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Chiral light-front perturbation theory and the flavor dependence of the light-quark nucleon sea
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The light-quark flavor dependence of the proton sea has been of great interest for many years because
of its close connection with nonperturbative effects. One hypothesis is that this dependence arises from the
pion cloud of the proton. We apply light-cone perturbation theory and experimental constraints to a chiral
Lagrangian to compute the relevant Fock-space components of the nucleon wave function with well-defined
uncertainties. Existing experimental information regarding the light-flavor sea is studied and predictions for
future experimental results are provided. Future experiments have the ability to rule out this hypothesis and have
profound implications for understanding the nucleon-nucleon force.
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I. INTRODUCTION

Textbooks tell us that nucleons are composed of u and d
valence constituent quarks, but this cannot be the whole story
because the gluons inherent in QCD must generate quark-
antiquark pairs. Thus one is led to the question: Do the pairs
arise only from perturbative evolution at high-momentum
scales, or do they have a nonperturbative origin? A defini-
tive answer would provide great help in understanding the
nature of confinement and also fundamental aspects of the
nucleon-nucleon force. Perturbative QCD predicts a sea that
is almost symmetric in light flavor. However, the discovery of
the violation of the Gottfried sum rule told us that d̄ quarks
are favored over ū quarks [1]. This highlighted the importance
of the pion cloud of the nucleon [2,3].

To truly understand the sea one needs to know more.
Efforts to measure the ratio d̄/ū by the E866 collaboration
[4,5] have been ongoing and continue with the SeaQuest
experiment [6]. Theory is reviewed in Refs. [7,8].

The pionic contribution to the nucleon sea is of special
interest. Understanding the pion and its interaction with and
among nucleons is a necessary step in learning how QCD
describes the existence of atomic nuclei. As a nearly massless
excitation of the QCD vacuum, the pion is a harbinger of
spontaneous symmetry breaking. The pion is associated with
large distance structure of the nucleon [9–11] and its exchange
between nucleons provides the longest ranged component of
the strong force. The general field of chiral perturbation theory
[12,13] is well established.

A nonperturbative sea arises from the pion cloud. We aim
to make definitive predictions of the pion-cloud model by
providing a light-cone perturbation theory approach capable
of making predictions with known uncertainties. Previous
calculations have noted ambiguities related to the dependence
of the pion-baryon vertex function on momentum transfer
and on the possible dependence upon the square of the four-
momentum of intermediate baryons, and much discussion has
ensued [7,14–24].

There is a vast, deep, and venerated literature on the role of
the pion cloud in nucleon structure. Nevertheless, there is still

much to be done. For example, even the very first example
[2,3], the size of the pion contribution to the d̄-ū asymmetry,
is under present controversy. References [18,22] argue that
the pion cloud accounts completely for the measured asym-
metry. In contrast, Ref. [16] finds that only about half of
the asymmetry can be accounted for by pion-cloud effects.
In their view, cancellations between the effects of N and �

intermediate states, which would be complete in the limit of
large Nc, reduce the size of the effect. This discrepancy needs
to be resolved.

There is another more fundamental issue involving the
loss of relativistic invariance which occurs when the vertex
function is treated (universally in all of the models so far)
as depending on only three of the four necessary momentum
variables. This paper resolves both of these problems by us-
ing a four-dimensional formalism and by using experimental
constraints on the pion-baryon vertex function. The formalism
employed here combines pion-baryon dynamics with light-
front perturbation theory. Hence the new nomenclature, “chi-
ral light-front perturbation theory” that appears in the title.

II. FORMALISM

In a light-cone perturbation theory (LCPT) description, the
proton wave function can be expressed as a sum of Fock-
state components [25–28]. Our hypothesis is that the non-
perturbative light-flavor sea originates from the bare nucleon,
pion-nucleon (πN), and pion-Delta (π�) components. The
interactions are described by using the relativistic leading-
order chiral Lagrangian [29–31]. Displaying the interaction
terms to the relevant order in powers of the pion field, we use

Lint = − gA

2 fπ
ψ̄γμγ5τ

aψ ∂μπa − 1

f 2
π

ψ̄γμτ aψ εabcπb∂μπ c

− gπN�

2M

(
�̄i

μgμνψ∂νπ
i + H.c.

