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Transfer reactions with the Lagrange-mesh method
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We apply the R-matrix method in distorted wave Born approximation (DWBA) calculations. The internal
wave functions are expanded over a Lagrange mesh, which provides an efficient and fast technique to compute
matrix elements. We first present an outline of the theory, by emphasizing the R-matrix aspects. The model
is applied to the 16O(d, p)17O and 12C(7Li, t )16O reactions, typical of nucleon and of α transfer, respectively.
We illustrate the sensitivity of the cross sections with respect to the R-matrix parameters and show that an
excellent convergence can be achieved with relatively small bases. We also discuss the effects of the remnant
term in DWBA calculations and address the question of the peripherality in transfer reactions. We suggest that
uncertainties on spectroscopic factors could be underestimated in the literature.
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I. INTRODUCTION

Transfer reactions represent an important tool to investigate
the nuclear structure [1–5]. The cross sections are known
to be very sensitive to the structure of the projectile and of
the residual nucleus. For example, (d, p) reactions have been
widely used to probe the structure of many nuclei. Various
models have been developed since more than 50 years (see
Refs. [6,7] for recent reviews). The angular distributions of a
A(d, p)B reaction permits identifying the angular momentum
and the spectroscopic factor of nucleus B. In particular, the
development of radioactive beams led to many studies of
exotic nuclei (see, for example, Ref. [8]).

Transfer reactions are also commonly used in nuclear
astrophysics as an indirect tool [9]. As radiative-capture cross
sections are extremely small at stellar energies, indirect mea-
surements provide useful information on bound states and
on low-energy resonances. Alpha-transfer reactions, such as
(6Li, d ) or (7Li, t ), have been used to populate various states
of 16O [10] or of 17O [11]. These measurements are helpful to
constrain the 12C(α, γ )16O and 13C(α, n)17O cross sections.
In parallel, nucleon-transfer reactions provide the Asymptotic
Normalization Constants (ANC) of several nuclei. For ex-
ample, the authors of Ref. [12] perform a 13C(3He, d )14N
experiment to analyze 14N states. The deduced ANCs are
then used to determine the 13C(p, γ )14N cross section at low
energies.

The theory of the distorted wave born approximation
(DWBA) represents a standard framework for direct transfer
reactions [13]. In this approximation, the transition amplitude
is determined as a first-order matrix element of the transi-
tion potential between the initial and final scattering states.
Various improvements, such as the coupled-channel Born
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approximation (CCBA) [14,15] have been proposed to include
intermediate states in inelastic channels.

The calculation of transfer cross sections involves a three-
body model for the entrance channel. In the DWBA, the three-
body wave function is factorized as a product of the target
and projectile wave functions. Most transfer calculations have
been performed in this framework. The adiabatic method goes
beyond this approximation by using a genuine three-body
wave function, but by assuming that the projectile is frozen
during the collision [16]. More recently, the treatment of the
three-body wave function has been improved by using the
Faddeev method [17] or the continuum discretized coupled-
channel (CDCC) method [18].

Modern calculations, such as those involved in the CDCC
method, are demanding in terms of computer capabilities. The
availability of efficient numerical techniques is therefore an
important issue. Our goal in the present work is to apply the
R-matrix method [19,20] combined with the Lagrange-mesh
theory [21] to transfer reactions. In the R-matrix method, the
configurations space is divided into two regions, separated
by the channel radius a. In the internal region, the wave
functions are expanded over a basis. In the external region,
the nuclear potential, and the scattering wave functions have
reached their asymptotic Coulomb behavior, and the match-
ing provides the scattering matrices and the cross sections.
Lagrange meshes correspond to specific bases, associated
with the Gauss quadrature, and have been applied in various
fields of physics (see a review in Ref. [21]). When the matrix
elements are computed at the Gauss approximation, their
calculation is greatly simplified, since numerical quadratures
are not necessary.

The paper is organized as follows. In Sec. II, we briefly
present the DWBA formalism, and emphasize on the R-matrix
approach of transfer reactions. In Sec. III, we apply the
method to two examples. The 16O(d, p)17O reaction is typical
of nucleon transfer, whereas the 12C(7Li, t )16O reaction is
typical of α transfer. The conclusion and outlook are presented
in Sec. IV.
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FIG. 1. Schematic diagram of process (1). The valence cluster v

is transferred from the projectile A to the target b. The angles � and
�′ are associated with the coordinates RRR and RRR′.

II. TRANSFER REACTIONS IN THE R-MATRIX
FORMALISM

A. Outline of the DWBA

The DWBA theory has been presented in many reviews
and books (see, for example, Refs. [1–5]). Here, we briefly
introduce the method and define the notations.

Let us consider the rearrangement reaction

A(= a + v) + b −→ a + B(= b + v), (1)

where a valence cluster v is transferred from the projectile A to
the target b. A typical reaction is (d, p), where a neutron (v)
is transferred and a proton (a) is emitted. Pick-up processes
(e.g., (p, d ) reactions) are described by a similar formalism.

