4.6 4.8 5.0
0.00

0.08

0.16

0.24

0.32

0.40

σ 
(n

b)

(b)

P
c
 (3/2-)

(a)

P
c
 (5/2+)

W(GeV)

FIG. 6. The cross sections of γ p → N∗
cc̄ → J/ψ p plotted for

different JP of N∗
cc̄ vs the invariant mass of γ p. The orange dashed,

blue dotted, and red dashed-dotted lines are the contributions purely
from the VMD by ρ, ω, and J/ψ coupled with γ , respectively. The
black solid lines are for the coherent summation of ρ, ω, and J/ψ
contributions.

0 20 40 60 80 100 120 140 160 180
10-2

10-1

100

d 
σ 

/ d
Ω

 (
nb

)

θ (deg)

FIG. 7. The differential cross sections of γ p → J/ψ p plotted vs
the angle of the outgoing J/ψ at invariant mass of γ pW = 4.45 GeV.
The red dotted, blue dashed lines are the contributions purely from
the Pomeron and N∗

cc̄ with �V = 0.55 GeV, respectively. The black
solid line is for the coherent summation of all contributions.

not dominated by the Pomeron exchange. It is noticed that
the Pomeron exchange is strongly suppressed with large t
in Eq. (10). In other words, the Pomeron exchange mainly
contributes to the cross sections at forward angles. This is
illustrated in Fig. 7. It is then clear that the resonance peaks
will be easier to observe at large angles. This is illustrated
in Fig. 8. At 60◦, the shoulder due to N∗

cc̄(4380) shows up
more clearly. However, the magnitudes of the differential
cross sections decrease rather rapidly with angles. Thus the
measurement around 30◦ may be optimal in examining the
role of N∗

cc̄.

IV. PREDICTION ON γ p → D̄0�+
c , D̄∗ 0�+

c

It is important to note that the Pomeron-exchange ampli-
tude is still dominant in determining the J/ψ production in
the considered low energy region. Therefore it is interesting
to test the VMD model of γ N → N∗

cc̄ using other reactions
which do not have the Pomeron-exchange mechanism and in
the low energy region accessible to experiments measuring
J/ψ production at JLab. With the N∗

cc̄ models No. 6, No. 9,
and No. 18 selected from Table II and listed in Table V, the
reaction γ p → D̄∗ 0�+

c , D̄0�+
c can be used for this purpose.

In addition to calculating the γ p → N∗
cc̄ → D̄∗ 0�+

c , D̄0�+
c

amplitude, we also need to consider the meson-exchange
mechanisms due to the D̄∗0 → D̄0γ process. We thus need
to calculate the amplitudes of the two mechanisms shown in
Fig. 9.

TABLE V. Partial decay widths use to calculate the coupling of
gN∗→D̄�c and gN∗→D̄∗�c .

No. JP m �D̄�c gN∗→D̄�c �D̄∗�c gN∗→D̄∗�c
Ref.

6 1
2

−
4481 1.02 0.40 0.3 0.043 [17]

9 3
2

−
4380 1.2 1.29 131.3 1.90 [42]

18 5
2

+
4450 18.8 13.39 20.5 2.18 [42]
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FIG. 8. The differential cross sections of γ p → J/ψ p plotted vs the invariant mass of γ p at three fixed angles of outgoing J/ψ . The red
dotted and blue dashed lines are the contributions purely from the Pomeron exchange and N∗

cc̄ with �V = 0.55 GeV, respectively. The black
solid line is for the coherent summation of all contributions.

A. meson-exchange amplitude

The meson-exchange amplitudes shown in Fig. 9(b) can
be calculated by using D∗Dγ , pD∗0�+

c , and pD0�+
c vertices

defined as follows:

MD∗Dγ = gD∗0D0γ√
mD∗mD

εμναβPγ μεγ νPD∗ αεD∗ ν, (35)

MND�+
c

= gND�+
c

ū�+
c
γ5uN , (36)

