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Exact solutions and attractors of higher-order viscous fluid dynamics for Bjorken flow
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We consider causal higher order theories of relativistic viscous hydrodynamics in the limit of one-dimensional
boost-invariant expansion and study the associated dynamical attractor. We obtain evolution equations for the
inverse Reynolds number as a function of Knudsen number. The solutions of these equations exhibit attractor
behavior which we analyze in terms of Lyapunov exponents using several different techniques. We compare the
attractors of the second-order Müller-Israel-Stewart (MIS), transient Denicol-Niemi-Molnar-Rischke (DNMR),
and third-order theories with the exact solution of the Boltzmann equation in the relaxation-time approximation.
It is shown that for Bjorken flow the third-order theory provides a better approximation to the exact kinetic
theory attractor than both MIS and DNMR theories. For three different choices of the time dependence of the
shear relaxation rate we find analytical solutions for the energy density and shear stress and use these to study
the attractors analytically. By studying these analytical solutions at both small and large Knudsen numbers we
characterize and uniquely determine the attractors and Lyapunov exponents. While for small Knudsen numbers
the approach to the attractor is exponential, strong power-law decay of deviations from the attractor and rapid
loss of initial state memory are found even for large Knudsen numbers. Implications for the applicability of
hydrodynamics in far-off-equilibrium situations are discussed.
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I. INTRODUCTION

Hydrodynamics is an effective macroscopic theory de-
scribing the large scale and slowly varying dynamical modes
of multiparticle systems. The conventional formulation of
hydrodynamic equations proceeds by assuming a separation
of macroscopic and microscopic length and time scales such
that gradients of local-equilibrium quantities, normalized to
appropriate powers of the system’s energy density, are small
and one can perform an order-by-order gradient expansion
around local thermodynamic equilibrium [1]. Therefore the
remarkable success of relativistic hydrodynamics in describ-
ing the quark-gluon plasma (QGP) formed in ultrarelativis-
tic heavy-ion collisions initially led to the belief that these
collisions create a nearly thermalized medium close to local
thermal equilibrium [2] (see also the reviews [1,3–5]). On the
other hand, with the advent of numerical dissipative relativis-
tic fluid dynamics [6–12] it became clear that the dynamical
evolution of heavy-ion collisions is affected by persistent large
dissipative corrections. In spite of this numerical evidence
for large deviations from local thermal equilibrium, second-
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order dissipative relativistic fluid dynamics (especially when
coupled with a hadronic cascade to describe the final dilute
decoupling stage [13,14]) met with impressive phenomeno-
logical success and predictive power in the description of
heavy-ion collision experiments [7,11,12,15–22], and was
even successfully applied to explain flow data in small col-
lision systems formed in proton-proton (p-p) and proton-lead
(p-Pb) collisions [23,24]. This “unreasonable effectiveness”
of hydrodynamics as a dynamical description of high-energy
hadronic collisions in situations that are even very far away
from local thermal equilibrium has generated much recent
interest in the very foundations of fluid dynamics [25–52],
culminating in the formulation of a new “far-from-local-
equilibrium fluid dynamics” paradigm [5,37]. The present
work is a contribution to this ongoing discussion, adding
new analytic results for the heavily studied simple case of
(0+1)-dimensional Bjorken expansion of a transversally ho-
mogeneous system with longitudinal boost-invariance [53].

The simplest relativistic dissipative theory, relativistic
Navier-Stokes theory [54,55], imposes instantaneous consti-
tutive relations between the dissipative flows and their gener-
ating forces, expressed through first-order gradients of equi-
librium quantities. This approach was found to be plagued by
acausality and intrinsic instability [56,57]. The phenomeno-
logical second-order theory developed by Müller, Israel, and
Stewart (MIS) [58–60] cures these problems by introducing
a relaxation type equation for the dissipative flows and thus
turning them into independent dynamical degrees of freedom

2469-9985/2019/100(3)/034901(15) 034901-1 ©2019 American Physical Society

https://orcid.org/0000-0002-8409-0191
https://orcid.org/0000-0003-3941-7789
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.100.034901&domain=pdf&date_stamp=2019-09-03
https://doi.org/10.1103/PhysRevC.100.034901


SUNIL JAISWAL et al. PHYSICAL REVIEW C 100, 034901 (2019)

of the system whose evolution is controlled by the competition
between macroscopic expansion (driving the system away
from local equilibrium) and microscopic scattering (driving
it back towards local equilibrium). As discussed in [5], even
the minimal causal conformal theory given by MIS introduces
new modes called non-hydrodynamic modes that were absent
in Navier-Stokes theory. These nonhydrodynamic modes are
now known to play an important role in the approach to
the regime of applicability of hydrodynamics, also known
as the “hydrodynamization” process [26,30,61–63]. For con-
formal systems undergoing longitudinal Bjorken expansion,
it was shown explicitly that hydrodynamization occurs at
microscopic thermalization time scales which, in strongly and
anisotropically expanding systems, are much shorter than both
the time scales for local isotropization and thermalization
[37]. Similar conclusions were obtained in recent studies
[32,42] of systems undergoing Gubser flow [64] where the
fireball expands not only boost-invariantly in longitudinal, but
also azimuthally symmetrically in transverse direction. These
findings lead to the conclusion that the criterium of proximity
to local thermodynamic equilibrium for hydrodynamics to
be valid is (at least in these carefully analytically studied
simplified situations) too strict and should be replaced by a
different condition stating that contributions from the nonhy-
drodynamic modes can be neglected [31]. In the present study,
we will focus on yet another interesting feature that appears in
a causal theory of relativistic dissipative hydrodynamics, “the
hydrodynamic attractor” [26,32,36,38,42,43], and its role in
the hydrodynamization process.

Attractor behavior was first identified by considering the
hydrodynamic formulation as a gradient series expansion.
Recently, this gradient series was shown, for several highly
symmetric flow configurations that are amenable to analytic
treatment, to have zero radius of convergence. This suggests
that hydrodynamic theory cannot be systematically improved
by taking into account higher order terms in the gradient series
[26]. The gradient expansion generates an asymptotic series
which exhibits initial signs of convergence for a few terms
before eventually diverging [26,28]. The initial appearance
of convergence may explain the observed remarkable phe-
nomenological success of hydrodynamic formulations based
on truncations of the gradient expansion at second or third
order but, due to the ultimate divergence of the series, the
theory cannot be improved beyond a certain order by keeping
additional terms. Fortunately, the (diverging) gradient expan-
sion series can be Borel resummed, giving rise to a unique
hydrodynamic attractor solution (hydrodynamic mode), which
is well defined even for large gradients, and a series of rapidly
decaying nonhydrodynamic modes that describe the approach
towards this attractor from arbitrary initial conditions [25,26].
This suggests that hydrodynamics displays a novel type of
universality even far from local equilibrium which is in-
dependent of the initial state of the system, indicating the
existence of a new, far-from-local-equilibrium hydrodynamic
theory [37]. Recently, it was discovered [65] that this phe-
nomenon extends even beyond hydrodynamics: in kinetic the-
ory also the evolution of nonhydrodynamic higher-order mo-
mentum moments of the distribution function is controlled by
attractors.

The theory of dynamical attractors can be complex, and
hence it is instructive to have examples were the attractor is
quantitatively understood using analytical methods. Perhaps
the most useful quantities associated with an attractor are Lya-
punov exponents which characterize the rate of separation of
infinitesimally close trajectories in the phase-space evolution
of dynamical systems [66]. While negative Lyapunov expo-
nents are associated with dissipative systems and indicate the
existence of attractors, positive values are usually associated
with chaotic systems. For a conservative system one obtains
vanishing Lyapunov exponents. In this article, we employ
the theory of Lyapunov exponents to study the attractors
for MIS theory and two other, improved versions of causal
relativistic dissipative hydrodynamics (see Refs. [32,47] for
earlier related work).