The various coordinates involved in the reaction (1) are
displayed in Fig. 1. Nuclei A and B are described in a two-
body model, where the Hamiltonian is given by

HA = TA + Vav (rrrA),

HB = TB + Vbv (rrrB). (2)

Potentials Vav and Vbv are real, and are fitted on spectroscopic
properties of nuclei A and B, such as binding energies, or root-
mean-square radii. In the final nucleus B, these potentials in
general depend on the considered state. The two-body (bound-
state) wave functions with spins IA and IB are written as

�
IAMA
�A

(rrrA) = 1

rA
uIA

�A
(rA)

[
Y�A (�A) ⊗ [χa ⊗ χv]SA

]IAMA
,

(3)

�
IBMB
�B

(rrrB) = 1

rB
uIB

�B
(rB)

[
Y�B (�B) ⊗ χv

]IBMB
,

where �A and �B are the orbital angular momenta (the parity is
implied). In these definitions, χa and χv are spinors associated
with particles a and v, respectively. We assume that the target
nucleus b has a spin zero, and cannot be excited. A gener-
alization can be found in Ref. [22]. The antisymmetrization
between clusters a and v in the projectile, or between b and

v in the residual nucleus, is simulated by an appropriate
choice of the potential, involving Pauli forbidden states [23].
This technique uses deep potentials where the Pauli forbidden
states are approximated by deeply bound states.

The natural sets of independent variables are (RRR, rrrA) or
(RRR′, rrrB). However, for symmetry reasons, the set (RRR,RRR′) is
usually adopted. Then, the Jacobian J must be introduced
in the matrix elements. In the Appendix, we give more de-
tail about the Jacobian and about the relationships between
coordinates (rrrA, rrrB, rrrab) and coordinates (RRR,RRR′).

B. Transfer scattering matrices

The three-body Hamiltonian associated with reaction (1)
can be defined in the “prior” representation [1,2] as

Hprior = HA(rrrA) + TRRR + Vbv (rrrB) + Vab(rrrab), (4)

or, in the “post” representation, as

Hpost = HB(rrrB) + TRRR′ + Vav (rrrA) + Vab(rrrab), (5)

where rrrab is the distance between particles a and b, and where
Vi j are optical potentials between the clusters. In general, they
are fitted on elastic-scattering data. These two representations
are strictly equivalent. The merits of both choices are dis-
cussed, for example, in Refs. [18,24]. In the following, we
use the post representation, but the developments are similar
for the prior representation. We assume here that all optical
potentials are local. Extensions to nonlocal potentials have
been developed, for example, in Ref. [25].

Let us consider an auxiliary potential Vβ (RRR′) between nu-
clei a and B in the exit channel. The corresponding three-body
Hamiltonian is given by

Hβ = HB(rrrB) + TRRR′ + Vβ (RRR′), (6)

and the wave function with total angular momentum J and
parity π can be factorized as

�
JMπ (−)
β (rrrB,RRR′)

= 1

R′ χ
Jπ
LB

(R′)
[
YLB (�′) ⊗ [

�
IB
�B

(rrrB) ⊗ χa
]SB

]JM
, (7)

where LB is the orbital momentum in the exit channel.
The scattering matrix between the initial and final states

can be written, for any choice of the auxiliary potential, as

U Jπ
αβ = − i

h̄

〈
�

JMπ (−)
β

∣∣Vav + Vab − Vβ

∣∣
JMπ (+)
α

〉
, (8)

where 
JMπ (+)
α is the exact solution of the three-body equa-

tion (see Eq. (8.52) of Ref. [2]). In definition (8), we use the
labels α = (LA, �A, IA) and β = (LB, �B, IB). At the DWBA,
the exact three-body wave function 
JMπ (+)

α is replaced by


JMπ (+)
α (rrrA,RRR) ≈ 1

R
χ Jπ

LA
(R)

[
YLA (�) ⊗ �

IA
�A

(rrrA)
]JM

, (9)

where χ Jπ
LA

(R) is generated by an A + b optical potential. The
two wave functions (7) and (9) are therefore treated on an
equal footing.

Notice that, owing to the use of the DWBA, the choice of
the auxiliary potential Vβ is not arbitrary (see the discussion
in Ref. [18]). A common choice is to adjust this potential on
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elastic-scattering data, which ensures the correct asymptotic
behavior of the scattering wave function. An alternative con-
sists in using a folding potential from Vav + Vab. This option is
more consistent in the sense that it is based on the three-body
Hamiltonian (5), without any additional input. However, this
folding potential may not be optimal for elastic scattering.

There are various approaches that go beyond the DWBA.
In the adiabatic approximation [7,16], the three-body wave
function is approximated as


JMπ (+)
α (rrrA,RRR) ≈ 1

R
χ Jπ

LA
(R, rA)

[
YLA (�) ⊗ �

IA
�A

(rrrA)
]JM

(10)

and assumes that the projectile A is “frozen” during the colli-
sion. This approximation is valid when the scattering energy
is much higher than the binding energy of the projectile. It has
been extensively used for (d, p) reactions [7].

The CDCC model [26–28] aims at improving the three-
body wave function (9) by discretizing the continuum of
nucleus A over a set of square-integrable two-body wave
functions �

IA
�A,n(rrrA) as


JMπ (+)
α (rrrA,RRR) ≈ 1

R

∑
n

χ Jπ
LA,n(R)

× [
YLA (�) ⊗ �

IA
�A,n(rrrA)

]JM
, (11)

where index n denotes, either bound states, or approximate
continuum states. Here the radial functions χ J

LA,n(R) are ob-
tained from a coupled-channel system. The CDCC method
has been used for many reactions involving weakly bound
nuclei, where breakup effects are expected to be important.
The use of CDCC wave functions in transfer reactions is more
recent [18,29].