MND∗�+
c

= gND∗�+
c

ū�+
c
γμε

μ
D∗uN , (37)

where the coupling gD∗0D0γ = 1.07 is calculated from the
partial decay width of D∗0 → D0γ which is estimated from
the measured ratio of widths �D∗0→D0γ /�D∗0→D0π0 , with
�D∗0→D0π0 obtained from the data of �D∗+→D+π0 by using
isospin. By using SU(4) symmetry [107], the coupling con-
stants in Eqs. (36) and (37) can be determined: gND�+

c
=

− 3
√

3
5 gBBP and gND∗�+

c
= −√

3gBBV , where gBBP = 0.989 and
gBBV = 3.25. Then the amplitude jνD∗ m′

s, ms
(q, p, q′, p′), de-

fined in Eq. (3), for γ p → D̄0�+
c due to D̄∗0 exchange can

be written as

jνD∗ m′
s, ms

(q, p, q′, p′) = gD∗Dγ gND∗�+
c√

mD∗mD
εμναβ

qμq′
α ū�+

c
(p′, m′

s)γβup(p, ms)

(q′ − q)2 − m2
D∗

FD∗ (q′ − q). (38)

Similarly, the D̄0-exchange amplitude for γ p → D̄∗ 0�+
c is

jνD m′
s, ms

(q, p, q′, p′) = gD∗Dγ gND�+
c√

mD∗mD
εμναβ

qμq′
αεD∗ β ū�+

c
(p′, m′

s)γ5up(p, ms)

(q′ − q)2 − m2
D∗

FD(q′ − q). (39)

B. N∗
cc̄-excitation amplitudes

The formulas for calculating the resonant amplitude γ N → N∗
cc̄ → �+

c D̄∗ are the same as Eqs. (30)–(32) except that the
coupling constants g2J J/ψ for J = 1/2, 3/2, 5/2 are replaced by gN∗→D̄�V

for each J listed in Table V.
For the γ N → N∗

cc̄ → �+
c D̄, we define N∗

cc̄�
+
c D̄ vertices as follows:

MN∗( 1
2

−
)�+

c D̄ = g1 ū�+
c
uN∗ , (40)

MN∗( 3
2

−
)�+

c D̄ = g3

m2
D

ū�+
c
γ5γμuN∗ ν pμ

D̄
pν

D̄, (41)

MN∗( 5
2

+
)�+

c D̄ = g5

m3
D

ū�+
c
γ5γμuN∗ νλ pμ

D̄
pν

D̄ pλ
D̄, (42)

where pD̄ is the four-momentum of D̄ meson. The coupling can be calculated from the partial decay widths listed in No. 6, No.
9, and No. 18 of Table V. We then get g1 = 0.40, g3 = 1.29, and g5 = 13.39.

(a) (b)

FIG. 9. Diagrams (a) for γ p → Ncc̄ → D̄0(D̄∗0 )�+
c with the VMD using ρ, ω, and J/ψ coupled with γ , and (b) for γ p → D̄0(D̄∗0)�+

c by
exchanging D0(D∗0).
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With the above equations and γ p → N∗
cc̄ given in Table III, we can calculate the amplitude for γ p → N∗

cc̄ → D̄0�+
c and

obtain the corresponding current matrix element jνN∗ m′
s, ms

(q, p, q′, p′) [defined in Eq. (3)] as

jν
N∗( 1

2
−

) m′
s, ms

(q, p, q′, p′) =
∑

V =J/ψ,ρ,ω

g1
ū�+

c
(p′, m′

s)
(
/q + /p + mN∗

cc̄

)
up(p, ms)

W 2 − m2
N∗

cc̄
+ i�N∗

cc̄
mN∗

cc̄

FV (0)
ie

fV

−m2
V g̃1V

−m2
V +i�V mV

γ5γ̃β

(
gβν−3

2

r̃β r̃ν

r̃2
+1

2
g̃βν

N∗

)
,

(43)

jν
N∗( 3

2
−

) m′
s, ms

(q, p, q′, p′) =
∑

V =J/ψ,ρ,ω

g3

m2
D

ū�+
c

(p′, m′
s)γ5/q′(

/q + /p + mN∗
cc̄

)
P

3
2

αβ (p + q)up(p, ms)

W 2 − m2
N∗

cc̄
+ i�N∗

cc̄
mN∗

cc̄

×q′αFV (0)
ie

fV

−m2
V g̃3V

−m2
V + i�V mV

(
gβν − 3

2

r̃β r̃ν

r̃2
+ 1

2
g̃βν

N∗

)
, (44)

jν
N∗( 5

2
+

) m′
s, ms

(q, p, q′, p′) =
∑

V =J/ψ,ρ,ω

g5

m3
D

ū�+
c

(p′, m′
s)γ5/q′(

/q + /p + mN∗
cc̄

)
P

5
2

αβ α′β ′ (p + q)up(p, ms)