)
, (1)

where ψ is the Dirac field of the nucleon, πa(a = 1, 2, 3) is
the chiral pion field, and M is the nucleon mass. In Eq. (1), gA
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FIG. 1. Terms in the light-front Hamiltonian.

denotes the nucleon axial-vector coupling and fπ is the pion-
decay constant. The second term is the Weinberg-Tomazowa
term which describes low-energy π -nucleon scattering. In the
third term, gπN� is the πN� coupling constant, and the �i

μ

field is a vector in both spin and isospin space.
Previous work [32] included the effects of the ω meson,

based on one-boson exchange models of the NN potential.
Current treatments do not include the explicit effects of ex-
changed vector mesons because their masses represent a high-
energy scale [33–35]. When computing spin-independent
quantities, the small expected effects of such heavy mesons
cannot be distinguished from the bare sea of the nucleon.
The influence of heavy mesons may be important for spin-
dependent effects (see the review [8]), and that topic will be
discussed in a later presentation.

The procedure for deriving the LCPT for any Lagrangian is
to construct the Hamiltonian operator from the T +− compo-
nent of the energy-momentum tensor [25,26,28,36,37]. The
Hamiltonian can be written in terms of a sum of kinetic-
energy operators, M2

0 , and interaction terms, denoted as V ;
see Fig. 1. The first two terms are standard interactions, and
the third is an instantaneous term that enters only at higher
orders in the coupling constant. The Hamiltonian forms of
the single-pion emission or absorption terms (Fig. 1) are
expressed as matrix elements evaluated between on-shell free
nucleon spinors [25,26,28,36,37]. The light-front Schrödinger
equation for the proton p is given by (M2

0 + V )|p〉 = M2
p|p〉.

To the desired second-order,

|p〉 ≈
√

Z|p〉0 + 1

M2
p − M2

0

V |p〉0, (2)

where |p〉0 represents the nucleon in the absence of the pion
cloud, the bare nucleon, and Z is a normalization constant.
This expression is of first order in V , hence the term “pertur-
bative.” The model is based on the assumption that including
higher-order terms is not necessary because including higher-
order diagrams would introduce large uncertainties. However,
as explained below, the consistency of this approach is main-
tained by using soft-form vertex functions. Given Eq. (2),
the wave function can be expressed as a sum of Fock-space
components given by

|p〉 =
√

Z|p〉0 +
∑

B=N,�

∫
d�πB|πB〉〈πB|p〉0, (3)

where
∫

d�πB is a phase-space integral [27,28]. In this
formalism the pion momentum distributions fπB(y), which
represent the probability that a nucleon will fluctuate into
a pion of light-front momentum fraction y and a baryon of
light-front momentum fraction 1 − y, are squares of wave
functions, |〈πB|�〉|2, integrated over k⊥.

The Lagrangian of Eq. (1) is incomplete because it is not
renormalizable. We tame divergences by using a physically
motivated set of regulators, depending on four-momenta, that
are constrained by data. If chiral symmetry is maintained, one
finds that the πN vertex function gπN (t ) and the nucleon axial
form factor are related by the generalized Goldberger-Treiman
relation [38] (obtained with mπ = 0):

MgA(t ) = fπgπN (t ), (4)

gA(t ) = gA(0)/
[
1 + (

t/M2
A

)]2
, (5)

where t is the square of the four-momentum transferred to
the nucleon. Equation (4) follows from partial conservation of
the axial-vector current (PCAC) and the pion pole dominance
of the pseudoscalar current and is obtained from a matrix
element of the axial-vector current between two on-mass-shell
nucleons. The t dependence of gA is determined for t > 0 by
low-momentum-transfer experiments [38], with MA being the
single parameter. Equation (4) relates an essentially unmea-
surable quantity gπN (t ) with one gA(t ) that is constrained by
experiments. The major uncertainty in previous calculations is
largely removed. Some models (see, e.g., Ref. [39]) find dif-
ferences between the t dependence of gA(t ) and gπN (t ), which
is allowed because mπ �= 0. Uncertainties in the parameter MA

are discussed below, where it is also shown that very large
values of t are not important in the calculations of this paper.