In Eq. (8), the core-core potential and the auxiliary poten-
tial Vβ are similar. Then, the remnant potential

Vrem = Vab − Vβ (12)

is often neglected. This approximation is expected to be valid
for a nucleon transfer on a heavy target. It is reasonable to
assume that the a + b potential is close to the a + (b + 1)
potential if the target b is heavy. For light targets, however,
and for α transfer, remnant effects may be not negligible.

In the DWBA, the scattering-matrix element (8) is given by

U Jπ
αβ = − i

h̄

∫
χ Jπ

LA
(R)KJπ

αβ (R, R′)χ Jπ
LB

(R′)RR′dRdR′, (13)

where the KJπ
αβ (R, R′) transfer kernel is defined as

KJπ
αβ (R, R′) =J 〈[

YLA (�) ⊗ �
IA
�A

(rrrA)
]J ∣∣Vav + Vrem

∣∣
× ∣∣[YLB (�′) ⊗ �

IB
�B

(rrrB)
]J 〉

. (14)

The calculation is developed in the Appendix. It involves
integrals over the angles � and �′. Notice that the integral
definitions (8) and (13) of the scattering matrix assume that
the scattering wave functions tend to

χL(r) → 1√
v

[IL(kr) − ULOL(kr)], (15)

where k and v are the wave number and velocity, respec-
tively. This definition also involves the incoming and outgoing

Coulomb functions IL(x) and OL(x), as well as the elastic
scattering matrix UL. The calculation of UL and of χL(r) is
further discussed in the next subsection. Definition (13) can
be easily extended to CDCC wave functions (11) by including
additional summations over the different channels.

When the scattering matrices (13) are known, the transfer
cross sections can be computed (see, for example, Ref. [19]).
The integrated transfer cross section is given by

σt = π

k2(2IA + 1)

∑
J

(2J + 1)TJ , (16)

with

TJ =
∑
π

∑
LA,IB,LB

∣∣U Jπ
IALA,IBLB

∣∣2
. (17)

C. The R-matrix method

The definition of the transfer scattering matrix (13) is gen-
eral. Besides the KJπ

αβ transfer kernel, these integrals involve
scattering wave functions χ Jπ

LA
(R) and χ Jπ

LB
(R′). In the FRESCO

code [5] they are obtained with a finite-difference method.
This discretization method, however, usually requires many
points to get a good accuracy. In simple calculations, the
computer time is always short, and does not represent an
important issue. In more complex calculations, such as those
using the CDCC method (see, for example, Ref. [30] for a
recent application), a special attention must be paid to the
numerical procedure.

In the present work, we use the R-matrix method [19,20,31]
to determine the scattering wave functions χ Jπ

LA
(R) and

χ Jπ
LB

(R′). Although we limit this short presentation to single-
channel problems, the formalism can be easily extended to
multichannel problems [19], such as those encountered in
CDCC calculations.

The basic idea of the R-matrix theory is to divide the space
in an internal region (with radius a) and in an external region.
The channel radius a should be large enough so that the
nuclear potential is negligible. In the internal region (R � a),
the wave function is expanded over a set of N basis functions
ϕi(R) as

χL
int (R) =

N∑
i=1

cL
i ϕi(R), (18)

where the choice of functions ϕi(R) will be discussed later (in
this subsection, we only write the relative orbital momentum
L for the sake of clarity). In the external region (R > a), by
definition of the channel radius, the wave function takes the
asymptotic form (15) as

χL
ext (R) = 1√

v
[IL(kR) − ULOL(kR)], (19)

where UL is the scattering matrix for elastic scattering and is a
number for single-channel problems. Since the basis functions
ϕi(R) are valid for R � a only, matrix elements of the kinetic
energy are not Hermitian. This is addressed by introducing the

034611-3



SHUBHCHINTAK AND P. DESCOUVEMONT PHYSICAL REVIEW C 100, 034611 (2019)

Bloch operator

L = h̄2

2μ
δ(R − a)

(
d

dR
− B

R

)
, (20)

where μ is the reduced mass, and B is a boundary parameter,
taken here as B = 0. The role of the Bloch operator is twofold:
it ensures the hermiticity of the Hamiltonian over the internal
region, and the continuity of the derivative at the surface. Then
the Bloch-Schrödinger equation reads(

H + L − E
)
χL

int = LχL
int = LχL

ext, (21)

where the second equality holds from the surface character
of L.

Inserting the expansion (18) in Eq. (21) provides coeffi-
cients cL

i as

cL
i =

∑
j

(
C−1

L

)
i j〈ϕ j |L

∣∣χL
ext

〉
, (22)

where matrix CCCL is defined by

(CCCL )i j = 〈ϕi|H + L − E |ϕ j〉. (23)

The continuity condition

χL
int (a) = χL

ext (a) (24)

gives the scattering matrix

UL = IL(ka)

OL(ka)

1 − L∗RL

1 − LRL
, (25)

where constant L is defined as

L = SL + iPL = ka
O′

L (ka)

OL (ka)
. (26)

The real part SL(E ) and the imaginary part PL(E ) are known
as the shift and penetration functions, respectively. In Eq. (25),
the R-matrix is obtained from

RL = h̄2

2μa

∑
i j

ϕi(a)
(
CCC−1

L

)
i jϕ j (a). (27)

From the R-matrix, the elastic scattering matrix UL as
well as coefficients cL

i are easily determined. Let us point
out that the channel radius is not a parameter. Although the
R matrix and the Coulomb functions in Eq. (25) do depend
on a, the scattering matrix should not depend on it. The
choice of the channel radius results from a compromise: On
the one hand, it should be large enough to make sure that
the nuclear interaction is negligible. On the other hand, large
values require a large number of basis functions ϕi(R) which
increases the computer times. In this respect a channel radius
as small as possible is recommended. In the next subsection
we discuss Lagrange functions, which represent an efficient
choice in R-matrix calculations.

