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Role of baryon number conservation in measurements of fluctuations
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I discuss the role and impact of net-baryon number conservation in measurements of net-proton fluctuations in
heavy-ion collisions. I show that the magnitude of the fluctuations is entirely determined by the strength of two
particle correlations. At LHC and top RHIC energy, this implies the fluctuations are proportional to the integral
of the balance function (BF), Bpp̄ of protons and antiprotons, while in the context of the RHIC beam energy
scan (BES), one must also account for correlations of stopped protons. The integral of Bpp̄ measured in a 4π

detector depends on the relative cross sections of processes yielding pp̄ and those balancing the proton baryon
number via the production of other antibaryons. The accepted integral of Bpp̄ further depends on the shape and
width of the BF relative to the width of the acceptance. The magnitude of the measured second-order cumulant
of net-proton fluctuations thus has much less to do with QCD susceptibilities than with the creation/transport of
baryons and antibaryons in heavy-ion collisions, and most particularly the impact of radial flow on the width of
the BF. I thus advocate that net-proton fluctuations should be studied by means of differential BF measurements
rather than with integral correlators. I also derive an expression of net-baryon fluctuations in terms of integrals
of balance functions of identified baryon pairs and argue that measurements of such balance functions would
enable a better understanding of the collision system expansion dynamics, the hadronization chemistry, and an
experimental assessment of the strength of net-baryon fluctuations.
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I. INTRODUCTION

Lattice QCD (LQCD) calculations with physical quark
masses suggest that at RHIC top energy and LHC energy, the
matter produced in heavy-ion collisions consists of a state of
matter known as quark gluon plasma (QGP) [1,2]. LQCD also
indicates that for vanishing baryon chemical potential (μB),
the transition from the QGP to a hadron gas phase (HGP) is of
crossover type [3], while at large baryon chemical potential,
it should be of first order. This implies the existence of a
critical point (CP). Theoretical considerations further suggest
that within the vicinity of the CP, one should expect sizable
changes in the matter’s correlation length and that divergent
net-charge (�Q), net-strangeness (�S), or net-baryon (�B)
fluctuations should occur [4]. Away from the CP, in the
crossover region, some trace of critical behavior might also
remain [3,5]. There is thus a strong interest in mapping
the magnitude of �Q, �S,�B with μB and temperature
(T ). This can be accomplished, in principle, by measuring
second-, third-, and fourth-order cumulants of these quantities
as a function of beam energy (

√
sNN). However, a number

of caveats must be considered. First, LQCD predicts the
magnitude of �B fluctuations in a finite coordinate space
volume, V , but, experimentally, in heavy-ion collisions, these
are measured based on a specific volume, �, in momentum
space. It is ab initio unclear how charge transport (e.g.,
flow, diffusion, etc.), within the QGP produced in heavy-ion
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collisions map V onto � and how this mapping will affect
the fluctuations observed in momentum space [6]. Second,
�B fluctuations in V are not globally constrained by net-
baryon number conservation while those in � intrinsically
are [7]. Third, it is not obvious that a measurement of proton
vs. antiproton fluctuations is sufficient to make a statement
about baryon number fluctuations. What is indeed the effect
of the unobserved baryons, i.e., antineutron (n̄), anti-lambda
(�̄), etc.? A host of other questions may also be considered,
including whether the produced system has time to thermalize
globally and whether, consequently, it is meaningful to invoke
the notion of susceptibility.

In this paper, I first focus the discussion on fluctuations of
conserved charges, more specifically the net-proton number
�Np, and examine the impact of baryon number conserva-
tion on measurements of the second cumulant κ2(�Np). I
next consider the effects of a partial measurement of baryon
fluctuations based on fluctuations of the net-proton number.
Finally, I extend the discussion and consider fluctuations of
net baryons in terms of contributions from identified pairs of
baryons and antibaryons.

In the context of the grand canonical ensemble (GCE),
fluctuations of �B are related to the reduced susceptibility χ̂B

2
according to [7,8]

χ̂B
2 = 1

V T 3
κ2(�B), (1)

where V is the volume of the system, T its temperature, and
κ2(�B), the second-order cumulant of �B. The second-order
cumulants amounts to the variance and is calculated
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according to

κ2(�B) = 〈�B2〉 − 〈�B〉2, (2)

where 〈�B〉 and 〈�B2〉 are the first and second moments,
measured over an ensemble of events, of the net-baryon
number �B = NB − NB̄. The variables NB and NB̄ represent
multiplicities of baryon and antibaryons, respectively, within
the volume V in a particular instance of the system (collision).
Averages are computed over all possible instances of the
system. Within the GCE, the susceptibility χ̂B

2 is calculated as
the second derivative of the reduced thermodynamic pressure
p̂ = p/T 4 with respect to the reduced baryon chemical
potential μ̂B ≡ μB/T

χ̂B
2 = ∂2 p̂

∂μ̂2
B

. (3)

Higher cumulants, κn(�B), n � 3, of the net-baryon number
�B are likewise related to higher-order susceptibilities
corresponding to nth derivatives of the pressure. Because
these susceptibilities have a finite dependence on the volume
of the system, which is relatively ill defined in the context of
nucleus-nucleus collisions, it is customary to consider ratios
of the cumulants κn(�B) by κ2 to eliminate this dependence.
Higher cumulants are deemed of great interest because of
their higher-power dependence on the correlation length ξ ,
which should diverge in the vicinity of the CP [9].