Motivated by its application to QGP evolution, several
improvements over MIS theory were proposed during the
last decade [67–78]. For Bjorken and Gubser flows, some
of these theories lead to very good agreement with the ex-
act solution of the Boltzmann equation even in situations
where the deviations from thermal equilibrium are large
[42,72,79,80]. In this article, we consider the Denicol-Niemi-
Molnar-Rischke (DNMR) theory [69] which is an improved
version of second-order MIS theory, as well as a third-order
hydrodynamic theory derived form relativistic kinetic theory
by going to third order in the Chapman-Enskog expansion
[72]. To understand the emergent attractor behavior we go
beyond previous numerical studies of these theories by find-
ing analytical solutions of the corresponding hydrodynamic
evolution equations [81]. Analytical solutions of higher-order
dissipative hydrodynamics were found previously for a few
very special cases [35,82]. We here expand this portfolio and
use the new analytical solutions to study their dependence on
initial conditions, their attractors, and their late-time behavior.

The rest of this article is structured as follows. In Sec. II
we briefly review causal theories of second-order (MIS and
DNMR) and third-order relativistic viscous hydrodynamics.
In Sec. III we simplify these theories for Bjorken flow and
obtain a generic evolution equation for the inverse Reynolds
number as a function of the inverse Knudsen number, which
can be adapted to all three hydrodynamic theories by adjusting
a set of two parameters. This ordinary differential equation
is decoupled from the hydrodynamic evolution of the energy
density (but feeds back into it), and thus it can be solved
independently. In Sec. IV we demonstrate numerically that the
solutions of these differential equations exhibit attractor-like
behavior which we analyze in terms of Lyapunov exponents,
using several different approaches. We also compare the exact
numerical attractors of the second-order MIS and DNMR the-
ories, as well as our third-order theory, with the exact solution
of the relativistic Boltzmann equation in the relaxation-time
approximation (RTA). We show that the third-order theory
provides a better approximation to the exact kinetic theory at-
tractor than both the MIS and DNMR attractors. In Sec. V we
provide further clarification of the numerical behavior found
in the preceding sections by working out explicit analytical
solutions for the energy density and shear stress as a function
of the inverse Knudsen number, for three different forms of
the shear relaxation time. These analytical solutions allow us
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to also study the attractors analytically. In Sec. VI, finally, we
explore the universal behavior of these solutions at both small
and large Knudsen numbers and use the results to characterize
and uniquely determine the hydrodynamic attractor and its
associated Lyapunov exponents in a new way. Our results are
summarized and some conclusions offered in Sec. VII.

II. RELATIVISTIC DISSIPATIVE HYDRODYNAMICS

In this section, we will briefly review the equations for rel-
ativistic dissipative hydrodynamics. We consider a conformal
system, which corresponds in kinetic theory to a system of
massless particles. The energy-momentum tensor for such a
system, in the Landau frame, has the form

T μν = εuμuν − P�μν + πμν, (1)

where ε and P are the local energy density and pressure.
Conformal symmetry implies an equation of state (EoS) ε =
3P and zero bulk viscous pressure, � = 0. We also define
�μν ≡ gμν−uμuν which serves as a projection operator to
the space orthogonal to uμ, i.e., onto the spatial directions in
the local rest frame (LRF). The shear stress tensor, πμν , is
traceless and orthogonal to uμ. The metric convention used
here is gμν = diag(+ − −−).

Evolution equations for ε and uμ are obtained from energy-
momentum conservation, DμT μν = 0:

ε̇ + (ε + P)θ − πμνσμν = 0, (2)

(ε+P) u̇α − ∇αP + �α
ν ∂μπμν = 0. (3)

Here, we use the notations Dμ for the covariant derivative,
Ȧ ≡ uμDμA for the co-moving time derivative, ∇α ≡ �μαDμ

for space-like derivative, θ ≡ Dμuμ for the expansion scalar,
and σμν ≡ 1

2 (∇μuν+∇νuμ) − 1
3θ�μν for the velocity shear

tensor.
To close Eqs. (2),(3) we need additional equations for the

shear stress πμν . The simplest form of πμν is the Navier-
Stokes form, which is first order in velocity gradients, π

μν
NS =

2ησμν , where η is the shear viscosity coefficient. As already
mentioned in the Introduction, relativistic Navier-Stokes the-
ory violates causality and is unstable. The simplest way to
restore causality is by introducing a relaxation-type equation
for πμν . This prescription, also known as the “Maxwell-
Cattaneo law”, requires that the dissipative forces relax to
their Navier-Stokes values in some finite relaxation time, i.e.,
τπ π̇ 〈μν〉 + πμν = 2ησμν ,1 where τπ is the shear relaxation
time. For conformally symmetric systems one more term must
be added in the evolution of shear stress [83,84]:

τπ π̇ 〈μν〉 + πμν = 2ησμν − 4
3τππμνθ. (4)

This equation is a close variant [83] of the one first derived
by Müller, Israel, and Stewart [58–60], and we will therefore
refer to it as the “MIS” theory. Its derivation was based on
an analysis of the entropy current and the second law of

1Angular brackets around pairs of Lorentz indices indicate pro-
jection of the tensor onto its traceless and locally spatial part, e.g.,
π̇ 〈μν〉 = �

μν

αβπ̇αβ , where �
μν

αβ = 1
2 (�μ

α�ν
β+�

μ

β�ν
α ) − 1

3 �μν�αβ .

thermodynamics, without recourse to a specific theory for the
underlying microscopic dynamics.2

A systematic derivation of second-order (“transient”) rel-
ativistic fluid dynamics from relativistic kinetic theory, using
an expansion of the dissipative flows in momentum-moments
of the distribution function, was performed in [69]. For con-
formal systems and an RTA collision term, the result obtained
in the 14-moment approximation differs from Eq. (4) by two
additional terms that are of second order in gradients:

π̇ 〈μν〉+ πμν

τπ

= 2βπσμν + 2π 〈μ
γ ων〉γ − 10

7
π 〈μ

γ σ ν〉γ − 4

3
πμνθ.

(5)
Here, βπ ≡ η/τπ = 4P/5, while ωμν ≡ 1

2 (∇μuν−∇νuμ) is
the vorticity tensor. This “DNMR” theory [69] can also be
derived from a Chapman-Enskog like iterative solution of the
RTA Boltzmann equation [85].

Carrying the Chapman-Enskog expansion to one additional
order, a third-order evolution equation for the shear stress was
derived for the same system in [72]:

π̇ 〈μν〉 = − πμν

τπ

+ 2βπσμν + 2π 〈μ
γ ων〉γ − 10

7
π 〈μ

γ σ ν〉γ

− 4

3
πμνθ + 25

7βπ

πρ〈μων〉γ πργ − 1

3βπ

π 〈μ
γ πν〉γ θ

− 38

245βπ

πμνπργ σργ − 22

49βπ

πρ〈μπν〉γ σργ

− 24

35
∇〈μ(πν〉γ u̇γ τπ ) + 4

35
∇〈μ(τπ∇γ πν〉γ )

− 2

7
∇γ (τπ∇〈μπν〉γ ) + 12

7
∇γ (τπ u̇〈μπν〉γ )

− 1

7
∇γ (τπ∇γ π 〈μν〉) + 6

7
∇γ (τπ u̇γ π 〈μν〉)

− 2

7
τπωρ〈μων〉γ πργ − 2

7
τππρ〈μων〉γ ωργ

− 10

63
τππμνθ2 + 26

21
τππ 〈μ

γ ων〉γ θ. (6)

For conformal systems the complete set of possible third order
terms was given in [86]. The specific form (6) implements
transport coefficients obtained from the RTA Boltzmann equa-
tion [72]. We will here refer to Eq. (6) as the “third-order”
theory. Let us now simplify all of these equations for Bjorken
flow.

III. BJORKEN FLOW

Milne coordinates xμ = (τ, x, y, ηs) [with τ = √
t2−z2 and

ηs = tanh−1(z/t )] are the natural choice for describing ul-
trarelativistic heavy-ion collisions where the colliding nu-
clei approach each other approximately following light-cone

2It should be noted that Eq. (4) does not include all possible second-
order terms [84], and that (unlike the theories discussed below) its
transport coefficients are not matched to an underlying kinetic theory.
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TABLE I. Coefficients for the causal viscous hydrodynamic evo-
lution of the shear stress in Bjorken flow for the three theories studied
in this work.