In practice, the main part of the computation time comes
from the inversion of the complex matrix CCCL [Eq. (22)]. When
the channel radius a is large or, in other words, when the
nuclear potential extends to large distances, the correspond-
ing number of points must be increased. This issue can be
addressed by using propagation techniques [19,32], where
the interval [0, a] is split in subintervals. These techniques

allow to deal with large numbers of coupled equations, since
the number of Lagrange functions can be reduced in each
subinterval. Consequently the sizes of the matrices to be
inverted are smaller.

D. The DWBA method with Lagrange meshes

The Lagrange functions have been used in different fields
of physics [21]. The main idea is to define basis functions
associated with a Gauss quadrature. The functions depend
on the interval considered. For a finite interval [0, a], such
as those encountered in the R-matrix theory, the N Lagrange
functions are chosen as

ϕi(R) = (−1)N+i

√
xi(1 − xi )

axi

R PN (R/a − 1)

R − axi
, (28)

where PN (x) is the Legendre polynomial of degree N , and xi

are the zeros of

PN (2xi − 1) = 0. (29)

These functions satisfy the Lagrange conditions

ϕi(ax j ) = 1√
aλi

δi j, (30)

where λi are the weights of the Gauss-Legendre quadrature in
the [0,1] interval. This mesh is used for the scattering wave
functions χ Jπ

LA
(R) and χ Jπ

LB
(R′).

For bound states, the interval ranges from 0 to infinity,
and the Lagrange functions are associated with Laguerre
polynomials LN (x) as

ϕi(R) = (−1)i R

R − xih

1√
xi

LN (R/h) exp(−R/2h), (31)

where h is a scale parameter, adapted to the typical dimensions
of the system. These basis functions are used to describe the
bound states of nuclei A and B. In Eq. (31), the xi are the
roots of the Laguerre polynomials of order N . The Lagrange
condition reads

ϕi(h x j ) = 1√
hλi

δi j, (32)

where λi are now the weights associated with the Gauss-
Laguerre quadrature.

Lagrange functions are very efficient when the matrix
elements are computed consistently at the Gauss quadrature
of order N . Matrix elements of the overlap and of a local
potential V (r) are given by

〈ϕi|ϕ j〉 ≈ δi j,

〈ϕi|V |ϕ j〉 ≈ V (axi )δi j, for Legendre functions,

≈ V (hxi )δi j, for Laguerre functions. (33)

According to Eq. (33), all matrix elements only require the
values of the potential at the mesh points. This property can be
even extended to nonlocal potentials [33]. The accuracy of the
Gauss approximation in the Lagrange-mesh method has been
discussed in the literature (see, for example, Refs. [21,34]).
The matrix elements of the kinetic energy can be found in
Ref. [21].
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If the channel radius is chosen large enough so that the
external contribution in Eq. (13) is negligible, the calculation
of the transfer scattering matrix (13) takes the simple form

U Jπ
αβ = − i

h̄
a3

N∑
i, j=1

cα
i cβ

j

√
λiλ jxix jK

Jπ
αβ (axi, ax j ), (34)

where coefficients cα
i and cβ

j are associated with the scattering
wave functions χ Jπ

LA
(R) and χ Jπ

LB
(R′), respectively. Typically,

N ∼ 30−40 points are sufficient to achieve convergence. This
is significantly less than in finite-difference methods, where
typical number of points is typically of the order of 500. Of
course, the R-matrix method involves additional steps, such as
the inversion of a complex matrix (see the discussion in Sec.
IIC), but this can be efficiently optimized.

Gauss-Laguerre functions are used to expand the bound-
state radial functions uα (rA) and uβ (rB). This procedure in-
volves fast calculations, and is efficient for large-scale cal-
culations. Of course the transfer cross sections should not
depend on the numerical approach. As for elastic scattering,
the transfer cross sections must be stable against variations
of the channel radius and of the number of basis functions.
Several tests have been performed with the code FRESCO [5],
and will be discussed in the next Section. In optimal condi-
tions (i.e., with numbers of points as small as possible), the
Lagrange-mesh method is about two times faster than FRESCO.

III. RESULTS AND DISCUSSIONS

A. Conditions of the calculations

We consider two reactions: 16O(d, p)17O and
12C(7Li, t )16O, involving the transfer of a neutron, and
of an alpha particle, respectively. Although we compare our
calculations with the available experimental data, we want
to stress that our goal is not to fit the data or to extract
spectroscopic factors (SFs). Our aim is to assess the use of
the R-matrix method in transfer calculations. In particular, the
important parameters in the current approach are the number
of basis functions N and the channel radius a, which are
chosen large enough to ensure converged results. Throughout
the paper, we use integer masses, and the constant h̄2/2mN =
20.9 MeV·fm2 (mN is the nucleon mass). Unless specified
otherwise, we assume that spectroscopic factors are unity.

Other important inputs are the bound and scattering state
potentials required to generate the corresponding wave func-
tions. For bound-state calculations, we use potentials given
in the literature, which reproduce the binding energy of the
concerned state. The deuteron ground-state wave function
(s state) is calculated with the standard Gaussian potential

Vnp(r) = −72.66 exp[−(r/1.484)2]. (35)

The bound-state potentials of the other systems are taken of
the Woods-Saxon type, as

V (r) = − Vr f (r, Rr, ar ) + Vc(r)

− Vso

( h̄

mπ c

)2 1

r

d

dr
f (r, Rso, aso)� · s� · s� · s, (36)

TABLE I. Woods-Saxon potential parameters for bound states.