Measurements of second-, third-, and fourth-order cumu-
lants of �Q,�S, and �B have been conducted at RHIC,
in particular, in the context of the first beam energy scan
(BES I) [10,11]. Cross cumulants have also been reported
[12]. While second, third, and fourth order of �Q and �S
are observed to have either modest or monotonic dependence
on the beam energy, the third and fourth cumulant of the
net-proton number exhibit nonmonotonic behaviors vs.

√
sNN,

with what appears to be a statistically significant minimum
near

√
sNN = 20 GeV. Interestingly, this energy is also the

locus of a minimum in the magnitude of directed flow, v1,
observed in Au-Au collisions vs. beam energy [13]. The
existence of these two minima at the same energy has been
interpreted as an indicator of the presence of the CP in this
vicinity [14]. However, the observed nonmonotonic behavior
and minimum have received a variety of other interpretations
[15]. Indeed, several caveats may impact the interpretation of
the existing results, as well as those of future experiments.
Primary among these are concerns associated with the role of
baryon number conservation.

The total baryon number of an isolated system is a con-
served quantity. This implies that the net-baryon number of
all particles produced in a given A-A collision should add
to the sum of the baryon numbers of the incoming nuclei.
However, fluctuations of the net-baryon number, �B, will
be observed when measuring baryon production in a fiducial
acceptance limited to central rapidities. This much is true.
Furthermore, it is generally assumed that the measured magni-
tude of κn(�B) will inform us about about the susceptibilities
χB

n . It is argued, in particular, that great care has to be
given to the choice of the width of the rapidity acceptance
used in measurements of κn(�B): too narrow an acceptance
should lead to Poisson fluctuations of �B while too wide an

acceptance should greatly suppress the fluctuations because
the net-baryon number of the entire system must be con-
served. Moreover, it is often stated that for an acceptance of
about one to two units of rapidity, such as those of the STAR
and ALICE experiments, the effect of baryon number conser-
vation should be negligible and only small corrections need
to be applied to interpret κn(�B) measurements in terms of
susceptibilities. Unfortunately, these assertions are factually
incorrect as I will demonstrate in this paper: at LHC and top
RHIC energies, the nontrivial part of the cumulant κ2(�B) is
entirely determined by baryon number conservation and the
width of the experimental acceptance, while at lower energies
of the RHIC Beam Energy Scan (BES), one must account
for fluctuations in the proton yield associated with baryon
stopping and collision geometry. The good news, however,
is that local baryon number conservation applies both in
infinite static matter and within a system (heavy-ion collision)
undergoing fast longitudinal and radial expansion. The only
important consideration then is how radial and longitudinal
expansion affect the fraction of conserved baryons focused
within the experimental acceptance, on average. While such a
fraction cannot be measured directly by means of cumulants,
it can be assessed and extrapolated, in principle, from mea-
surements of balance functions. It is my goal, in this paper, to
demonstrate that second cumulants of the net-baryon number
are intrinsically and entirely determined by baryon number
conservation, radial flow, and the width of the acceptance. I
further show that while integral correlators, such as κ2(�B),
are sensitive to radial flow, they do not allow easy discrim-
ination between effects of radial flow and the width of the
acceptance in transverse momentum, pT, and pseudorapidity,
η. However, differential correlation functions in the form of
balance function (BF) offer a much better method to assess the
interplay between finite acceptance, radial flow, and baryon
number conservation.

In order to demonstrate these assertions, I first need to
express the second-order cumulant of net-baryon (proton)
fluctuations, measured within a specific acceptance, in terms
of second-order (pair) factorial cumulants. I will then show
that these are related to the νdyn correlation observable, which
in turn, is proportional to the integral, within the same ac-
ceptance, of the baryon balance function. I will show how
the integral of the balance function is determined by the
hadrochemistry of the collision system and that the shape
and width of the balance function are largely determined by
longitudinal and radial flow.

This paper is divided as follows. Section II defines mo-
ment, cumulant, factorial moment, factorial cumulant, and
balance function notations used in the remainder of the paper.
The Poisson limit of fluctuations and the relation between
κ2 and the νdyn correlator are discussed in Sec. III. The
connection between νdyn and the balance function, and the
role of baryon number conservation at LHC and top RHIC
energy are discussed in Sec. IV, while the impact of baryon
stopping and a net excess of baryons in the fiducial volume of
the measurement are addressed in Sec. V. Section VI extends
the discussion of net-baryon fluctuations in terms of a sum of
balance functions of identified baryon and antibaryon pairs.
Conclusions are summarized in Sec. VII.
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II. DEFINITIONS AND NOTATIONS

A. Integral correlators

For simplicity, all particles of interest (e.g., protons and
antiprotons) are assumed to be measured in the same fiducial
momentum acceptance �. Measured multiplicities of species
α and β, in a given event, are denoted Nα and Nβ , respectively.
Antibaryons are indicated with overbar symbols, e.g., Nᾱ

denotes the multiplicity of antiparticles of species α. For
instance, proton and antiproton multiplicities are denoted Np

and Np̄, where as the net-proton number is written �Np =
Np − Np̄.