βπ a λ χ γ

MIS 4P/5 4/15 0 0 4/3
DNMR 4P/5 4/15 10/21 0 4/3
Third-order 4P/5 4/15 10/21 72/245 412/147

trajectories. For Bjorken flow [53] of transversally homo-
geneous and longitudinally boost-invariant systems, macro-
scopic fields such as the energy density, pressure, and shear
stress, can depend neither on the transverse coordinates (x, y)
nor on the space-time rapidity ηs, but only on the longitu-
dinal proper time τ . The hydrodynamic evolution equations
thus reduce to a set of coupled ordinary differential equa-
tions (ODEs) in τ . The flow is irrotational (ωμν = 0) and
unaccelerated [uμ = (1, 0, 0, 0), u̇μ = 0], but (owing to the
curvilinear nature of Milne coordinates) it has a nonzero
local expansion rate, θ = 1/τ , and velocity shear, e.g., σηη =
−2/(3τ 3).3 Symmetries further constrain the shear tensor
to be diagonal and space-like in Milne coordinates, leaving
only one independent component which we take to be the
ηη component: π xx = π yy = −τ 2πηη/2 ≡ π/2.4 Using the
following relations that hold for Bjorken flow:

π̇ 〈ηη〉 = − 1

τ 2

dπ

dτ
, π 〈η

γ σ η〉γ = − π

3τ 3
,

π 〈η
γ πη〉γ = − π2

2τ 2
, πρ〈ηπη〉γ σργ = − π2

2τ 3
,

∇〈η∇γ πη〉γ = 2π

3τ 4
, ∇γ ∇〈ηπη〉γ = 4π

3τ 4
,

∇2π 〈ηη〉 = 4π

3τ 4
, πργ σργ = π

τ
, (7)

the shear evolution equations (4)–(6) can be brought into the
following generic form:

dε

dτ
= − 1

τ

(
4

3
ε − π

)
, (8)

dπ

dτ
= − π

τπ

+ 1

τ

[
4

3
βπ −

(
λ + 4

3

)
π − χ

π2

βπ

]
. (9)

The coefficients βπ , a, λ, χ , and γ appearing in Eq. (9) above
and in Eq. (11) below are tabulated in Table I for the three
theories studied in this work.

Since βπ = 4P/5 = 4ε/15, Eqs. (8) and (9) are mutually
coupled. Eq. (9) for the shear stress can be completely de-
coupled from the evolution of the energy density by rewriting

3To avoid clutter we drop the subscript on ηs whenever we use it as
a sub- or superscript.

4From here on we will use π (not to be confused with the math-
ematical constant denoted by the same symbol), or its normalized
version π̄ ≡ π/(ε+P) = 3π/(4ε), as the independent shear stress
component. Note that for Bjorken flow the Navier-Stokes value for
π is positive, πNS � 0.

it in terms of the normalized shear stress (inverse Reynolds
number) π̄ = π/(ε+P) = π/(4P). Introducing at the same
time the rescaled time variable [30] τ̄ ≡ τ/τπ (which is the
inverse Knudsen number for Bjorken flow), Eq. (8) can be
used to obtain the relation

π̄ = 3
(τ

τ̄

)d τ̄

dτ
− 2. (10)

Here, we also used that for a conformal system ε ∝ T 4

and T τπ = 5η̄ = const., where η̄ ≡ η/s is the specific shear
viscosity. Equations (9) and (10) can now be combined to
obtain a first-order nonlinear ordinary differential equation
(ODE) for the inverse Reynolds number that is completely
decoupled5 from the evolution of the energy density:6(

π̄ + 2

3

)
dπ̄

d τ̄
= −π̄ + 1

τ̄
(a − λ π̄ − γ π̄2). (11)

The three hydrodynamic theories studied here can be selected
by choosing for λ and γ the appropriate combinations of
constants given in Table I. All three theories share the same
constant a = 4/15, but we can solve Eq. (11) numerically7

[and the very closely related Eq. (28) to be discussed in Sec. V
even analytically] for general a and will therefore keep it as a
free parameter until the end.

An important feature that we observe in Eq. (11) is that
the derivative dπ̄/d τ̄ diverges for π̄ → −2, indicating a
discontinuity in π̄ at −2. This feature is not present in
Eq. (9) and is merely an artifact of changing the evolution
parameter from τ to τ̄ . Moreover, we notice that the transverse
pressure, PT ≡ P + π/2 = P(1 + 2π̄ ), becomes negative for
π̄ < −1/2 indicating cavitation in the transverse direction
which may lead to mechanical instability. Therefore one may
conclude that π̄ = −2 already lies in the physically excluded
region. In the next section, we study several other interesting
properties inherent in the solutions of Eq. (11).

IV. GRADIENT EXPANSION, LYAPUNOV EXPONENTS,
AND ATTRACTORS

Consistent formulations of relativistic dissipative hydrody-
namics involve short-lived non-hydrodynamic modes. These
cannot be captured by a standard gradient expansion in terms
of the Bjorken expansion rate θ = 1/τ , causing such an
expansion to be asymptotic, with zero radius of convergence
[25]. Borel resummation of this divergent series leads to a
hydrodynamic attractor which is well defined even for large
gradients. The existence of an attractor in a theory is indicated

5This decoupling works as long as the relaxation time has a power
law temperature dependence, τπ ∝ T −�, in which case in Eq. (11)
the coefficient multiplying dπ̄/d τ̄ must be generalized to �(π̄−1)+3

3 .
6Even if the relaxation time τπ depends on temperature (as it does,

for example, in systems with conformal symmetry), the temperature
evolution has been completely absorbed into the rescaled time vari-
able (inverse Knudsen number) τ̄ .

7Equation (11) has the form of an Abel differential equation of the
second kind for which, to the best of our knowledge, an analytical
solution does not exist.
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by negative Lyapunov exponents8 which govern the rate at
which the system loses information about its initial conditions
and evolves towards the attractor. In this section, we study
the gradient expansion, Lyapunov exponents and their impli-
cations for attractor behavior in solutions of hydrodynamic
equations for Bjorken flow.

A. Gradient expansion

To start with we consider the late proper-time expansion of
π̄ . Substituting a power series ansatz for π̄ in terms of powers
of 1/τ̄ ,

π̄ (τ̄ ) =
∞∑

n=0

cn

τ̄ n
, (12)

into the nonlinear ODE (11), one finds a recursion relation for
the coefficients cn (n � 1)

cn = a δn,1 +
[

2

3
(n − 1) − λ

]
cn−1

+
n∑

m=1

(m−1

3
− γ

)
cn−m cm−1 (13)

with initial value c0 = 0. The first nonvanishing coefficient
c1 = a corresponds to the Navier-Stokes term in the gradient
expansion.

For large n the behavior of the coefficients cn is dominated
by the term proportional to cn−1 in Eq. (13) and shows
factorial growth. This is shown in Fig. 1 where the ratio of
consecutive coefficients, |cn+1/cn|, is plotted against n; as
shown in the inset this ratio is proportional to n for n �
5. Divergence of the hydrodynamic gradient expansion was
found before in a variety of hydrodynamic theories [26,29,35].
A new observation from Fig. 1 is that, while the coefficients
of the DNMR and third-order theories are very similar, those
for MIS theory feature a constant upward shift which can be
attributed to λ = 0 in Eq. (13). The inset of Fig. 1 shows the
ratio |cn+1/cn| for MIS theory (λ = 0, red dots) compared with
the same ratio obtained from Eq. (13) without the nonlinear
last term (black line). One concludes that this nonlinear term
plays no role in the asymptotic factorial growth of the expan-
sion coefficients. The series solution (12) is thus dominated by
the term proportional to cn−1 in Eq. (13). We verified that the
same statement holds for the DNMR and third-order theories.

B. “Effective MIS” and Lyapunov exponents

The nonlinear last term in Eq. (13) arises from the
quadratic terms ∝π̄2, dπ̄2/d τ̄ in Eq. (11). At late times

8Lyapunov exponents characterize the rate of separation of initially
infinitesimally close trajectories in a dynamical system. A Lyapunov
exponent is defined as

|s(t )| ≈ e�t |s0|,
where s0 and s(t ) are the separation between two trajectories at initial
time t0 and at a later time t , respectively. Negative � indicates the rate
at which the system approaches a regular attractor.