Vr Rr ar Vso Rso aso Rc

System state (MeV) (fm) (fm) (MeV) (fm) (fm) (fm)

n+16Oa 5/2+ 52.96 3.15 0.523 5.332 3.15 0.523
1/2+ 54.97 3.15 0.523 5.33 3.34 0.523

α + tb 3/2− 94.0 2.05 0.70 2.05
α+12Cb 0+

2 71.1 4.50 0.53 5.0
2+

1 69.15 4.50 0.53 5.0

aReference [35].
bReference [36].

with

f (r, R, a) = 1

/[
1 + exp

(
r − R

a

)]
. (37)

Here, Vc is the Coulomb potential of an uniformly charged
sphere with radius Rc and mπ the pion mass. In comparison
with the original references, the amplitudes are slightly ad-
justed to reproduce the experimental binding energies with the
adopted physical constants. The various parameters are given
in Table I.

To calculate the scattering wave functions, we also make
use of phenomenological optical potentials available in the
literature. These potentials are obtained by fitting elastic-
scattering data and are of the form

U (r) = − Vr f (r, Rr, ar ) + Vc(r)

− i Wv f (r, Rv, av ) − i Ws g(r, Rs, as). (38)

The imaginary potential contains a volume term and a surface
term defined by

g(r, Rs, as) = −4 as
d

dr
f (r, Rs, as). (39)

For 17O + p, a Gaussian surface imaginary [35] is used as

g(r, Rs, as) = exp

(
−

[
0.69(r − Rs)

as

]2)
. (40)

Table II contains the parameters of the various optical poten-
tials. For the sake of simplicity, and since our goal is not to
obtain best fits of the data, we neglect spin-orbit effects.

B. The 16O(d, p)17O reaction

As a first example, we consider the stripping of a deuteron
on 16O, leading to the ground (5/2+) and to the first excited
state (1/2+, Ex = 0.87 MeV) of 17O at two different beam
energies Ed = 25.4 MeV and 36 MeV. The 17O states are
constructed by coupling the 0+ ground state of 16O with a
neutron in 1d5/2 and 2s1/2 orbitals, respectively. This reaction
represents an excellent test case which has been abundantly
covered in the literature (see, for example, Ref. [35]). It has
been reconsidered recently [39].

In Fig. 2, we plot the 16O(d, p)17O angular distributions
and compare them with the experimental data of Ref. [35].
From the figure one can see that at forward angles (�30◦),
the DWBA calculations are close to the data. Our results
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TABLE II. Optical potential parameters defined by Eqs. (38)–(40), for the various channels involved in the reactions considered in this paper.

Elab Vr Rr ar Wv Rv av Ws Rs as Rc

Channel (MeV) (MeV) (fm) (fm) (MeV) (fm) (fm) (MeV) (fm) (fm) (fm) Ref.

d + 16O 25.4 94.79 2.65 0.84 8.58 3.96 0.57 3.28 [35]
36 92.84 2.59 0.80 8.84 3.55 0.697 3.28 [35]

p + 17Oa 25.4 50.30 2.94 0.73 9.60 1.27 0.68 3.34 [35]
36 46.70 2.94 0.73 1.40 3.26 0.68 7.50 3.26 0.68 3.34 [35]

p + 17O(0.87)a 25.4 50.70 2.94 0.73 9.80 3.26 0.68 3.34 [35]
36 47 2.94 0.73 1.15 3.26 0.68 7.70 3.26 0.68 3.34 [35]

7Li + 12C 28, 34 139.1 3.71 0.58 18.8 4.56 0.93 0 0 0 2.91 [36]

t + 16O 28, 34 170 2.87 0.723 20 4.03 0.8 0 0 0 3.12 [36]

t + 12C 28 170.451 2.41 0.73 13.85 2.85 1.16 19.00 2.40 0.84 3.26 [37]
34 185.796 2.41 0.73 13.255 2.85 1.16 15.13 2.40 0.84 3.26 [37]

t + 12C 28 138.48 2.29 0.72 2.49 3.11 0.80 11.22 1.36 0.80 2.98 [38]
34 134.41 2.31 0.792 2.76 3.11 0.80 10.92 1.36 0.80 2.98 [38]

aGaussian surface imaginary potential.

are consistent with those of Ref. [35]. In that reference,
the importance of breakup channels was discussed, which
resulted in the improvement of the calculated cross sections
at backward angles. Tests with the FRESCO code (dotted lines)
show an excellent agreement with the present calculation.

We further investigate the importance of the remnant term
in the 16O(d, p)17O reaction. In general, this approximation
greatly simplifies the calculations and is often used in the
literature. Going beyond this approximation, however, raises
the question of a core-core potential. In the present work, we
take the 16O + p optical potential from the global parametriza-
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FIG. 2. 16O(d, p)17O angular distributions for the ground (5/2+)
and first excited (1/2+) states of 17O at two deuteron energies.
Dashed and solid lines correspond to the calculations with and
without the inclusion of the remnant term in the potential. The dotted
lines correspond to the FRESCO calculations [5]. Experimental data
are taken from Ref. [35].

tion of Ref. [40]. Figure 2 shows that calculations performed
without (solid lines) and with (dashed lines) the remnant term
are similar, especially at forward angles. At large angles, the
difference may reach up to 30%.