Theoretically, the fluctuations may be described in terms
of a joint probability P(Nα, Nβ |�,C) determined by the ac-
ceptance � and the centrality C of the heavy-ion collisions
of interest. Experimentally, fluctuations may be characterized
in terms of moments of multiplicities calculated as event
ensemble averages denoted 〈O〉. First and second moments
of multiplicities Nα and Nβ are defined according to

mα
1 = 〈Nα〉 =

∞∑
i=0

NαP(Nα, Nβ |�,C), (4)

mα,β

2 = 〈NαNβ〉 =
∞∑

i=0

NαNβP(Nα, Nβ |�,C). (5)

Cumulants of multiplicities Nα and Nβ are written

κα
1 = mα

1 , (6)

κ
α,β

2 = mα,β

2 − mα
1 mβ

1 . (7)

The cumulants κα,α
2 and κ

α,β

2 , with β �= α, correspond to the
variance of Nα and the covariance of Nα and Nβ , respectively.

Experimentally, particle losses associated with the detec-
tion and event reconstruction modify these moments and cu-
mulants. Corrections for such losses are most straightforward
when carried out for single particles and pairs of particles.
It is thus convenient to introduce factorial moments of the
multiplicities Nα and Nβ as

f α
1 = 〈Nα〉 = mα

1 , (8)

f α,β

2 = 〈NαNβ − δα,βNα〉 = mα,β

2 − δα,βmα
1 . (9)

Given factorial moments of measured multiplicities nα and nβ ,
corrected factorial moments are obtained as

f α
1 = f̃ α

1 /εα, (10)

f α,β

2 = f̃ α,β

2 /(εαεβ ), (11)

where f̃ α
1 and f̃ α,β

2 represent raw (or uncorrected) factorial
moments, while εα and εβ are detection efficiencies for parti-
cle species α and β, respectively. Note that best experimental
precision may require one accounts for dependences of these
quantities on the transverse momentum, the azimuth angle,
and the pseudorapidity of the particles [16,17]. By construc-
tion, these factorial moments are determined by the single and

pair densities of produced particles according to

f α
1 =

∫
�

ρα
1 ( �p)d3 p, (12)

f α,β

2 =
∫

�

ρ
α,β

2 ( �p1, �p2)d3 p1d3 p2, (13)

where ρα
1 ( �p) is the single particle density of particle species

α, and ρ
α,β

2 ( �p1, �p2) is the pair-density of particle species
α and β.

Factorial moments (corrected for efficiency losses) are
combined to obtain factorial cumulants according to

Fα
1 = f α

1 = κα
1 = mα

1 , (14)

Fα,β

2 = f α,β

2 − f α
1 f β

1 ,

= mα,β

2 − δα,βmα
1 − mα

1 mβ

1 . (15)

Factorial cumulants Fα,β

2 are, by construction, true measures
of pair correlations: they vanish identically in the absence of
particle correlations and take finite values, either negative or
positive, in the presence of such correlations. However, null
Fα,β

2 values are not a sufficient condition to conclude mea-
sured particles are uncorrelated. Using the above definitions
of first- and second-order factorial cumulants, one verifies
second-order cumulants may be written

κ
α,β

2 = δα,βFα
1 + Fα,β

2 . (16)

It is convenient to introduce normalized factorial cumulants
defined according to

Rα,β

2 ≡ f α,β

2

f α
1 f β

1

− 1 = Fα,β

2

Fα
1 Fβ

1

, (17)

as well as the following linear combination of normalized
two-cumulants:

ν
α,β

dyn = Rα,α
2 + Rβ,β

2 − 2Rα,β

2 , (18)

where α �= β represent two distinct types of particles. The
correlator νdyn was originally introduced to search for the
suppression of net-charge fluctuations in heavy-ion collisions
[18–22]. It is of practical interest because it is experimentally
robust, impervious to statistical fluctuations, and singles out
dynamical fluctuations involved in particle production [20].
Its use has since been extended to study fluctuations of the
relative yields of several types of particle species at RHIC and
LHC energies [23–26].

B. Balance functions

General balance functions (BFs) are differential correla-
tions functions that contrast the strength of like-sign (in the
context of this paper, same baryon number) and unlike-sign
(opposite charge or opposite baryon number) particles corre-
lations [27,28]. General balance functions for pairs of species
α and β are nominally defined according to

Bα,β̄ (�y) = 1

2

[
ρ

α,β̄

2 (�y)

ρα
1

− ρ
α,β

2 (�y)

ρα
1

+ ρ
ᾱ,β

2 (�y)

ρᾱ
1

− ρ
ᾱ,β̄

2 (�y)

ρᾱ
1

]
, (19)
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in which labels without (e.g., α, β) and with (e.g., ᾱ, β̄)
an overbar indicate baryons and antibaryons, respectively.
Expressions ρα

1 and ρ
α,β

2 (�y) denote single-particle and pair
densities of baryons (antibaryons), respectively. Particle α

is considered as the trigger or given particle, while particle
β is regarded as the associate. The ratios ρ