In evaluating the nucleon wave function (3), the neces-
sary vertex function must be applicable to situations when
either pion or baryon or both are off their mass shells. We
use frame-independent pion-baryon form factors, in which a
nucleon of mass M and momentum p emits a pion of mass
μ and momentum k and becomes a baryon of mass MB and
momentum p − k:

F (k, p, y)

= 
2

k2 − μ2 − 
2 + iε


2

y
1−y

[
(p − k)2 − M2

B

] − 
2 + iε
.

(6)

Using F (k, p, y) allows us to obtain a pion-baryon light-
front wave function. We explain for the πN system. The form
factor is part of a model for the πN vertex function �a(k, p) =
/kγ 5 gA

2 fπ
τaF (k, p, y), where k is the pion momentum and p

is the nucleon momentum. The πN component of the light-
front wave function is obtained from the Bethe-Salpeter wave
function �a

πN (k, p) by integrating over k− [25,40,41] and
projecting onto on-mass-shell baryon spinors:

�aLF(k, p, s) = M2y(1 − y)

2π p+

∫ ∞

−∞
dk−�a

πN (k, p, s),

with �aLF(k, p, s) ≡ 〈k, p, s|πN〉 and

�a
πN (k, p, s)

= −iū(p − k, s)/kγ 5u(p, s)
gA

2 fπ
τa

× 1

(k2 − μ2 + iε)[(p − k)2 − M2 + iε]
F (k, p, y). (7)
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The definition of the light-front wave function uses the basis
that the Dirac spinors are evaluated for on-shell kinemat-
ics with (p − k)− = [(p − k)2

⊥ + M2]/(p − k)+, so that the
numerator factor does not depend on k−, and the integration
over k− involves only the denominator. The evaluation of
�aLF(k, p, s) by integrating over the upper-half k− plane gives
the same result as integration over the lower half. Thus, the
light-cone wave function (including the effect of form factors)
is uniquely defined. Both procedures yield

�a,LF(k, p, s) = MgA

2 fπ (2π )3/2

√
y

1−y

ū(p − k)iγ 5τau(p)

t + μ2
FA(t ),

FA(t ) ≡ 2
4

(
2 + t + μ2)(2
2 + t + μ2)
. (8)

Expanding FA(t ) to first order in t , comparing the result to
the same expansion of gA(t )/gA(0), and matching the results
determine the value 
 = √

3/2MA. Numerical results (see
below) show that using this F (k, p, y) is equivalent to using
a form factor of the form of Eq. (4) in computing fπN (y). The
parameter independence of this approach is maintained.

The pion two-dimensional momentum distribution func-
tion fπN (y, t ) is obtained by squaring |�a,LF(k, p, s)| and
summing over a, s. The result is

fπN (y, t ) = 3M2

16π2

g2
A

f 2
π

y
t

(t + μ2)2
F 2

A (t ), (9)

with t = (M2y2 + k2
⊥)/(1 − y). The pion longitudinal mo-

mentum distribution function fπN (y) is then

fπN (y) =
∫ ∞

tN

dt fπN (y, t ), (10)

where tN ≡ M2y2/(1 − y). Using Eq. (4) or (8) yields the
same fπN because the integrand is dominated by the region
of low values of t .

It is necessary to show that the pionic effects are of long
range when the stated vertex function is used. The formal
way to do that is to study the resulting three-dimensional,
light-front structure of the pion-baryon component. Here the
transverse spatial probability density of the πN fluctuation,
ρπN (y, b) = |ψπN (y, b)|2, with

ψπN (y, b) = 1

(2π )2

∫ ∞

0
d2
k⊥ei
k⊥·
b�a,LF(k, p), (11)

with k⊥ = [(1 − y)t − y2M2]1/2. This distribution represents
the spatial extent of the pion cloud but, as pointed out by
Burkardt [42], there is no direct connection between trans-
verse momentum space densities fπN (y, k⊥) and transverse
position space densities ρπN (y, b).

Next is the intermediate � contribution. The pionic cou-
pling between nucleons and � particles has an off-diagonal
Goldberger-Treiman relation [30,43] similar to Eq. (4). Lat-
tice calculations [43] show that gπN�(t )

gπN (t ) = 1.61 is constant and
consistent with the Goldberger-Treiman relations.