In Fig. 3, we plot the coefficients (2J + 1)TJ as a function
of J at Ed = 25.4 MeV for the ground state as well as for
the first excited state of 17O. This quantity is relevant for
the calculation of the integrated cross sections. In agreement
with the cross sections of Fig. 2, the 5/2+ contribution is
larger. Figure 3 shows that partial waves J � 10 have a small
contribution. The maxima are located at low J values (J ≈
4–8 for the ground state and J ≈ 2–5 for the excited state).

In Figs. 4 and 5, we analyze the sensitivity of the transfer
cross sections against variations of the R-matrix parameters:
the channel radius a and the number of basis functions N . The
channel radius must be large enough to guarantee that nuclear
effects are negligible. However, large values require large
bases, and therefore increase the computer times. As usual in
R-matrix calculations, a compromise must be adopted.

Figure 4 presents the 16O(d, p)17O cross section at Ed =
25.4 MeV, and for various channel radii. The number of basis
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1

0 2 4 6 8 10 12 14 16

5/2  
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O  

FIG. 3. Coefficients TJ (17) for the 16O(d, p)17O reaction at Ed =
25.4 MeV as a function of J . The lines are guide to the eye.
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FIG. 4. 16O(d, p)17O transfer cross section to the 1/2+ state at
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functions is fixed at a conservative value N = 80. From the
figure, we conclude that, as soon as the channel radius is
a � 15 fm, the convergence is achieved. Similar conclusions
are drawn at other energies.

In Fig. 5, we select the scattering angle θ = 2◦, and plot
the cross section for various a and N . In Fig. 5(a), we
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FIG. 5. 16O(d, p)17O transfer cross section at Ed = 25.4 MeV
and θ = 2◦ as a function of the number of basis functions N (a) and
of the channel radius (b).

consider the variation of the cross section with the number
of basis functions N . Values around N ≈ 40 are sufficient to
achieve an excellent convergence. These numbers are much
smaller than those use in finite-difference methods, such as the
Numerov algorithm (several hundreds with a typical mesh size
of 0.02 fm). As mentioned earlier, the R-matrix calculations
can be still speed up by using a propagation method [32]. This
tool is particularly efficient in coupled-channel calculations
involving many channels. Figure 5(b) confirms the previous
analysis: a channel radius larger than ∼15 fm is necessary
to ensure the convergence. Notice that the 17O(5/2+) trans-
fer cross section converges faster than the 17O(1/2+) cross
section, due to the larger binding energy of the 5/2+ state.

C. The 12C(7Li, t )16O reaction

In this subsection, we apply the formalism to the
12C(7Li, t )16O reaction, which involves the transfer of
an α particle. The 12C(7Li, t )16O reaction, as well as
12C(6Li, d )16O, have been used in many indirect measure-
ments of the 12C(α, γ )16O cross section (see Refs. [36,41] and
references therein). This reaction is crucial in stellar models,
since it determines the 12C and 16O abundances after helium
burning. As astrophysical energies are much lower than the
Coulomb barrier, the corresponding cross sections are too
small to be measured in the laboratory.

Although many direct measurements have been devoted to
the 12C(α, γ )16O reaction, the extrapolation down to stellar
energies (≈300 keV) remains uncertain (see Ref. [42] for a
recent review). Most fits of the available data are performed
within the phenomenological R-matrix theory, which involves
various parameters of 16O states. In particular, the reduced
α widths of bound states are proportional to the spectro-
scopic factors, which can be accessed by α transfer reactions.
Reactions such as 12C(7Li, t )16O therefore provide strong
constraints on the R-matrix fits.

We consider the α transfer leading to the 0+
2 (Ex = 6.05

MeV) and 2+
1 (Ex = 6.92 MeV) states of 16O. Measurements

are available for 7Li energies of 28 and 34 MeV [36]. The
transfer cross sections are presented in Fig. 6 (solid lines),
where we use the spectroscopic factors given in Ref. [36]
(0.13 for the 0+

2 state and 0.15 for the 2+
1 state). The present

cross sections are quite similar to the fits of Ref. [36], and
confirmed by FRESCO calculations (not shown).

To assess the influence of the remnant term in the DWBA
matrix element, we use two different t + 12C optical potentials
from Refs. [37,38]. These potentials provide similar elastic-
scattering cross sections, and the shape of the transfer cross
section also weakly depends on the core-core potential. The
amplitude, however, is affected by the presence of the remnant
term. This effect is more significant for the 0+

2 state, where
the amplitude is changed by about 30%. This means that
the spectroscopic factor should be increased by about 30%,
compared to the value deduced in Ref. [36].

We also want to address the influence of the α + 12C
potentials, associated with 16O bound states. Following
Refs. [36,41], the depths are chosen such that the number of
nodes n satisfies the condition 2n + � = 8. This choice seems
natural if one considers pure α + 12C cluster states, where the
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FIG. 6. 12C(7Li, t )16O angular distributions at two different 7Li
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remnant terms. Dashed and dotted lines are obtained by including
the remnant terms with the t − 12C potentials from Refs. [37,38],
respectively. The dash-dotted lines are obtained with the alternative
α + 12C potentials (see text). Experimental data (solid dots) are taken
from Ref. [36].

four nucleons of the α particle are promoted to the sd shell.
Microscopic calculations [43], however, suggest 2n + � = 6.
To investigate this effect, we have repeated the calculations by
decreasing the depths of the α + 12C potentials (−47.80 MeV
for the 0+

2 state, and −45.81 MeV for the 2+
1 state). In this

way, the 0+
2 and 2+

1 wave functions present 3 and 2 nodes,
respectively. The transfer cross sections are presented in Fig. 6
(dash-dotted lines). The cross sections are slightly reduced
(up to 30% depending on the angle and energy). As for the
effect of the remnant term, the choice of the potential does not
modify drastically the spectroscopic factors. However, these
effects suggest that the error bars on the spectroscopic factors
could be underestimated, owing to uncertainties in the model.