α,β

2 (�y)/ρα
1 are

conditional densities expressing the number of particles of
species β at a separation �y from a particle of species α. In the
context of this work, it is useful to calculate the BF according
to

Bα,β̄ (�y) = 1
2

[
Dα,β̄

2 (�y) + Dᾱ,β

2 (�y)
]
, (20)

in which Dα,β̄

2 (�y) and Dᾱ,β

2 (�y) represent differences of
conditional densities defined as

Dα,β̄

2 (�y) = ρ
β̄

1 Rα,β̄

2 (�y) − ρ
β

1 Rα,β

2 (�y), (21)

Dᾱ,β

2 (�y) = ρ
β

1 Rᾱ,β

2 (�y) − ρ
β̄

1 Rᾱ,β̄

2 (�y), (22)

with normalized two-particle normalized cumulants

Rα,β

2 (�y) = ρ
α,β

2 (�y)

ρα
1 ⊗ ρ

β

1 (�y)
− 1 = Fα,β

2 (�y)

Fα
1 ⊗ Fβ

1 (�y)
. (23)

The correlators Fα,β

2 (�y) = ρ
α,β

2 (�y) − ρα
1 ⊗ ρ

β

1 (�y) are
differential factorial cumulants with an explicit dependence
on the pair separation �y.

III. MOMENTS OF NET PROTON DISTRIBUTION
AND SKELLAM LIMIT

The net-proton number is defined as �Np ≡ Np − Np̄. One
straightforwardly verifies that its first and second cumulants
are

κ1(�Np) = κ
p
1 − κ

p̄
1 , (24)

κ2(�Np) = κ
p,p
2 + κ

p̄,p̄
2 − 2κ

p,p̄
2 , (25)

where the first and second cumulants of proton and antiproton
multiplicities, denoted by the indices p and p̄, respectively, are
defined according to Eqs. (6) and (7). These may alternatively
be written

κ1(�Np) = F p
1 − F p̄

1 , (26)

κ2(�Np) = F p
1 + F p̄

1 + F p,p
2 + F p̄,p̄

2 − 2F p,p̄
2 . (27)

One finds that the second cumulant of the net-proton number
involves two parts, the first being determined by the average
multiplicities of protons and antiprotons and a more interest-
ing part driven by two-particle correlations.

As stated above, in the absence of two-particle or higher-
order particle correlations, the factorial moments Fα,β

2 vanish.
The Poisson limit of the second-order cumulant, often called
Skellam, is thus simply

κSkellam
2 (�Np) = F p

1 + F p̄
1 . (28)

It is convenient to consider the ratio, r�Np , of a measured
cumulant κ2(�Np) and its Skellam limit. Using Eqs. (27) and

(28), one gets

r�Np ≡ κ2(�Np)

κSkellam
2 (�Np)

= 1 + F p,p
2 + F p̄,p̄

2 − 2F p,p̄
2

F p
1 + F p̄

1

. (29)

This may also be written

r�Np = 1 +
(
F p

1

)2
Rp,p

2 + (
F p̄

1

)2
Rp̄,p̄

2 − 2F p
1 F p̄

1 Rp,p̄
2

F p
1 + F p̄

1

, (30)

where I inserted normalized factorial cumulants defined ac-
cording to Eq. (17).

IV. LHC AND TOP RHIC ENERGY

At LHC and top RHIC energy, one has 〈Np〉 ≈ 〈Np̄〉. The
ratio r�Np is thus approximately

r�Np = 1 + F p
1

2

[
Rp,p

2 + Rp̄,p̄
2 − 2Rp,p̄

2

]
, (31)

= 1 + 1

4
〈NT 〉ν p,p̄

dyn, (32)

where 〈NT 〉 = 〈Np〉 + 〈Np̄〉 is formally defined as

〈NT 〉 =
∫

�

ρ
p
1 ( �p)d3 p +

∫
�

ρ
p̄
1 ( �p)d3 p. (33)

But given the densities ρ
p
1 and ρ

p̄
1 are approximately constant

at central rapidities, one can write 〈NT 〉 = dNT /dη × �η,
where �η represents the longitudinal width of the experimen-
tal acceptance. The ratio r�Np may thus be written

r�Np = 1 + 1

4
�η

dNT

dη
ν

p,p̄
dyn. (34)

As I discuss below, net-baryon number conservation implies
that ν

p,p̄
dyn is negative with an absolute magnitude that depends

on the width �η of the fiducial acceptance. Neglecting this
dependence, one would expect the ratio r�Np to have a trivial,
approximately linear, dependence on the width of the accep-
tance [29]:

r�Np ≈ 1 − a�η, (35)

where a ≡ 1
4 dNT /dη|ν p,p̄

dyn|. However, the value of ν
p,p̄
dyn should

itself depend on �η. The above is thus likely to be a somewhat
poor approximation of the actual dependence of r�Np on �η. I
show later in this section that the quality of the approximation
depends on the actual shape of the balance function and the
rapidity range of interest. Additionally, given r�Np → 1 in
the limit �η → 0, one might also be tempted to conclude
that fluctuations of the net-proton number are Poissonian
(Skellam) in that limit. That is actually incorrect. The true
measure of correlations is given by ν

p,p̄
dyn, which is, in general,

nonvanishing even in the limit �η → 0. This is the case, e.g.,
for a system producing pions via the decay of ρ0 mesons
(see, e.g., Eq. (81) of Ref. [20]), and for systems that can
be described with a balance function, as I demonstrate in the
following.