FIG. 1. Factorial behavior of coefficients (13) for the three hy-
drodynamic theories indicated in the legend. In the inset the black
line represents |cn+1/cn| = 2

3 n and the red dots are for MIS theory.

π̄ � 1, hence π̄2 � π̄ , and the nonlinear terms can be ignored
in Eq. (13). The late-time behavior in MIS theory is thus
controlled by

2

3

dπ̄

d τ̄
= −π̄ + a

τ̄
(14)

which we call “effective MIS theory”. Its analytic solution is

π̄ = α e− 3
2 τ̄ + 3a

2
e− 3

2 τ̄ Ei

[
3τ̄

2

]
, (15)

where Ei[z] = − ∫ ∞
−z (e−t/t )dt is the exponential integral and

α is the integration constant. Equation (15) implies that the
separation between two solutions for π̄ that are initialized
with different initial conditions is damped exponentially:

∂π̄

∂α
∼ exp

(
−3

2
τ̄

)
. (16)

The negative Lyapunov exponent � = −3/2 in this equation
confirms the existence of an attractor. This attractor, given by
Eq. (15) with α = 0, is shown in Fig. 2 as the solid black
line, together with a swarm of particular solutions of Eq. (14)
with different integration constants α �= 0 (dashed lines) and
the asymptotic Navier-Stokes solution (red solid line) for
comparison. One sees that the attractor, as well as the other
solutions with different initial conditions, join the asymptotic
Navier-Stokes behavior after τ̄ � 3, i.e., for Knudsen number
Kn� 0.3.

The solution (15) can also be written as

π̄ (τ̄ ) = π̄0 e− 3
2 (τ̄−τ̄0 ) + 3a

2
e− 3

2 τ̄

∫ τ̄

τ̄0

e
3
2 τ̄ ′

τ̄ ′ d τ̄ ′, (17)

where π̄0 ≡ π̄ (τ̄0) is the initial condition at time τ̄0. From
Eq. (17) one can extract the gradient expansion for π̄ by
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FIG. 2. Comparison of Eq. (15) [solid black (α = 0) and dashed
blue (α �= 0) lines] with the asymptotic Navier-Stokes behavior (solid
red line). See text for discussion.

integrating the last term by parts,

∫ τ̄

τ̄0

e
3
2 τ̄ ′

τ̄ ′ d τ̄ ′ =
[

m∑
n=1

(n−1)!
e

3
2 τ̄ ′

(3τ̄ ′/2)n

]τ̄

τ̄0

+ 3

2
m!

∫ τ̄

τ̄0

d τ̄ ′ e
3
2 τ̄ ′

(3τ̄ ′/2)m+1
, (18)

resulting in

π̄ = e− 3
2 (τ̄−τ̄0 )

(
π̄0 − a

m∑
n=1

c̃n

τ̄ n
0

)
+ a

m∑
n=1

c̃n

τ̄ n

+ a

(
3

2

)2

m! e−3τ̄ /2
∫ τ̄

τ̄0

d τ̄ ′ e
3
2 τ̄ ′

(3τ̄ ′/2)m+1
, (19)

where c̃n = (n−1)!/(3/2)n−1. The first term within parenthe-
ses contains all dependence on the initial conditions memory
of which is here seen to decay exponentially with a decay time
of 2

3τπ . The second term is the divergent gradient series (12)
up to order m. The third term can be thought of as the error in
approximating the late time solution for π̄ using a truncated
gradient series of order m. Minimizing the error term with
respect to m would give an estimate of the optimal truncation
for the gradient series at a given value of τ̄ .

We point out that Eq. (17) also admits a convergent series
in positive powers of τ̄ of the form

π̄ = π̄0 e− 3
2 (τ̄−τ̄0 ) + 3a

2
e− 3

2 τ̄ log

(
τ̄

τ̄0

)

+ 3a

2
e− 3

2 τ̄

∞∑
n=1

(3/2)n

n! n

(
τ̄ n − τ̄ n

0

)
. (20)

It is obtained by expanding the exponential term e
3
2 τ̄ ′

in the
integral solution for π̄ into a power series. This series is,
however, of limited use at late times as it would require
including a large number of terms for convergence.

We conclude this subsection by offering another simple,
yet interesting, form of the “effective MIS” solution for the

inverse Reynolds number:

π̄ = π̄0 e− 3
2 (τ̄−τ̄0 ) + 3a

2
e− 3

2 [τ̄−β(τ̄ ;τ̄0 )] τ̄ − τ̄0

β(τ̄ ; τ̄0)
. (21)

Here, the function β(τ̄ ; τ̄0) has units of time, and for any given
pair (τ̄0, τ̄ ) its value can be shown to lie in the interval [τ̄0, τ̄ ].
To obtain this form we used the mean value theorem for the
integral in Eq. (17). It would be illuminating to derive an
approximate analytical functional form for β(τ̄ ; τ̄0); this is left
for future work.

C. Lyapunov exponents from linear perturbation

The exercise in the preceding subsection demonstrated ex-
ponential loss of memory of initial conditions in the “modified
MIS” theory, on a time scale ∼ 2

3τπ . One arrives at similar
conclusions without the assumption of ignoring in Eq. (11)
the terms quadratic in π̄ , by studying the fate of a linear
perturbation around late-time solutions of the full equation
(11). This is important because, as we will see further below,
the effects on the evolution of π̄ of the nonlinear terms that
were ignored in “modified” MIS theory last much longer than
the memory-decay time over which initial-state information is
erased.

We employ linear perturbation theory around the solution
π̄ , i.e., we set π̄ → π̄ + δπ̄ and insert this into the generic
evolution equation (11). To simplify the nonlinear terms
∼π̄δπ̄ we expand the solution π̄ for late times according
to Eq. (12), keeping only the first nonvanishing term which
yields the Navier-Stokes approximation: π̄ ≈ a/τ̄ . Keeping
terms up to first order in 1/τ̄ we find

d (δπ̄ )

d τ̄
= −3

2
δπ̄

[
1 + 2λ − a

2τ̄

]
(22)

with the solution

δπ̄ ∼ τ̄
3
4 (a−2λ) exp

(
−3

2
τ̄

)
+ O

(
1

τ̄ 2

)
. (23)

The prefactor τ̄
3
4 a in front of the exponential decay factor is

easily traced back to the quadratic term π̄ (dπ̄/d τ̄ ) on the left-
hand side of Eq. (11). The λ dependence of this prefactor was
not seen in the preceding subsection because λ = 0 for MIS
theory. The solution (23) exhibits the same negative Lyapunov
exponent � = −3/2 as Eq. (16). This shows that keeping
the nonlinear terms in Eq. (11) does not change the initial
state memory loss rate with which the system approaches
the hydrodynamic attractor at late times. This rate is entirely
controlled by microscopic physics and independent of the
precise macroscopic dynamical state of the expanding system.

D. Lyapunov exponents from Borel resummation

The results in the preceding subsection may also be looked
at from the perspective of Borel resummation, which replaces
a divergent series

∑
n an by [87]

B
(∑

n

an

)
≡

∫ ∞

0
du e−u

∑
n

an

n!
un. (24)
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Borel resummation interchanges the order in which the sum
and integral in

∑
n an = ∑

n(an/n!)
∫ ∞

0 du e−u un are per-
formed. While for divergent series this yields inequivalent
results, Borel resummation of asymptotic series can help with
their interpretation, as shown below.