In Fig. 7, we present the values of (2J + 1)TJ for ELi =
28 MeV. For the dominant 2+

1 state, the maximum is located
near J ≈ 21/2, whereas it is shifted down to around J ≈ 17/2
for the 0+

2 state. Partial waves above J � 29/2 (i.e., for LA �
14) play a negligible role.

D. Test of the peripherality

DWBA calculations are widely used to determine ANCs
from transfer data [9]. The ANC of a bound state in the
residual nucleus B is defined by

uIB
�B

(rB) −→ CIB
�B

W−ηB,�B+1/2(2κBrB), (41)

where ηB and κB are the Sommerfeld parameter and wave
number, and Wa,b(x) is the Whittaker function. In most cases,
it is assumed that the transfer process is essentially periph-
eral, and therefore probes the long-range part of the wave
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FIG. 7. Coefficients (2J + 1)TJ (17) for the 12C(7Li, t )16O reac-
tion at ELi = 28 MeV as a function of J and for two 16O states. The
lines are guide to the eye.

functions. This problem has been addressed, for example,
in Ref. [44]. Assessing the peripherality of a transfer re-
action, however, is not trivial. The main reason is that the
transfer kernel (14) explicitly depends on the relative coor-
dinates between the colliding nuclei (R and R′), whereas the
peripheral character is associated with the internal coordinates
rA and rB (see Fig. 1).

To analyze the peripheral nature of a transfer reaction, we
define a modified kernel as

K̃Jπ
αβ (rmin, R, R′) = KJπ

αβ (R, R′) for rmin � rA or rB

= 0 for rmin > rA or rB, (42)

where rmin is a cutoff radius on the internal coordinates rA

or rB. This definition provides a modified scattering matrix
as

Ũ Jπ
αβ (rmin) = − i

h̄

∫
χ Jπ

LA
(R)K̃Jπ

αβ (rmin, R, R′)χ Jπ
LB

(R′)

× RR′dRdR′. (43)

Consequently, we have

Ũ Jπ
αβ (0) =U Jπ

αβ ,

Ũ Jπ
αβ (∞) = 0. (44)

The cutoff radius rmin can be applied, either to the internal
coordinate of the projectile (rA) or of the residual nucleus
(rB). For a peripheral process, one expects Ũ Jπ

αβ (rmin) to have
significant values for large rmin. In contrast, if Ũ Jπ

αβ (rmin) tends
rapidly to zero, then the process can be considered as internal.
Notice that the peripheral nature depends on the angular
momentum J .

As a first test, we consider the 16O(d, p)17O reaction to the
5/2+ ground state (we have selected IB = 2, LB = |J − 2|, but
similar conclusions are obtained for other quantum numbers).
In Fig. 8, we present the modified scattering matrices (43) as a
function of rmin in the deuteron (a) and in 17O (b). As it is well
known for (d, p) reactions, the transfer process is sensitive
to short p + n distances only [Fig. 8(a)]. Above 2 fm, the
contribution to the scattering matrix is negligible. This result
justifies the zero-range approximation which is often used in
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FIG. 8. Modulus of the modified scattering matrix Ũ Jπ (43)
for the 16O(d, p)17O (g.s.) reaction at Ed = 25.4 MeV, and for
different J values. The minimum distance rmin corresponds to the
p + n coordinate in panel (a) and to the 16O + n coordinate in
panel (b).

the literature for (d, p) and (d, n) reactions. The situation is
different for the n + 16O distance [Fig. 8(b)]. For large angular
momenta (J � 8) the integral is mostly sensitive to large
distances, and the reaction can be considered as peripheral.
However, low J values (J � 8) mostly depend on the internal
contribution.
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FIG. 9. Modified scattering cross sections d σ̃ (rmin )/d� for the
16O(d, p)17O(g.s.) reaction at Ed = 25.4 MeV, and for different
scattering angles.
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for the 12C(7Li, t )16O(2+

1 ) reaction at ELi = 28 MeV. The minimum
distance rmin corresponds to the α + t coordinate in panel (a) and to
the α + 12C coordinate in panel (b).

The different behavior of the J values suggests that the
peripheral nature of the cross section depends on the angle.
This is confirmed in Fig. 9, where we plot the modified cross
sections d σ̃ (rmin)/d�, computed with the scattering matrices
(43). At small angles, the cross section can be considered as
essentially peripheral. However, the situation is different when
the angle increases. This property is expected to be valid in

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10

C Li 2∘

∘

∘

∘

FIG. 11. Modified scattering cross sections d σ̃ (rmin )/d� for the
12C(7Li, t )16O(2+

1 ) reaction at ELi = 28 MeV, and for different scat-
tering angles.
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other systems, and suggests that the determination of ANC
should be limited to small angles.