It is clearly of interest to assess how the value of ν
p,p̄
dyn may

depend on the acceptance of the measurement. This is readily
achieved with the introduction of balance functions defined
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in Eqs. (19) and (20). Using Eq. (20), one finds that proton-
proton balance functions may be written

Bp,p(�y) = 1
2

[
ρ

p̄
1 Rp,p̄

2 (�y) − ρ
p
1 Rp,p

2 (�y)

+ ρ
p
1 Rp̄,p

2 (�y) − ρ
p̄
1 Rp̄,p̄

2 (�y)
]
, (36)

where ρ
p
1 and ρ

p̄
1 are single particle densities of protons and

anti-protons, respectively, and Rp,p
2 (�y), Rp,p̄

2 (�y), Rp̄,p
2 (�y),

and Rp̄,p̄
2 (�y) are normalized cumulants of pair densities. The

variable �y = y1 − y2 represents the difference between the
rapidities of particles y1 and y2 of any given pair.

In A-A collisions and in the limit 〈Np〉 = 〈Np̄〉, one has
ρ

p̄
1 = ρ

p
1 and Rp̄,p

2 (�y) = Rp,p̄
2 (�y). The BF simplifies to

Bp,p(�y) = −�η

4

dNT

dη

{
Rp,p

2 (�y) + Rp̄,p̄
2 (�y) − 2Rp,p̄

2 (�y)
}
.

(37)

Integration of Fα,β

2 (�y) across the �y acceptance yields the
integral factorial cumulant Fα,β

2 defined by Eq. (15). The
integral of the BF can thus be written

Ip,p̄(�) = − 1
4 〈NT 〉ν p,p̄

dyn(�). (38)

Up to a sign, the integral of the BF is equal to the second term
of Eq. (32). One can then write

1 − r�Np = Ip,p̄(�). (39)

One concludes that at high-energy, i.e., in the limit 〈Np〉 =
〈Np̄〉, the deviation of the Skellam ratio from unity is iden-
tically equal to the integral of the BF. It is thus useful to
examine what determines the magnitude of this integral.

Neglecting the effect of incoming and stopped protons
from incoming projectiles (I account for these in Sec. V),
the shape and amplitude of the BF reflect how and where
baryon-conserving balancing pairs of protons and antiprotons
are created and transported in the aftermath of A-A collisions.
If only an antiproton (Q = −1, B = −1) could balance the
production of a proton (Q = 1, B = 1), then, by construc-
tion, the balance function would integrate to unity over the
full phase space of particle production. However, baryon
number conservation can be satisfied by the production of
other antibaryons. An antibaryon of some kind must indeed
accompany the production of a proton. The proton-baryon
balance function may thus be written

Bp,B̄(�y) = Bp,p̄(�y) + Bp,n̄(�y) + Bp,�̄(�y) + · · ·
=

∑
β̄

Bp,β̄ (�y), (40)

where the sum extends to all antibaryons that can balance the
production of a proton. By construction, this balance function
must integrate to unity over the full particle production phase
space:

I4π
p,B̄ = 1, (41)

where 4π denotes that the integral is extending over all
rapidities and transverse momenta. The production of pairs
pp̄, pn̄, p�̄, p�̄−, etc, have probabilities determined by their

relative cross sections. These, in turn, must be equal to inte-
grals of their respective balance functions. One can then write

1 ≡ I4π
p,B̄ = I4π

p,p̄ + I4π
p,n̄ + I4π

p,�̄ + · · · =
∑

β̄

I4π
p,β̄ , (42)

where, once again, 4π denotes that the integrals are extending
over all rapidities and transverse momenta, and

∑
β̄ represents

a sum over all antibaryons (B = −1). In this context, the func-
tions I4π

p,β̄
can be considered as probabilities of the respective

baryon number balancing processes determined by their cross
sections. The pp̄ balance function integral is one of many
components of the full p, B̄ BF. Its value is thus smaller than
unity.

Experimentally, however, particles are measured within
limited (pseudo)rapidity and transverse momentum ranges.
The probabilities I4π

p,β̄
, are thus not directly measurable. Ex-

trapolation of BF integrals to the full rapidity and momentum
ranges of particle production are nontrivial given they are
highly dependent on their width and shape (pair separation
profile). This is illustrated in Fig. 1, which presents examples
of balance functions, with full pT coverage, and their respec-
tive integrals for selected parameter values. Figures 1(a)–1(c)
present balance function with Gaussian (G), double-Gaussian
(DG), and exponential (E) dependence on the pair separation
�y = y1 − y2, respectively, and defined according to

BG(�y) = 1√
2πσ

exp

(
−�y2

2σ 2

)
, (43)

BDG(�y) = 1.05√
2πσ

exp

(
−�y2

2σ 2

)

− 0.05√
2πσN

exp

(
−�y2

2σ 2
N

)
, (44)