W 2 − m2
N∗

cc̄
+ i�N∗

cc̄
mN∗

cc̄

q′αq′βFV (0)
ie

fV

−m2
V g̃5V /mN

−m2
V + i�V mV

×
(

gνα′
r̃β ′ − 5

3

r̃ν r̃α′
r̃β ′

r̃2
+ 1

3

(
g̃να′

N∗ r̃β ′ + g̃νβ ′
N∗ r̃α′ + g̃α′β ′

N∗ r̃ν
))

, (45)

C. Predictions of total cross sections

The predicted total cross sections of γ p → N∗
cc̄ →

D̄0(D̄∗ 0)�+
c are shown in Fig. 10. All calculations are done

with cutoff �V = 550 MeV, as determined in the previ-
ous sections for J/ψ production. We first find that the
meson-exchange contributions (pink dotted ) to the pre-
dicted total cross section of γ p → N∗

cc̄ → D̄0(D̄∗ 0)�+
c are

very weak. The contribution from N∗
cc̄( 3

2
−

) (blue dashed) is

larger than that of N∗
cc̄( 5

2
−

) (orange dashed-dotted). Clearly,
if the predicted cross section given in Fig. 10 can be mea-
sured, it will provide an additional test of the prediction
of the N∗

cc̄( 3
2

−
) state. Hopefully such measurements can

be made in the near future as an additional test of our
prediction on J/ψ production, presented in the previous
section.

4.4 4.6 4.8 5.04.2 4.4 4.6 4.8 5.0
10-4

10-3

10-2

10-1

100

101

(b)

(n
b)

(a) W (GeV)

FIG. 10. The total cross sections of γ p → D̄0�+
c (a) and γ p →

D̄∗0�+
c (b) plotted vs the invariant mass of γ p. The pink dotted, blue

dashed, and orange dotted-dashed lines are the contributions purely
from the N∗

cc̄( 3
2

−
)
, N∗

cc̄( 5
2

+
)
, and the background with �V = 0.55 GeV,

respectively. The black solid thick lines are the coherent summations
of all contributions with background �V = 0.55 GeV.

V. SUMMARY

By using the predictions from the available meson-baryon
coupled-channel models, we have investigated the excitations
of nucleon resonances with hidden charm, N∗

cc̄, in γ p reac-
tions. For the γ p → J/ψ p process, the Pomeron-exchange
model of Donnachie and Landshoff, with the parameters
determined from fitting the available total cross section data
up to W = 300 GeV, is used to calculate the nonresonant
amplitudes. The resonant γ p → N∗

cc̄ → J/ψ p amplitudes are
calculated by using (1) the partial decay widths predicted
by the considered meson-baryon coupled-channel models to
evaluate the N∗

cc̄ → MB transition matrix elements, and (2) the
vector meson dominance (VMD) model to evaluate γ p → N∗

cc̄
as γ p → V p → N∗

cc̄ with V = ρ, ω, J/ψ . The predictions
from adding these two amplitudes then depend on an off-
shell form factor FV (q2) = λ4/[�4

V + (q2 − m2
V )2], which is

needed to account for the q2 dependence of the VMD model.
We find that with �V = 0.55 GeV the predicted total cross
sections of γ p → J/ψ p are within the range of the available
data in the energy region near the J/ψ production threshold.
We then demonstrate that the N∗

cc̄ can be most easily identified
in the differential cross sections at large angles where the
contribution from Pomeron exchange becomes negligible.

With the same VMD model and the same coupled-channel
model of N∗

cc̄, we then predict the cross sections of γ p →
D̄0�+

c (D̄∗0�+
c ). We suggest that experiments on these reac-

tions can be more effective to study N∗
cc̄ since their nonreso-

nant amplitudes, due to the exchange of D̄∗0 (D̄0), are found
to be very weak.

The most unsatisfactory aspect of this work is the phe-
nomenological determination of the off-shell form factor
FV (q2). It is determined by only using the data of total cross
sections of γ p → J/ψ p near the threshold, shown in Fig. 3.
While our predictions could be used as a first step to determine
whether the N∗

cc̄ predicted by the available meson-baryon
coupled-channel models can be found in the new data from
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JLab, it is necessary to develop a more fundamental approach
to also predict FV (q2) from QCD models. Obviously, such
an improvement is necessary for using the q2 dependence of
the J/ψ electroproduction cross section data to investigate
nucleon resonances with hidden charm.
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