Figures 10 and 11 represent the same quantities for the
12C(7Li, t )16O(2+

1 ) reaction. Figures 10 illustrates the bahav-
ior of the scattering matrix for typical J values. In that case,
the zero-range approximation would not be accurate since
the dependence on rmin in the α + t motion is important.
From Fig. 10(b), we conclude that the transfer process is
not sensitive to the α + 12C coordinate below ≈4 fm. The
modified cross sections presented in Fig. 11 confirm this
property, which is mainly due to the weak binding energy
of the 2+

1 state (−0.24 MeV). The wave function in Eq. (41)
presents a slow decrease, and the transfer process is essentially
determined from the large distances.

IV. CONCLUSIONS

In this work, we have applied the R-matrix method to direct
transfer reactions. Using a Lagrange mesh as basis for the
internal wave functions provides an efficient tool to com-
pute the various matrix elements. With the 16O(d, p)17O and
12C(7Li, t )16O reactions, we have considered typical neutron
and α-transfer processes. We have shown that this framework
requires a relatively small number of points (∼40–50), much
smaller than in finite-difference methods. Of course, computer
times do not represent a critical issue for simple calculations,
as for those associated with standard DWBA calculations.
However, large-scale scattering calculations [8,45] are more
and more demanding in terms of computing capabilities, and
the present method significantly reduces computer times.

In this exploratory work, we did not aim at fitting data. The
potentials were taken from the literature, and were used to
assess the accuracy of the method. We also analyzed the pe-
ripherality of the 16O(d, p)17O and 12C(7Li, t )16O reactions,
as typical examples. This is done by defining modified transfer
kernels, which are set to zero if the internal coordinates (in
the projectile or in the residual nucleus) is not in a given
interval. We have shown that the external contribution to the
scattering matrix depends on angular momentum: small J
values are essentially internal, whereas large J values are more
peripheral. Consequently, the peripheral nature of transfer
reactions is sensitive to the energy and angle.

In addition to the simplicity of the R-matrix, this method
also permits to deal with nonlocal potentials [33]. Going
beyond the DWBA leads to nonlocal potentials [3,15,46].
In this way, the nonorthogonality of the entrance and exit
channels is treated exactly. In other words, and in contrast with
the DWBA, elastic scattering is modified by the coupling to
transfer channels. Although this effect is expected to be small
in stable nuclei [1], it might be more important in reactions
involving exotic nuclei.

The R-matrix formalism could also be applied to the source
method, an alternative theory where the transfer scattering
matrix is obtained from an inhomogeneous equation [47].
Although most R-matrix calculations are performed for ho-
mogeneous equations, the extension is straightforward. The
present formalism therefore opens several perspectives in
future calculations of transfer reactions.
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APPENDIX

In this Appendix, we give detail about some technical
aspects of the DWBA. All coordinates must be expressed in
terms of (RRR,RRR′). Let us define

rrrA = αRRR + βRRR′,

rrrB = γRRR + δRRR′,

rrrab = ωRRR + νRRR′. (A1)

A simple calculation provides

α = − bA

v(A + b)
, β = AB

v(A + b)
,

γ = AB

v(A + b)
, δ = − aB

v(A + b)
,

ω = b

A + b
, ν = B

A + b
. (A2)

The Jacobian is therefore defined by a 6 × 6 matrix from

drrrAdRRR = drrrBdRRR′ = J dRRRdRRR′, (A3)

with

J = β3. (A4)

Let us outline the calculation of the transfer kernel (14),
which represents integrals over the angles � and �′. The main
difficulty is that these angles show up through coordinates
(rrrA, rrrB, rrrab), as shown by Eq. (A1). To simplify the presen-
tation, we assume here that the spins of a and v are zero. The
first step is to expand the potentials and radial wave functions
as

uIA
�A

(rA)

r�A+1
A

uIB
�B

(rB)

r�B+1
B

(Vav (rrrA) + Vrem(rrrab,RRR′))

=
∑

K

gK
αβ (R, R′)[YK (�) ⊗ YK (�′)]0, (A5)

which is performed by a numerical quadrature over the angle
between RRR and RRR′.

To proceed further, we use the expansion (assuming SSS =
αrrr1 + βrrr2)

SLY M
L (�S ) =

∑
k

Ck
L (αr1)k (βr2)L−k[Yk (�1) ⊗ YL−k (�2)]LM,

(A6)
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with

Ck
L =

(
4π (2L + 1)!

(2k + 1)!(2L − 2k + 1)!

)1/2

. (A7)

With expansions (A5) and (A6), the transfer kernel can be
written as

KJπ
αβ (R, R′) =

∑
k1k2K

Ck1
�A

Ck2
�B

F J
αβ,k1k2K Iαβ,k1k2K (R, R′), (A8)

where functions Iαβ,k1k2K (R, R′) are given by

Iαβ,k1k2K (R, R′)= (αR)k1 (βR′)�A−k1 (γ R)k2 (δR′)�B−k2 gK
αβ (R, R′)

(A9)

and coefficients F Jπ
αβ,k1k2K by

F Jπ
αβ,k1k2K = 〈[

YLA (�) ⊗ [
Yk1 (�) ⊗ Y�A−k1 (�′)

]�A
]J

× |[YK (�) ⊗ YK (�′)]0

× ∣∣[YLB (�′) ⊗ [
Yk2 (�) ⊗ Y�B−k2 (�′)

]�B
]J 〉

.

(A10)

The analytical calculation of these coefficients requires some
algebra to modify the order of angular-momentum couplings,
and involves 6 j coefficients. When particles a and v have a
spin, further angular-momentum recoupling is necessary. This
calculation does not raise particular difficulties. It is developed
in more detail, for example, in Ref. [1].
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