BE(�y) = 1

τ
exp

(
−|�y|

τ

)
, (45)

where σ is the rms width of the single-Gaussian rapidity,
σN = 0.1 corresponds to the rms width of the narrow Gaussian
used here to model, e.g., baryon annihilation, and τ is used to
model the rate of decay of the rapidity density. Figures 1(d)–
1(f) present integrals of the Gaussian, double-Gaussian, and
exponential balance function profiles as a function of the value
of σ (τ ) for a nominal acceptance −1 < y < 1. The examples
shown clearly illustrate that the integral Ip,β̄ depends on the
shape and width of the balance function relative to the mea-
surement acceptance. This is further illustrated in Figs. 1(g)–
1(i), which display integrals IpB̄(�Y ) of the BFs shown in
Figs. 1(a)–1(c), as a function of �Y = ymax − ymin denoting
the width of the single-particle acceptance ymin < y < ymax.
One finds, indeed, that the rate at which the measured integral
Ip,β̄ converges to its 4π limit is dependent on the shape of
the balance function as well as its width σ . Also note that the
linear dependence on �Y expected from Eq. (35) breaks down
for these semirealistic balance functions, as clearly illustrated
by the plots of Ip,B̄/�Y vs. �Y shown in the bottom row of
Fig. 1. For most cases considered, the ratio Ip,B̄/�Y varies
with �Y . The linear dependence embodied in Eq. (35) is thus
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FIG. 1. Top row: (a) Gaussian, (b) double-Gaussian, and (c) exponential balance function models plotted as a function of the pair
separation, �y = y1 − y2, for selected parameter values; Upper middle row: Integrals of the (d) Gaussian, (e) double Gaussian, and
(f) exponential balance functions vs. the rms width (σ ) or mean (τ ); Lower middle row: Integrals IpB̄(�Y ) of the (g) Gaussian, (h) double
Gaussian, and (i) exponential balance functions vs. the width of the acceptance (�Y ) for models and parameter values shown in the top row.
Bottom row: Ratio IpB̄(�Y )/�Y vs. �Y .

indeed a poor approximation of the actual dependence of Ip,B̄
on the width �Y (or �η) of the acceptance.

The above examples clearly illustrate that the integral of
the BF is a function of its shape as well as the width �Y of the
experimental acceptance. Given the baryon number balancing
of the proton may be achieved with several distinct antibaryon
species, one must then consider the evolution of integrals Ip,β̄

for all species β̄ as a function of the measurement acceptance
�, as illustrated schematically in Fig. 2.

Next recall that the integral of the balance function is
proportional to ν

p,p̄
dyn, which, as we saw in Eq. (39), is also

proportional to 1 − r�Np . The magnitude of κ2(�p), measured
at high energy, is thus entirely determined by the integral of
the balance function across the fiducial acceptance. The inte-
gral of the balance function, in turn, is determined by baryon
number conservation and the chemistry of the collision, i.e.,
what fraction of protons are accompanied by an antiproton. If
protons were balanced exclusively by antiprotons, the integral
of the balance function over the entire phase space would yield

FIG. 2. Schematic dependence of the integral of balance func-
tions Bp,B̄(�y) vs. the width of the experimental acceptance �. The
colored bands schematically illustrate contributions from distinct
baryon number balancing antibaryons.
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unity. With finite ranges in pT and rapidity y, the integral
is determined by the width of these ranges. The larger they
are, the closer the integral gets to saturation (unity if only
antiprotons balance protons). The measured values of κ2(�p)
at LHC and top RHIC energy are thus determined ab initio
by baryon number conservation and the width of the balance
function relative to that of the acceptance.

It is well established that the shape and width of the balance
function of charge particles exhibit a significant narrowing
with increasing collision centrality [25,30,31]. This narrowing
is understood to result largely from radial flow and was
successfully modeled with the blast wave model: the more
central collisions are, the faster is the radial flow [32]. The
value of 1 − r�Np is thus determined in large part by the
magnitude of radial flow and the width of the acceptance and
much less by the full coverage integral I4π

p,β̄
.

Nominally, if effects of radial flow were invariant with
collision centrality, the multiplicity 〈NT 〉AA measured in A-
A collisions would scale in proportion to its value in pp
collisions 〈NT 〉pp according

〈NT 〉AA = 〈ns〉〈NT 〉pp, (46)

where 〈ns〉 is the effective number of sources involved, on
average, in a given A-A centrality range. In contrast, one also
expects that, in the absence of rescattering of secondaries, that
ν

p,p̄(AA)
dyn measured in A-A should scale as

ν
p,p̄(AA)
dyn = 1

〈ns〉ν
p,p̄(pp)
dyn , (47)

relative to the value ν
p,p̄(pp)
dyn measured in pp collisions [20].