Starting from the recursion relation (13) and ignoring the
nonlinearities therein one finds the coefficients of the gradient
series to be

cn = C �(n−3λ/2)

(3/2)n−3λ/2
, n � 1, (25)

where the normalisation C ≡ a(3/2)1−3λ/2/�(1−3λ/2) en-
sures c1 = a. The Borel resummed version of Eq. (12) reads

B(π̄ (τ̄ )) = C τ̄−3λ/2
∫ ∞

0

du

u
e−(3/2)τ̄u u−3λ/2

∞∑
n=1

un

= C τ̄−3λ/2
∫ ∞

0
du e−(3/2)τ̄u u−3λ/2

1 − u
. (26)

The Borel integrand has a pole at u = 1 which results
in an ambiguous imaginary part of the sum, Im[B(π̄ )] =
±π C e−3τ̄ /2τ̄−3λ/2, arising from nonunique choices of de-
forming the contour around the pole. In order to remove
the ambiguity in the Borel resummed gradient series one
must include in Eq. (12) a “nonhydrodynamic” term δπ ∼
e−3τ̄ /2τ̄−3λ/2.9 Notice the similarity between this nonhydro-
dynamic term and that obtained via the method of linear
perturbation in Eq. (23).10

E. Numerical attractors for various theories

We close this section with a numerical study of the attractor
solution of Eq. (11) towards which specific solutions with
generic initial conditions decay exponentially. To identify the
attractor we follow the prescription outlined in Ref. [26]:
The initial condition for the attractor solution is obtained by
imposing the boundary conditions that both π̄ and dπ̄/d τ̄

remain finite as τ̄ → 0. As shown in [26] this results in the
quadratic equation γ π̄2 + λ π̄ − a = 0 for the initial value of
π̄ . One finds two solutions, one of which (the positive root)
is stable and corresponds to the attractor solution whereas
the negative root corresponds to a repulsor. With this initial
condition we then solve Eq. (11) numerically, for the different
parameter combinations listed in Table I. The resulting attrac-
tors for the MIS, DNMR, and third-order theories are shown in
Fig. 3 where we also compare them with the exact numerical
attractor of the RTA Boltzmann equation [37]. Please note
that, unlike any particular solution of Eq. (11) which depends

9For a detailed study of this issue see the discussion of BRSSS
theory [84] in Ref. [28].

10The extra factor of τ̄ 3a/4 in the latter stems from nonlinear terms
in Eq. (13) which were here ignored. It should be emphasized that
when considering the full nonlinear version of Eq. (11), not just one,
but an entire series of exponentially damped terms must be added
to the gradient series, turning it into a trans-series [26,28]. In this
case the above-mentioned nonhydrodynamic term plays the role of
the leading order correction.

FIG. 3. Numerical attractors for the inverse Reynolds number
π̄ (τ̄ ) for the MIS (dashed line), DNMR (dash-dotted line), and
third-order (solid line) theories, compared with the exact numerical
attractor of the RTA Boltzmann equation (filled circles). Also shown
for comparison is the Navier-Stokes solution (dotted).

on both the initial condition π̄ (τ̄0) and the initial time τ̄0 at
which it is imposed, the attractors are universal, i.e., they
attract any particular solution with initial conditions within
their basin of attraction, irrespective of its starting time.

In Fig. 3, we show the attractor solutions for π̄ for the
MIS, DNMR, and third-order theories, as well as for the exact
solution of RTA Boltzmann equation [45] and the Navier-
Stokes solution. We see that of these the MIS attractor ap-
proaches the exact attractor most slowly,11 while the attractor
of the third-order theory exhibits the best agreement with the
exact RTA BE attractor, almost as good as the anisotropic
hydrodynamic (aHydro) attractor studied in [38,42]. This adds
to the evidence of the superior performance of the third-order
theory over different variants of second-order theories that are
based on expansions around a locally isotropic momentum
distribution.12

V. APPROXIMATE ANALYTICAL SOLUTIONS

Up to this point we focused our discussion of the evolution
of the inverse Reynolds number π̄ on Eq. (11) which holds for
conformal systems where T τπ = const. It has the advantage
of completely absorbing any dependence of the shear relax-
ation time τπ on the energy density or temperature into the
rescaled time variable (inverse Knudsen number) τ̄ , but at the
expense of not being able to solve this ODE analytically. In
this section we derive analytical solutions for the evolution
of π̄ for Bjorken flow, at the expense of not being able to
ensure the conformal relation T τπ = const. consistently with
the evolution of the energy density. Instead, we find three

11In light of footnote 2 this should perhaps not be too surprising.
12aHydro, a second-order approach that is based on an expansion

around a self-consistently adjusted ellipsoidally deformed local mo-
mentum distribution [38,74,76,77,79,80], performs even better than
the third-order theory [42].
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separate classes of analytical solutions, corresponding to three
different approximations of τπ as a function of time.

Starting from Eqs. (8), (9), we decouple them as before by
rewriting them in terms of the inverse Reynolds number π̄ but
without rescaling the time [81]:

1

ετ 4/3

d (ετ 4/3)

dτ
= 4

3

π̄

τ
, (27)

dπ̄

dτ
= − π̄

τπ

+ 1

τ
(a − λπ̄ − γ π̄2). (28)

In the following, we find analytical solutions of Eq. (28), using
different approximations for the form of shear relaxation
time τπ .

A. Constant relaxation time

In this subsection we ignore the scaling of τπ with temper-
ature, by simply setting it constant. This constitutes a rather
drastic violation of conformal symmetry by introducing, in
addition to the inverse temperature 1/T , a second, indepen-
dent length scale τπ . In the following two subsections we will
successively improve on this approximation.

The first analytical solution for the evolution in second-
order hydrodynamics with Bjorken flow of the energy density
and inverse Reynolds number for a constant shear relaxation
time τπ was found by Denicol and Noronha [35]. For com-
pleteness we briefly review this solution, generalizing it to
the generic form (27), (28) of the evolution equations which
also includes third-order hydrodynamics. Introducing again
the rescaled time τ̄ = τ/τπ , for constant τπ Eq. (28) turns
directly into

dπ̄

d τ̄
= −π̄ + 1

τ̄
(a − λπ̄ − γ π̄2) (29)

which is similar to Eq. (11) but without the nonlinearity on the
left-hand side.13 As will be discussed below, this difference
has important consequences for the attractor solutions and
Lyapunov exponents.

Equation (29) is a first-order nonlinear ODE of Riccati type
which can be written as a second-order linear ODE with the
help of the following transformation of variables:

1

y

dy

d τ̄
= γ

π̄

τ̄
⇐⇒ π̄ = τ̄

γ y

dy

d τ̄
, (30)

which turns Eq. (29) into

d2y

d τ̄ 2
+

(
1 + 1 + λ

τ̄

)
dy

d τ̄
− aγ

τ̄ 2
y = 0. (31)

The general solution of this linear ODE can be expressed in
terms of Whittaker functions Mk,m(τ̄ ) and Wk,m(τ̄ ) [35]:14

y(τ̄ ) = Aτ̄ ke−τ̄ /2[Mk,m(τ̄ ) + α Wk,m(τ̄ )]. (32)

13Equation (29) can be readily derived by setting � = 0 in
footnote 5.

14Note that the authors of [35] used γ = 4/3 and a different
definition of a.

Here, k = − 1
2 (λ+1) and m = 1

2

√
4aγ + λ2 while A and α are

arbitrary constants. Substituting this solution in Eqs. (30) and
(27) one finds

π̄ (τ̄ ) = (2k+2m+1)Mk+1,m(τ̄ ) − 2αWk+1,m(τ̄ )

2γ [Mk,m(τ̄ ) + αWk,m(τ̄ )]
, (33)

ε(τ̄ ) = ε0

(
τ̄0

τ̄

)4
3 (1− k

γ
)

e− 2
3γ

(τ̄−τ̄0 )

×
(

Mk,m(τ̄ ) + αWk,m(τ̄ )

Mk,m(τ̄0) + αWk,m(τ̄0)

) 4
3γ

. (34)

Here, ε0 is the initial energy density at time τ̄0, and the
constant α encodes the initial normalized shear stress π̄0. Note
that α can only take values for which the energy density is
positive-definite for τ̄ > 0.

It is easy to see from Eq. (33) that the solution for π̄ (τ̄ )
loses all memory about initial conditions at late times when
Mk,m(τ̄ ) dominates over Wk,m(τ̄ ): for large arguments τ̄ → ∞
the ratio

Wk,m(τ̄ )

Mk,m(τ̄ )
−→ �

(
m−k+ 1

2

)
�(2m+1)

τ̄ 2k e−τ̄ (35)

decays exponentially. Thus at late times the terms proportional
to α in Eqs. (33)–(34) decay like e−τ̄ , corresponding to a
Lyapunov exponent of �= − 1. This obviously differs from
�= − 3

2 for the conformally invariant theories described by
Eq. (11); the difference is a direct consequence of the breaking
of conformal symmetry by setting τπ constant instead of
∝1/T .