(a) (b) (c)

x xx

FIG. 2. (a) External interaction, X, with bare nucleon (solid line).
(b) External interaction, X, with the pion. (c) External interaction, X,
with the intermediate baryon. Here X represents the deep-inelastic-
scattering operator.

The evaluation proceeds as for the intermediate nucleon.
The result is

fπ�(y) = 1

12π2

(
gπN�

2M

)2

y
∫ ∞

t�

dt
F 2

A (t )

(t + μ2)2

×
[

t + 1

4M2
�

(
M2 − M2

� + t
)2

]
[(M + M�)2 + t],

(12)
with t� = [y2M2 + y(M2

� − M2)]/(1 − y).
The previous material completes the discussion of the

formalism.

III. APPLICATION TO PARTON DISTRIBUTIONS

The next step is to use Eq. (3) to compute the light-flavor
sea of a nucleon. Consider the role of the pion cloud in
deep-inelastic scattering (Fig. 2). One needs to include terms
in which the virtual photon hits (a) the bare nucleon, (b) the
intermediate pion [44], and (c) the intermediate baryon B of
the (πB) Fock-state component.

The effects of the Weinberg-Tomazowa (WT) term vanish
because the deep-inelastic-scattering (DIS) operator, repre-
sented by X in the figure, is diagonal in the pion flavor
index. Deep-inelastic scattering is a form of virtual Compton
scattering. This scattering operator only takes a pion of a given
charge into a pion of the same charge. This operator cannot
change a flavor index so there is no effect. In more detail,
denoting the DIS operator as Mbb, the evaluation of the WT
looks schematically like τ aεabcπb∂μπbMbb = 0. Of course,
the electromagnetic interaction, which explicitly depends on
the charge of the pion and is off-diagonal in the flavor indices,
does yield a contribution, as has been known for a long time;
see e.g., Ref. [20]. However, any implication that the WT term
leads to a contribution to DIS is simply wrong.

Another key assumption of the present model is that quan-
tum interference effects involving different Fock-space com-
ponents are negligible because different final states obtained
from deep-inelastic scattering by the pion and by the nucleon
are expected to be orthogonal.

Given the lack of interference effects, one can represent
the quark distribution functions of flavor f = (ū, d̄ ) in the
nucleon sea as

q f
N (x) = Zq f

N0(x) +
∑

B=N,�

fπB ⊗ q f
π +

∑
B

fBπ ⊗ q f
B,

(13)

035205-3



MARY ALBERG AND GERALD A. MILLER PHYSICAL REVIEW C 100, 035205 (2019)

in which fπB ⊗ q f
π ≡ ∫ 1

x
dy
y fπB(y)q f

π ( x
y ). The first symbol in

the subscript represents the struck hadron, and the phase-
space factor in Eq. (3) ensures that fπB(y) = fBπ (1 − y). The
quark distributions of the hadrons in the cloud are given by
q f

π (x) and q f
B(x), and the bare nucleon distributions are given

by q f
N0(x). We assume that the ū, d̄ parton distributions of

the bare proton and the intermediate � and nucleon are the
same, q f

N0 = q f
� = q f

B, and are flavor symmetric, as expected
from the perturbative generation of sea quarks via the flavor-
independent quark-gluon coupling constant.

Our Fock-space expansion has no one-to-one correspon-
dence with Feynman diagrams. For example, the Feynman
diagram of Fig. 2(b) would involve transitions from two-pion
states to zero-pion states. Such effects should not be included
because the light-cone Fock-space wave function is used to
obtain probability distributions.