Such scaling is in fact essentially observed in Au-Au and Pb-
Pb collisions [21,22,24]. In this context, the ratio r�Np would
then be invariant with A-A collision centrality. But the radial
flow velocity is known to increase in more central collisions
thereby leading to a narrowing of the balance function [30].
This consequently leads to an increase of the integral Ip,β̄
within the experimental acceptance. The centrality depen-
dence of r�Np will then be driven primarily by the evolution
of radial flow with collision centrality and it might have
essentially nothing to do with the chemistry of the system and
its susceptibility χ̂B

2 .
The width of the net-charge balance function is also ob-

served to increase monotonically with decreasing beam en-
ergy (

√
sNN) [33]. This can be in part understood as a result

of slower radial flow profile with decreasing beam energy.
Should the pp̄ balance function behave in a similar fashion,
one would expect the integral Ip,p̄ to reduce monotonically
with decreasing beam energy because the fraction of the BF
within the acceptance shrinks as its width increases. Once
again, one expects the magnitude of κ2(�p) to change with
beam energy for reasons completely independent of the sus-
ceptibility χ̂B

2 .
However, the ratio 〈Np̄〉/〈Np〉 is also known to fall rapidly

with decreasing beam energy. The 〈Np〉 = 〈Np̄〉 hypothesis
used to derive Eqs. (34) and (39) is thus indeed strictly invalid
at the low-energy end of the BES. One must thus examine the
effect of baryon stopping on the fluctuations.

V. NET PROTONS FLUCTUATIONS IN THE
PRESENCE OF NUCLEAR STOPPING

In order to model the effect of baryon stopping, I will
assume, as in Ref. [34], that one can partition the measured
protons into two subsets: the first, denoted i, corresponding
to stopped protons, and the second, denoted p, corresponding
to protons produced by pB̄ pair creation. All antiprotons are
assumed produced by pair production and I will neglect, for
simplicity, the impact of annihilation.

I thus consider Eq. (29) with the following substitutions for
the first- and second-order factorial cumulants of protons and
antiprotons:

F p
1 → F i

1 + F p
1 = 〈Ni〉 + 〈Np〉

F p̄
1 → F p̄

1 = 〈Np̄〉
F p,p

2 → F i,i
2 + F i,p

2 + F p,i
2 + F p,p

2

F p,p̄
2 → F i,p̄

2 + F p,p̄
2

F p̄,p
2 → F p̄,i

2 + F p̄,p
2

F p̄,p̄
2 → F p̄,p̄

2 . (48)

In symmetric A-A collisions, one must have F i,p
2 =

F p,i
2 , F i,p̄

2 = F p̄,i
2 , and F p,p̄

2 = F p̄,p
2 . Introducing 〈NT 〉 =

〈Ni〉 + 2〈Np〉 and ξ = 〈Ni〉/〈NT 〉 = F i
1/(F i

1 + 2F p
1 ), one gets

r�Np = 1 + F i,i
2 + 2F i,p

2 + F p,p
2 + F p̄,p̄

2 − 2F i,p̄
2 − 2F p,p̄

2

F i
1 + F p

1 + F p̄
1

,

(49)

= 1 + ξ 2〈NT 〉Ri,i
2 + 1

4
(1 − ξ )2〈NT 〉ν p,p̄

dyn, (50)

where in the second line, I neglected effects of annihila-
tion, which imply that F p

1 = F p̄
1 , F p,p

2 = F p̄,p̄
2 , and I assumed

F i,p
2 ≈ F i,p̄

2 . The second term, proportional to Ri,i
2 , is a mea-

sure of the correlation strength of stopped protons, while
the third term, proportional to ν

p,p̄
dyn corresponds to the pair

creation component found in the high-energy limit, Eq. (34).
Experimentally, it has been observed that nucleons from the
projectile and target lose, on average, approximately two units
of rapidity in nuclear collisions. At LHC and top RHIC en-
ergy, this leads to a vanishing net-baryon density in the central
rapidity region but for decreasing

√
sNN, and particularly at

the low end of RHIC the beam energy scan, this yields a large
net-proton excess at central rapidity. Given the production of
pp̄ pairs is a logarithmic function of

√
sNN, one expects the

term proportional to Ri,i
2 should largely dominate at the low

end of the BES range while the term proportional to ν
p,p̄
dyn,

driven by baryon number conservation, should dominate at
LHC and top RHIC energy. Equation (50) thus tells us that
the beam energy evolution of r�Np − 1 should be determined
by the interplay of baryon stopping and net-baryon conser-
vation, the former and the latter dominating at low and high√

sNN, respectively. Given the strength and �y dependence
of Ri,i

2 (�y) and ν
p,p̄
dyn(�y) are determined by different mecha-

nisms, they will likely have distinct dependences on
√

sNN. As
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the contribution of stopped baryons decreases with increasing√
sNN, one thus anticipates that the balance function of created

pairs p, p̄, and thus ν
p,p̄
dyn(�y), will dominate. The net-proton

fluctuations r�Np − 1 might then exhibit a rather complicated
dependence on

√
sNN. Such a dependence, however, has little

to do with the properties of nuclear matter near equilibrium
and more to do with dynamic considerations including nuclear
stopping power and radial flow resulting from large inside-out
pressure gradients.