B. Relaxation time from ideal hydrodynamics

A better approximation to Eq. (11) can be obtained by
setting T τπ = const. but, instead of using the exact time
dependence of the temperature T , approximating the latter
such that the evolution equations can still be integrated analyt-
ically. Seeing that for Bjorken flow the system asymptotically
approaches local thermal equilibrium, we may approximate
the time-dependence of T at late times by the ideal fluid law
[53]

Tid(τ ) = T0

(τ0

τ

)1/3
, (36)

where T0 is the temperature at initial time τ0. For T τπ = 5η̄

this yields

τπ (τ ) = b τ 1/3 with b = 5η̄

T0τ
1/3
0

. (37)

Using this to define the scaled time variable τ̄ ≡ τ/τπ one
finds

d τ̄

dτ
= 2

3τπ

= 2

3b
τ−1/3,

and Eq. (28) turns into

2

3

dπ̄

d τ̄
= −π̄ + 1

τ̄
(a − λπ̄ − γ π̄2), (38)

independent of b. This equation again misses the nonlinear
term on the left-hand side (l.h.s.) of Eq. (11) and, except for
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the factor 2/3 on the l.h.s., has the same structure as Eq. (29).
Its analytical solution is therefore very similar to Eq. (33),
except for a change of the argument of the Whittaker functions
by a factor 2/3:

π̄ (τ̄ ) = (2k+2m+1)Mk+1,m(3τ̄ /2) − 2αWk+1,m(3τ̄ /2)

3γ [Mk,m(3τ̄ /2) + αWk,m(3τ̄ /2)]
,

(39)

ε(τ̄ ) = ε0

(
τ̄0

τ̄

)4
3 ( 3

2 − k
γ

)

e− 1
γ

(τ̄−τ̄0 )

×
(

Mk,m(3τ̄ /2) + αWk,m(3τ̄ /2)

Mk,m(3τ̄0/2) + αWk,m(3τ̄0/2)

) 4
3γ

. (40)

Here, k = − 3λ+2
4 and m = 3

4

√
4aγ + λ2, different from

Eqs. (33)–(34). The asymptotic behavior (35) of the Whittaker
functions now tells us that, for the choice (37), memory of
the initial conditions is lost exponentially according to e− 3

2 τ̄ ,
corresponding to the same Lyapunov exponent �= − 3

2 as
for the conformally invariant theories described by Eq. (11).

C. Relaxation time from Navier-Stokes evolution

We can further improve our approximation by accounting
for first-order gradient effects in the evolution of the tempera-
ture, by replacing the ideal fluid law (36) by the Navier-Stokes
result [83,88,89]

TNS = T0

(τ0

τ

)1/3
[

1 + 2η̄

3τ0T0

{
1 −

(τ0

τ

)2/3
}]

. (41)

For η̄ = 0 this reduces to Eq. (36). Substituting this into T τπ =
5η̄ we find

τπ = τ 1/3

d − 2
15τ−2/3

, d ≡
(

T0τ0

5η̄
+ 2

15

)
τ

−2/3
0 . (42)

For the scaled time variable τ̄ ≡ τ/τπ we now have

d τ̄

dτ
= 2

3τπ

(
1 + 2

15τ̄

)
. (43)

Using this in Eq. (28) one obtains(
a/τ̄ + 2

3

)
dπ̄

d τ̄
= −π̄ + 1

τ̄
(a − λπ̄ − γ π̄2), (44)

independent of the constant d . This shares with Eq. (38) the
factor 2/3 on the l.h.s. which, as we saw in the preceding
subsection, leads to the correct Lyapunov exponent for con-
formally symmetric systems. Comparing with Eq. (11) one
sees that they are identical up to the substitution π̄ �→ a/τ̄

[which is the first nonzero term in the series expansion (12)].
This should not be surprising as the term within parenthesis
on the l.h.s. of Eq. (11) stems solely from the energy (or,
equivalently, temperature) evolution equation (8) which, when
making the replacement π̄ �→ a/τ̄ , leads to the Navier-Stokes
solution TNS .

Comparing with the preceding subsection, this suggests
that it might be possible to account for the time evolution
of the temperature in the relation τπ (τ ) ∼ 1/T (τ ) with ever
increasing precision by substituting the gradient series (12)

for π̄ in the prefactor on the l.h.s. of Eq. (11) and trun-
cating it at increasingly higher order: zeroth order for ideal
hydrodynamics, first order for Navier-Stokes dynamics, and
so on. Unfortunately, this is not justified as Eq. (12) is an
asymptotic (i.e., divergent) series. The consequences of this
on the hydrodynamic attractor will be discussed in the next
section.

Equation (44) can be recast in a form similar to Eq. (29)
and solved again analytically:

π̄ (τ̄ ) = (2k+2m+1)Mk+1,m(w) − 2αWk+1,m(w)

3γ [Mk,m(w) + αWk,m(w)]
, (45)

ε(τ̄ ) = ε0

(w0

w

)4
3 ( 3

2 − k
γ

)
e− 1

γ
(τ̄−τ̄0 )

×
(

Mk,m(w) + αWk,m(w)

Mk,m(w0) + αWk,m(w0)

) 4
3γ

. (46)

This looks formally identical to Eqs. (39)–(40), except for
the substitution 3

2 τ̄ �→ w ≡ 3
2 (τ̄ + a

2 ) in the arguments of the
Whittaker functions on the right-hand side (r.h.s.), together
with modified definitions for the indices k and m:

k = 3a − 4 − 6λ

8
, m = 3

8

√
a2 + 16aγ − 4aλ + 4λ2.

Using Eq. (35) for the asymptotic behavior of the Whittaker
functions we see that once again memory of the initial con-
ditions is lost exponentially according to e− 3

2 τ̄ , with no effect
from the constant shift of the time variable in the arguments
of the Whittaker functions. This corresponds to the same
Lyapunov exponent �= − 3

2 as in the preceding subsection
and, more generally, for all the conformally invariant theories
described by Eq. (11).

We note in passing that including higher order terms cn/τ̄
n

for n > 1 in the gradient series while approximating π̄ on
the l.h.s. of Eq. (44) spoils its reducibility to the analytically
solvable form explored in this work. Whether for such ap-
proximations Eq. (11) can still be solved in terms of known
functions remains to be seen.

We summarize this section by observing that, while the
assumption of a fixed shear relaxation time τπ (i.e., of a fixed
temperature T when writing τπ ∝ 1/T ) leads to an incorrect
Lyapunov exponent describing the rate of approach towards
the hydrodynamic attractor, the correct decay rate is recovered
as soon as one allows the temperature T to vary with time hy-
drodynamically even if the exact time dependence is replaced
by an approximation based on a truncated hydrodynamic
gradient expansion.

VI. ANALYTICAL ATTRACTORS

In this section we investigate the hydrodynamic attractors
associated with the analytic approximate solutions of the evo-
lution equation for the inverse Reynolds number π̄ found in
the preceding section. In Sec. IV E we saw that, as τ̄ → 0, π̄

can take one of only two finite values of opposite sign, and we
identified the attractor as the unique solution which connects
to the positive value. All other solutions were found to connect
in the limit τ̄ → 0 to the negative value. An illustration of
this generic behavior is shown in Fig. 4 for the case of the
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FIG. 4. Attractor behavior of the analytical solution (39) for the
third-order theory (λ= 10/21, γ = 412/147). The two (attracting
and repulsing) fixed points at τ̄ → 0 are clearly visible. Please note
that some of the dashed lines have poles, i.e., as τ̄ → 0 they go
to +∞ before reappearing from −∞ and approaching the negative
fixed point.

attractor corresponding to the analytical solution (39) for the
third-order theory.