Contributions to the antiquark sea of the proton come from
the valence and sea distributions of the pion, qv

π and qs
π , and

the sea distributions qs
B and qs

N of the intermediate baryons
and the bare proton. The use of these distributions to describe
deep-inelastic scattering from a bound pion follows from the
light-front Fock-space expansion (3), which involves only
on-mass-shell constituents. With fπ+n = 2

3 fπN , fπ0 p = 1
3 fπN ,

fπ−�++ = 1
2 fπ�, fπ0�+ = 1

3 fπ�, fπ+�0 = 1
6 fπ�, the antiquark

distributions are

d̄ (x) =
(

5

6
fπN + 1

3
fπ�

)
⊗ qv

π + q̄sym(x), (14)

ū(x) =
(

1

6
fπN + 2

3
fπ�

)
⊗ qv

π + q̄sym(x), (15)

where q̄sym(x) ≡ ∑
B fπB ⊗ qs

π + ∑
B fBπ ⊗ qs

B + Zqs
N (x).

The πN terms favor the d̄ , but the π� terms favor the ū.
The pion valence quark parton distribution function (pdf) is

obtained by evolving the pion valence pdfs of Aicher, Schäfer,
and Vogelsang (ASV) [45] from their starting scale to Q2 =
54 GeV2, which is the scale relevant for E866. The present
fit to the evolved valence distribution is given by qv

π (x) =
1.39 x−0.331(1 − x)3.12(7.18 x2 + 1). As in the ASV analysis,
the pion sea quark pdfs are those of Gluck, Reya, and Schien-
bein [46], for which at 54 GeV2, qs

π (x) = 0.115 x−1.21(1 −
x)5.34(1 − 2.38

√
x + 4.28 x).

Holtmann et al. [14] explained that the bare proton sea can-
not directly be determined from experimental data, which in-
cludes contributions from the pion cloud. They ultimately [47]
used a fit to DIS data that included corrections for the pion
cloud to determine the bare proton sea. We use their symmet-
ric sea: xqd̄

N0(x) = xqū
N0(x) = 0.217(1 − x)15.6(1 + 0.625x).

This distribution is also used for terms of Fig. 2(c).
Other input parameters must be described before present-

ing numerical results. The pion-nucleon splitting function
fπN (y) depends on the coupling constant gπN and the form
factor cutoff 
. The lower limit for gπN is 12.8, taken from the
Goldberger-Treiman relation gπN = M

fπ
gA, with gA = 1.267 ±

0.04, M = 0.939 GeV, fπ = 92.6 MeV. The upper limit is
gπN = 13.2, consistent with the scattering data analysis of
Perez et al. [48] and the muon-based determination of gA

by Hill et al. [49]. As noted above, the cutoff parameter of
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0.0
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0.0

0.1

0.2

0.3

y

2
f
N

3
−
f

3

FIG. 3. Pion-baryon splitting functions fπB(y), B = N, �, are
shown in the upper two panels. The solid lines are found by using the
central values of our coupling constants and cutoffs. The upper (blue)
and lower (red) dashed lines are obtained by using the maximum or
minimum values, respectively, of these parameters. The lowest panel
shows the contribution of the splitting functions to the integrated
asymmetry, D̄ − Ū , Eq. (16). The smaller spread between the dashed
lines is due to the correlation between the coupling constants and the
use of the same cutoff in fπN (y) and fπ�(y).

Eq. (8), 
 = √
3/2MA, is obtained at very low t . The two

resulting splitting functions are identical for all values of
y, demonstrating that only small values of t are important
in the present calculations. In initial calculations we used
the value MA = 1.03 ± 0.04 GeV [38]. This early review
result was confirmed by many authors [50–54], all obtaining
results within the stated uncertainty. We have increased the
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FIG. 4. 2πbρπN (y, b) for y = 0.1 (dashed), 0.2 (solid), 0.4 (dot-
dashed), and 0.6 (dotted), using the central values of our parameters
for fπN (y).

uncertainty in our cutoff 
 to ±10% to allow for a difference
between the cutoffs in the πNN form factor and the axial
form factor. Although one early estimate, based on the cloudy
bag model, suggested that the difference might be ±20%
[39], later work using dispersion relations found consistency
between the axial form factor cutoff and a πNN monopole
cutoff of 
 = 0.80 GeV ±10% [55,56]. A monopole value of

 = 0.8 GeV corresponds to a dipole value of 1.1 GeV.