VI. NET BARYON FLUCTUATIONS

Equation (1) relates the baryon susceptibility χ̂B
2 to the sec-

ond cumulant of the net-baryon number �B. One must thus
consider, at least in principle, the fluctuations of all baryons
and antibaryons, �B = NB − NB̄, not only those of the net-
proton number �Np. Repeating the derivation presented in
Sec. III for net-baryon fluctuations, one gets

r�B ≡ κ2(�NB)

κSkellam
2 (�NB)

= 1 + F B,B
2 + F B̄,B̄

2 − 2F B,B̄
2

F B
1 + F B̄

1

, (51)

which, in the high-energy limit, yields

r�B − 1 = 1
4 〈NT B〉νB,B̄

dyn = IB,B̄(�), (52)

where 〈NT B〉 = 〈NB〉 + 〈NB̄〉 and IB,B̄(�) is the integral of the
baryon-baryon balance function BB,B̄.

In order to express BB,B̄ in terms of elementary balance
functions Bα,β̄ , first note that single- and two-baryon densities
can be written

ρB
1 =

∑
α

ρα
1 ; ρB,B

2 =
∑

α

∑
β

ρ
α,β

2 , (53)

where sums on α and β span all produced baryons. Similar ex-
pressions can be written for single and pair densities involving
antibaryons. Defining the yield fractions

fα = ρα
1

ρB
1

; fᾱ = ρᾱ
1

ρB̄
1

, (54)

such that
∑

α fα = 1 and
∑

ᾱ fᾱ = 1, one finds that the
baryon-baryon balance function BB,B̄ may be written

BB,B̄(�y) = 1

2

[∑
α

fαDα,B̄
2 (�y) +

∑
ᾱ

fᾱDᾱ,B
2 (�y)

]
. (55)

In the high-energy limit, one has fα = fᾱ , and the above
expression simplifies to

BB,B̄(�y) =
∑

α

fαBα,B̄(�y), (56)

where

Bα,B̄(�y) =
∑

β̄

Bα,β̄ (�y). (57)

Single-particle production yields measured in heavy-ion col-
lisions are very well described in the context of thermal
production models determined by a (chemical) freeze-out
temperature as well as charge and strangeness chemical

potentials. Within such models, one finds the baryon (an-
tibaryon) production is dominated by the lowest mass states
(e.g., proton, neutron). The baryon-baryon balance function,
BB,B̄(�y), will thus be dominated by contributions from
proton-baryon, Bp,B̄(�y), neutron-baryon, Bn,B̄(�y), balance
functions, with weaker contributions from � baryon or heav-
ier strange baryons and with negligible contributions from
charm or bottom baryons. On general grounds, and neglecting
electric charge (or isospin), one can expect Bp,B̄(�y) and
Bn,B̄(�y) to feature similar strengths and dependence on �y.
However, balance functions involving strange baryons, in par-
ticular Bp,�̄(�y) and Bp,�̄ (�y), might have a rather different
dependence on �y owing to the fact that s quarks may be
produced at earlier times than u and d quarks, or be subjected
to different transport mechanisms. Fortunately, measurements
of Bp,�̄(�y), B�,�̄(�y), and perhaps even Bp,�̄ (�y), are in
principle possible. One can then anticipate, in the near future,
being able to estimate the shape and strength of Bp,B̄(�y) and
BB,B̄(�y) based on measurements within the acceptance of
ongoing experiments (e.g., ALICE).

VII. SUMMARY

I showed there is straightforward connection between the
fluctuations of net-baryon number measured at central rapidi-
ties in A-A collisions in terms of second-order cumulants
of the net-baryon number and the strength of two-particle
correlations factorial cumulants. I further showed that in the
high-energy limit, corresponding to a vanishing net-baryon
number, fluctuations are entirely determined by the strength
and width of the pp̄ balance function relative to the width of
the acceptance. By contrast, at low energy, the fluctuations of
the net-baryon number are more likely dominated by proton-
proton correlations resulting from nuclear stopping. Overall,
one can expect the fluctuations to display a smooth evolution
with

√
sNN between these two extremes but nowhere can

one expect the magnitude of the fluctuations to be trivially
sensitive to the nuclear matter baryon susceptibility χB

2 .
I here focused the discussion on second-order cumulants

of the net-baryon number but it is clear that the same line of
argument can be extended to higher cumulants. Measurements
of fluctuations by STAR at RHIC have used the magnitude
of the second-order cumulant of the net-baryon number as
a reference to factor out the ill-defined notion of volume
involved in relations between cumulants and susceptibilities.
This would make sense if the susceptibilities determined the
magnitude of the cumulants. But, as I have shown, the mag-
nitude of κ2(�p) is in fact determined largely by the width
of the acceptance of the measurement relative to the width
of the balance function at high energy and by proton-proton
correlations associated with nuclear stopping at low energy.
The use of κ2(�p) thus does not provide a sound basis to
cancel out volume effects and normalize the magnitude of
higher cumulants.

All is not lost, however. Measurements of momentum-
dependent balance functions may be used to quantita-
tively assess the role of both baryon number conservation
and nuclear stopping, and henceforth obtain sensitivity to
QCD matter susceptibilities. Additionally, measurements of
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balance functions of pairs (p, p̄), (p, �̄), (�, �̄), and perhaps
even (p, �̄), are possible. Results from these measurements
will inform our understanding of the system expansion dy-
namics, our knowledge of the hadronization chemistry, and
enable, as per the discussion in Sec. VI, an assessment
of the relative strength of their contributions to net-baryon
fluctuations.
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