In this section we introduce the following procedure for
identifying the hydrodynamic attractor [81]: In terms of the
parameter α encoding the initial condition for π̄ , we search
for the value α0 at which the quantity

ψ (α0) ≡ lim
τ̄→τ̄0

∂π̄

∂α

∣∣∣∣
α=α0

(47)

diverges at the time τ̄0 where the two fixed points of the
evolution trajectories (see Fig. 4) are located [32]. For Bjorken
flow, this time is usually τ0 = 0. For the numerical solution of
Eq. (11) in Sec. IV E this can be seen in Fig. 3, and for the
analytical solutions Eqs. (33) and (39) in Secs. V A and V B,
respectively, this can be seen by studying their behavior near
τ̄ = 0. The structural similarity of Eqs. (45) and (39) shows
that for the solution (45) the fixed points are instead located
at w0 = 0, which corresponds to a negative (i.e., unphysical)
longitudinal proper time τ̄0 = −a/2. This arises from the
Navier-Stokes substitution π̄ �→ a/τ̄ on the left hand side of
Eq. (44) which breaks down [and thus renders the analytic
solution (45) unreliable] in the region τ̄ � 1.

We can use the same approach of studying the sensitivity
to initial conditions to obtain the Lyapunov exponent � from
the formula

� = lim
τ̄→∞

∂

∂τ̄

[
ln

(
∂π̄

∂α

)]
. (48)

For the analytical solutions (33), (39), (45) this prescription
reproduces the same results as obtained from the late-time
behavior (35) of the Whittaker functions but its advantage is
that it can also be used numerically where exact solutions for
π̄ are not available [such as for the numerical solutions of the
generic equation (11)].

For the case shown in Fig. 4 we have verified explicitly that
indeed there are two fixed points at τ̄0 = 0 and that only for the

TABLE II. Arguments and parameters of Eq. (49) for the analytic
approximations studied in Secs. V A, B, and C, respectively.

T (τ ) w � k m

const. τ̄ −1 − 1
2 (λ+1) 1

2

√
4aγ+λ2

ideal 3
2 τ̄ − 3

2 − 3λ+2
4

3
4

√
4aγ+λ2

NS 3
2

(
τ̄+ a

2

) − 3
2 − 6λ+4−3a

8
3
8

√
16aγ+a2−4aλ+4λ2

attractor solution, characterized by α0 = 0, ψ (0) [defined in
Eq. (47)] diverges. For all other solutions α �= 0 we found that
ψ (α) = 0 in the limit τ̄ → 0, indicating that they all converge
to the negative branch, as shown in Fig. 4.

The approximate analytical solutions (33), (39), (45) dis-
cussed in Sec. V can be written in the generic form

π̄ (w) =
(
k+m+ 1

2

)
Mk+1,m(w) − αWk+1,m(w)

γ |�|[Mk,m(w) + αWk,m(w)]
(49)

with arguments and parameters for the three cases (i.e., for
τπ ∝ 1/T with T either constant or with time dependence
taken from ideal or Navier-Stokes hydrodynamics) compiled
for convenience in Table II.

The attractor solutions are obtained from Eq. (49) by
setting the initial condition parameter α = 0:

π̄attr (w) =k+m+ 1
2

γ |�|
Mk+1,m(w)

Mk,m(w)
. (50)

They are shown in Fig. 5 for the three different hydrodynamic
theories discussed in this paper [MIS (a), DNMR (b), and
third-order (c)] and compared with the corresponding exact
numerical attractors as well as with the attractor for the exact
analytical solution of the RTA Boltzmann equation [37] (the
latter is, of course, the same in all three subpanels). Com-
parison of these attractors provides insights not only about
the performance of the three different hydrodynamic theories
as approximations to the underlying kinetic theory, but also
about the relative accuracy of the additional approximations
made in Sec. V in order to obtain analytical results.

For all three hydrodynamic theories, we note (especially
at early times when the system is farthest away from local
equilibrium) that the differences between the exact numerical
attractors and their analytical approximations from Sec. V are
significantly smaller than their discrepancy from the attractor
of the underlying kinetic theory. At late times the breaking
of conformal symmetry by choosing a constant relaxation
time leads generally to the largest difference between the
exact numerical and analytically approximated hydrodynamic
attractors; this may be attributed to the fact that the τπ = const.
approximation underestimates the rate of approach towards
the attractor by a factor 2/3. More surprisingly, the analytic
approximation that performs best at late times [which uses
τπ (τ ) ∼ 1/TNS (τ )] performs worst at early times when com-
pared with the exact numerical result. This reflects a different
value for the fixed point of the inverse Reynolds number

034901-10



EXACT SOLUTIONS AND ATTRACTORS OF … PHYSICAL REVIEW C 100, 034901 (2019)

FIG. 5. Approximate analytical attractors for the MIS (a),
DNMR (b), and third-order (c) theories, compared with their exact
numerical attractors (solid green lines) and the exact analytical
attractor for the RTA Boltzmann equation (black dots).

compared to the other analytic approximations and may be
related to the fact that in this case the fixed point is shifted
outside the physical region to τ̄ = −a/2. As already seen
in Fig. 3, in comparison with the exact solution of the RTA
Boltzmann equation, the third-order theory performs much
better than both the MIS and DNMR theories, both when
evaluated exactly numerically or approximately analytically.
The only known theory that performs even better than the
third-order theory studied here is second-order anisotropic
hydrodynamics [38,42,71] which effectively resums terms of
all orders in the inverse Reynolds number.

Numerical studies, such as those shown in Figs. 2 and 4,
show that at late times τ̄ > 1 any initial deviation from the
attractor approaches the attractor exponentially, with the Lya-
punov exponents discussed before. The approximate analyti-
cal result (49) allows to understand this approach analytically
over the entire range of τ̄ , i.e., also for large Knudsen numbers

τ̄ � 1. Following the analysis [90] we write15

π̄ (w) = π̄attr (w) + δ(w)

= π̄ (w)|α=0 + α
∂π̄

∂α
(w)

∣∣∣∣
α=0

+ O(α2), (51)

where in the last expression we expanded the deviation δ to
first order in the deviation of the initial value parameter α

from the value α = 0 characterizing the attractor solution. The
decay of the inverse Reynolds number π̄ towards its attractor
value is for small deviations16δ given by

δ(w) = − α

γ |�|
Mk+1,m(w)

Mk,m(w)

×
[(

k+m+ 1
2

)Wk,m(w)

Mk,m(w)
+ Wk+1,m(w)

Mk+1,m(w)

]
. (52)

This is a function of the scaling variable w ∝ |�|τ̄ which
is proportional to the inverse Knudsen number τ̄ . At first
sight this suggests that the competition between the global
expansion rate 1/τ and the microscopic relaxation rate 1/τπ

not only rules the evolution of the hydrodynamic attractor
π̄attr itself, but also the way initial excursions of the inverse
Reynolds number from this attractor decay as the full dynami-
cal solution approaches the attractor. However, as first pointed
out in [90], a deeper analysis exhibits that the dependence of
the lifetime of such excursions on the interaction rate 1/τπ

changes dramatically between early times τ � τπ/|�| and
late times τ � τπ/|�|.

Using the following Whittaker function properties for
small arguments,

Wk,m(x)

Mk,m(x)

∣∣∣∣
x→0

≈ �[2m]

�
[
m−k+ 1

2

] x−2m,
Mk+1,m(x)

Mk,m(x)

∣∣∣∣
x→0

≈ 1,

(53)
where the approximation holds at leading order, we see from
Eq. (52) that, in contrast to the exponential decay (35) at
late times τ̄ � 1, the decay of excursions away from the
attractor decay with a power law at early times τ̄ � 1 [90].
The transition from power law to exponential decay around
w ∝ |�|τ̄ = 1 is illustrated in Fig. 6.17,18

15Note that δ as defined in [90] differs from ours by a factor 4/3.
16It is worth pointing out that, for fixed initial deviation δ0 at initial

time τ̄0, the corresponding initial state parameter α approaches 0 as
τ̄0 → 0. Small δ0 thus implies small α (especially for small values of
τ̄0), but not vice versa.

17Note that the “effective MIS” approximation (15) discussed in
Sec. IV B misses the early-time power-law decay of excursions away
from the hydrodynamic attractor. We found that early-time power-
law decay of initial deviations from the attractor requires that in the
generic evolution equation (11) for the inverse Reynolds number at
least one of the two coefficients λ and γ must be nonzero. This is not
the case for the “effective MIS” theory.