IV. NUMERICAL RESULTS

The splitting function fπN (y) is shown in Fig. 3 for a range
of parameters bounded by the maximum and minimum values
of gπN and 
. The splitting function fπ�(y) depends on the
coupling constant gπ� and the form factor cutoff 
. We use
the same form factor and cutoff for fπN (y) and fπ�(y). The
upper limit of the coupling constant is obtained by using
the quark-model result ( gπ�

gπN
)2 = 72

25 , gπ� = 1.7gπN . The
lower limit of the coupling constant is obtained from the large-
NC limit of gπ� = 1.5 gπN . The ratio fπ�(y)/ fπN (y) is less
than unity for the important regions of y. It does increase as
y increases above 0.5 and becomes greater than unity at about
y = 0.8, where both splitting functions are vanishingly small.

The next step is to show that the splitting functions arise
from the long-range structure of the nucleon. Figure 4 displays
the transverse probability distribution 2πbρπN (y, b) for sev-
eral values of y, the momentum fraction carried by the pion.
Central values of the parameters are used. Examination shows
that the distribution is greatest for y ≈ 0.2 and all distributions
peak at a transverse distance b ≈ 0.6 fm. This is a larger
value than the 0.5 fm shown in Fig. 3 of Ref. [16]. This
greater distance is caused by the use of our soft form-factors.
Furthermore, Fig. 5 displays the mean-square value of b. This
distribution peaks at small y, in the region in which chiral
contributions are expected to be made [16], but there are
long-ranged contributions to the πN transverse probability
for all values of y. Strikman and Weiss [16] note that, for
small values of b, the transverse distribution of pions in the
nucleon is strongly dependent on form factors and cutoffs and
so argue that the pion-cloud contribution can only be safely

FIG. 5. 〈b2(y)〉 for ρπN (y, b) using the central values of our
parameters for fπN (y).

determined for large b � 0.5 fm. Our calculation using the
experimentally constrained soft vertex functions shows that
the pionic effects are of long range (greater than at least 1 fm)
for all values of y. This means that it is not necessary to
eliminate all contributions below 0.5 fm. This unnecessary
constraint used in Ref. [16] led to their Fig. 7, showing that
the pion-cloud effect accounts for only for about half of the
observed asymmetry. Furthermore the long-ranged nature of
the contributions verify that large values of t are not important
in these calculations.

Finally, it has been known for a long time that the use
of soft form factors (similar in range to those of the present
study) leads to a convergent perturbation series [9–11,57,58].
Thus the present perturbative procedure is justified.

Having justified the model, let us turn to the observations.
The integrated asymmetry D̄ − Ū is the difference in number
of d̄ and ū quarks in the proton sea. With D̄ = ∫ 1

0 d̄ (x)dx, Ū =∫ 1
0 ū(x)dx, the asymmetry is determined from Eqs. (14) and

(15) as

D̄ − Ū = 2

3

∫ 1

0
dy fπN (y) − 1

3

∫ 1

0
dy fπ�(y). (16)

The experiment E866 [5] measured D̄ − Ū = 0.118 ± 0.012.
Our splitting functions predict 0.98 � D̄ − Ū � 0.131, in
excellent agreement with the experimental result.

The computed values of d̄ (x) − ū(x) are compared with
measurements in Fig. 6, with bands obtained by using min-
imum and maximum values of the splitting functions shown
in Fig. 3. The upper band is for p → πN , the lower is for
p → π�. The central band shows the sum of these two
contributions. Its width is narrow because of the correlation
between the coupling constants: gπ� = rgπN , with 1.5 � r �
1.7, and the use of the same cutoff 
 for both terms. The
central band is a definitive prediction of the present model. We
stress that in any model, ū and d̄ are correlated so that errors
in each are partially canceled in the ratio. We find that a 15%
uncertainty in d̄, ū at x = 0.3 translates to 7% in the ratio.

The calculations of the ratio d̄ (x)/ū(x) are compared with
experimental data in Fig. 7. The results for values of x less
than about 0.15 arise from a combination of pion-cloud effects
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FIG. 6. d̄ (x) − ū(x). Blue symbols are E866 data [5]. The bands
are computed by using minimum and maximum values of the split-
ting functions shown in Fig. 3. In the top panel, the upper band is
for p → πN , the lower band is for p → π�. In the lower panel, the
band represents the sum of the two contributions.

and the symmetric sea of the bare nucleon. For larger values
of x, terms of Fig. 2(b) dominate, with the πN contribution
rising with increasing x until x ≈ 0.4. The ratio then drops
because of the enhancement of ū [Eq. (15)] provided by the
π� contribution, which becomes relatively more important
as x increases.

Excellent agreement with experimental data is obtained for
x < 0.2, but the decrease in the ratio d̄ (x)/ū(x) for higher
values of x is not reproduced. This disagreement might seem
to rule out this model calculation. However, E866 is the only
data set that impacts this quantity, and it is therefore important
to determine if this behavior is correct. The displayed band
predicts the results of the SeaQuest experiment, which will
cover the range 0.1 � x � 0.6 and this should definitively
resolve these questions.

A point of interest in previous literature, due to the dra-
matic turn-down of the data (Fig. 7), is the limit as x → 1.
For large values of x the pion valence quark distributions
dominate, although both ū(x) and d̄ (x) become vanishingly
small. The ratio

d̄ (x)

ū(x)
≈

(
5
6 fπN + 1

3 fπ�

) ⊗ qv
π(

1
6 fπN + 2

3 fπ�

) ⊗ qv
π

(17)
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FIG. 7. d̄ (x)/ū(x) Blue symbols are E866 data [5]. In the upper
panel, the domain of the plot includes the range of x covered in
the SeaQuest experiment [6]. The solid band is computed by using
minimum and maximum values of the splitting functions shown in
Fig. 3, using the bare sea of Ref. [47]. The dashed band includes
the effects of varying the bare sea by a factor of 0.75 or 1.25. The
dashed band represents our prediction for the results of the SeaQuest
experiment. In the lower panel, the domain of the plot is extended to
x = 1.

does not vanish, and d̄ (x)/ū(x) approaches 1/2 because of the
explained greater importance of the π� term for x → 1. This
shows one mechanism that allows d̄/ū to drop below unity,
but it is not likely that experiments will ever reach such values
of x.

Some readers may be concerned that this model’s form
factors produce a flavor-singlet sea x(ū + d̄ ) in excess of
what is allowed by empirical parton densities that account
for QCD evolution. That this is not the case is shown in
Fig. 8, which compares x(ū + d̄ ) for the present model to
the NLO CT14 calculation. The resulting distributions are
seen to be well below what is allowed. The contribution of
the bare sea (included in the plot of the total flavor-singlet
sea), determined at Q2 = 4 GeV2, is also much smaller than
the CT14 distribution. The effects of QCD evolution of the
bare sea from Q2 = 4 GeV2 to Q2 = 54 GeV2 are to decrease
the bare sea for x > 0.14 and increase it for x < 0.14 [59].
These changes are smaller than the uncertainty bands that
we used for the bare sea, and much less than the difference
between CT14 (dashed line) and our calculation (solid line).
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FIG. 8. The flavor-singlet sea x(ū + d̄ ) of this model (solid line)
compared with the next-to-leading order CT14 calculation (dashed
line) for Q2 = 54 GeV2. The dotted line is the contribution of the
bare sea to our model calculation. Central values of the distributions
are used for all curves.

Therefore, our total sea does not exceed the bounds set by
CT14.

V. SUMMARY

The pion-baryon form factors of this model are essentially
model independent, and the coupling constants are reasonably
well determined. For values of x greater than about 0.15, the
pion-cloud effects dominate. The rise and then fall of the

ratio d̄/ū are unalterable consequences of our approach. Sig-
nificantly changing any of the input parameters would cause
severe disagreements with other areas of nuclear physics and
would be tantamount to changing the model. If the high-x
E866 results were to be confirmed by the SeaQuest experi-
ment, the model would be ruled out.

In summary, this work presents a chiral light-front pertur-
bation theory calculation of the wave function that describes
the flavor content of the nucleonic light-quark sea. The for-
malism shows how to properly obtain vertex functions in a
four-dimensional treatment. This allows us to obtain results
which include the effects of the uncertainties in the input
parameters, small enough to provide a definitive test of the
pion cloud’s role in the nucleon sea. The pion-cloud influence
in the nucleon sea will be ruled out if our results were to
disagree with the eventual results of the SeaQuest experiment.
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