18A few comments regarding the domain of validity of the lin-
earised approach are in order. Using Eq. (49) to determine the
deviation δ(w) from the attractor solution, one readily checks that,
for w � 1, terms beyond the linear order in Eq. (51) are proportional
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FIG. 6. The ratio Wk,m (x)
Mk,m (x) as a function of the scaling variable x

(which is proportional to time in units of the microscopic relaxation
time, i.e., to the inverse Knudsen number). The exact result (solid
black line) is compared with the first order approximation (53) for
small arguments x < 1 (dashed red line) and the analogous approx-
imation (35) for large arguments x > 1 (dashed green line). The
power-law decay at early times manifests itself as an approximately
straight line in the double-logarithmic representation of the main
plot while the transition to exponential decay at late times leads to
the approximately straight line behavior seen in the semilogarithmic
inset plot.

An immediate consequence of this discussion is that for
early starting times τ0 � τπ/|�| (where, for sufficiently small
δ, δ(τ̄ ) ∝ (|�|τ̄ )−2m) the decay time τ1/e (defined as the time
over which the magnitude of δ decreases by a factor 1/e) is
given by τ1/e = ρ τ0 (where, to leading order in δ and τ̄ , ρ is
a constant given in terms of the attractive fixed point π̄attr,0 by

ρ = (e1/2m−1)
3

π̄attr,0+2 ) and thus independent of τπ , whereas for
late starting times τ0 � τπ/|�| it is given by τ1/e = τπ/|�|,
independent of τ0. τ1/e thus smoothly increases from 0 to
τπ/|�| (where it saturates) as w0 increases from 0 to values
much larger than 1/|�|. Sufficiently small excursions of the
inverse Reynolds number from its attractor thus decay faster
at early times τ � τπ/|�| than at late times τ � τπ/|�|.

Based on the observation that for τ � τπ/|�| the decay
rate is controlled by the initial expansion rate 1/τ0 and inde-
pendent of the scattering rate 1/τπ whereas the opposite holds
for τ � τπ/|�|, the authors of [90] attribute the transition
from power-law decay at early times to exponential decay

to αn(w−2m )n for n � 2. Even for fixed small values of α, this series
diverges for sufficiently early “times” w2m � α, where linearization
in α must break down. This is closely related to footnote 16: in order
to keep δ0 ≡ δ(w0 ) fixed for small values of w0, α must be tuned
down to ensure αw−2m

0 � 1 such that higher-order contributions may
be safely neglected. The breakdown of the linearised method at very
early times owes itself to the presence of the repulsive fixed point
at w = 0, i.e., as long as α is not strictly equal to 0, all solutions,
π̄ (α,w) will ultimately hit the repulsor at w = 0, where the deviation
from the attractor no longer stays infinitesimal. This mathematical
feature of π̄ (α,w = 0) being discontinuous at α = 0 was, in fact,
used to uniquely determine the attractor solution via Eq. (47) [81].

at later times to a transition from the “prehydrodynamic”
to the “hydrodynamic” stages, i.e., they see it as associated
with the process of hydrodynamization. We have a different
view of this matter: It is known from earlier numerical stud-
ies [32,38,42] of both Bjorken and Gubser flows that some
hydrodynamic approximations (in particular anisotropic and
third-order hydrodynamics, but to a somewhat lesser degree
also DNMR theory) evolve the inverse Reynolds number very
accurately (when compared with the evolution predicted by
the underlying RTA Boltzmann equation) already at very early
times τ̄ � 1, even when initialized far away from the attrac-
tor. That is, not only do the attractors for these hydrodynamic
approximations agree well with the exact attractor even for
large Knudsen numbers, as shown for DNMR and third-order
theories here in Fig. 3 and for anisotropic hydrodynamics
in Fig. 3 of [38], but the theories also describe accurately
the evolution of the system towards the attractor even when
initialized far away from it. To us this implies that the system
hydrodynamizes well before τ̄ = 1/|�|, and power law rather
than exponential decay of deviations from the attractor are not
a tell-tale signature for “prehydrodynamic” behavior.

VII. SUMMARY AND CONCLUSIONS

We studied analytically and numerically the evolution of
the inverse Reynolds number in causal theories of second-
and third-order relativistic viscous fluid dynamics for Bjorken
flow. In this situation there is only a single nonvanishing com-
ponent of the shear stress, describing an anisotropy between
longitudinal and transverse pressure, which is generically very
large at early times. For Bjorken flow the evolution of the
associated inverse Reynolds number (i.e., the ratio of the
shear stress to the enthalpy density of the system) decouples
from that of the energy density and temperature and thus can
be solved independently. When expressed as a function of
time in units of the microscopic shear relaxation time (which
measures the inverse Knudsen number of Bjorken flow), the
solution is universal, i.e., independent of the specific shear vis-
cosity of the medium. For three different macroscopic hydro-
dynamic theories, we studied these solutions, numerically and
with various analytical approximations, their hydrodynamic
attractors, the rate of initial state memory loss and approach
to the attractor (expressed through Lyapunov exponents), and
compared all these with the corresponding solution of the
relativistic Boltzmann equation in RTA approximation which
describes the underlying microscopic dynamics and can, for
Bjorken flow, be solved exactly.

When comparing the exact numerical solutions for the
attractor of the inverse Reynolds number for the three different
hydrodynamic theories studied here with the exact solution
from the Boltzmann equation we find significant differences at
early times, i.e., at large Knudsen numbers where the dynam-
ics happens far away from equilibrium. While for the third-
order theory the discrepancy remains always below 10%,19 it

19It has been shown elsewhere [38,42] that the attractor for
anisotropic hydrodynamics (aHydro) is even closer to the exact
Boltzmann attractor than the one for the third-order theory.
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increases to ∼30% for DNMR theory and to almost a factor
of 2 for MIS theory (both being second-order hydrodynamic
theories). Compared to these, the additional discrepancies
caused by the various approximations we made to arrive at
analytical solutions for the dynamics of π̄ are small. At late
times (small Knudsen numbers) all attractors approach the
Navier-Stokes solution. Again third-order hydrodynamics is
closest to the exact solution of the underlying Boltzmann
kinetics, but the excellent agreement is spoiled somewhat if
conformal symmetry is broken by an approximation that sets
the relaxation time τπ to a constant rather than allowing it to
vary inversely with the temperature.

As τ → 0, the Navier-Stokes value of the inverse Reynolds
number diverges while its attractor value approaches the finite
value π̄ = 0.25, corresponding to a shear stress over thermal
pressure ratio π/P = 1. The Lyapunov exponent associated
with the evolution of π̄ , �= − 3

2 , indicates that even far-
from-equilibrium initial conditions, π0/P0 � 1, relax expo-
nentially to the attractor value with a decay time of order
2
3τπ = 10

3
η̄

T . For minimal specific shear viscosity η̄ = 1
4π

and
a medium temperature of, say, T = 0.5 GeV, this corresponds
to a decay time of ≈0.1 fm/c. Subsequently, the hydrody-
namic evolution follows essentially the hydrodynamic attrac-
tor of the theory which agrees, within the precision stated
above, with the exact attractor associated with of the under-
lying microscopic Boltzmann kinetics.

While the ODE describing the evolution of the inverse
Reynolds number for Bjorken flow is easily solved on a com-
puter, with arbitrary precision, the analytic approximations
studied here are surprisingly accurate, and they yield valuable
insights into the details of initial state memory loss and the ap-
proach to attractor dynamics in Bjorken flow. Similar methods
may be applicable to different situations (for example, Gubser
flow, which is physically quite different from Bjorken flow but
shares with it many mathematical similarities) where they can

lead to similarly valuable qualitative insights. Generalization
to Gubser flow should be particularly interesting because
it does not thermalize at late times but rather approaches
an asymptotic free-streaming state. In such a situation the
questions of initial state memory loss and the approach to
a hydrodynamic attractor [32,42,43] have not yet been fully
understood.
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[23] P. Bożek, A. Bzdak, and G.-L. Ma, Rapidity dependence of
elliptic and triangular flow in proton-nucleus collisions from
collective dynamics, Phys. Lett. B 748, 301 (2015).
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