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Role of channel temperature and mass window in the binary breakup of 236U∗
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The dynamical cluster-decay model (DCM), an extension of the preformed cluster model of Gupta and
collaborators for the decay of hot and rotating compound nuclei (CN) formed in low-energy reactions, has been
applied to study the mass distribution of 236U∗ formed at an excitation energy corresponding to the capture of
thermal neutrons by 235U. The role of excitation energy of the compound nucleus, neck length parameter, and
mass window (range of mass numbers) considered are also analyzed. The excitation energy of the compound
nucleus is kept fixed for all channels, and the temperature for each channel is obtained iteratively to conserve the
sum of excitation energies of two fragments to the excitation energy of the compound nucleus at a fixed distance,
mimicking the saddle configuration. The obtained mass distributions and yields are compared with experimental
yields.
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I. INTRODUCTION

There has always been a great interest in the study of fission
yields since they are useful in understanding the nature of
the fission process. Hence, the study of the mass distribu-
tion and charge distribution of the nuclear fission process is
important. Since a large collective motion is involved in the
fission process, starting from a parent nucleus to resulting
fission fragments through deformation space, its description
poses a challenge for any model or theory. In addition to the
deformation degree of freedom, any model has to account for
the experimental observables like mass distribution, kinetic
energies of the fragments, etc. The data on low-energy nuclear
fission studies have general implications for the understanding
of the influence of shell structure on nuclear dynamics and the
viscosity of cold nuclear matter. The observables from low-
energy fission indicate the importance of microscopic features
such as shell effects and pairing effects. Hence, a complete
model must take into account the initial reaction that induced
the fission process, the formation of the pre-compound nu-
cleus, and the competition of particle emission, γ emission,
and fission. The evolution of the fissioning system needs to be
fully described, considering all degrees of freedom.

Many attempts have been made to develop methods for
describing the fission-fragment yields and other fission prop-
erties. The description of fission observables relies on the
modeling of the dynamics of the fissioning system. Many
theoretical models have tried to account for the mass and
charge distributions, average kinetic energy, excitation energy,
and cross section, from fission fragments in the actinide
fissioning system like 235U(n, f ).

Recently, in Ref. [1], the Langevin dynamical approach
combined with a Monte Carlo method was used to study
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the fission-fragment mass distribution, neutron and γ -ray
multiplicity, and the average kinetic energy of an emitted
neutron at a low excitation energy of the induced fission
process of 236U at E∗ = 20 MeV. Further, by comparing
the distribution with experimental data, they evaluated the
timescale of fission. The Monte Carlo approach was used to
calculate the evaporation of particles from fission fragments
for thermal neutron-induced fission of 235U and 239Pu and for
the spontaneous fission of 252Cf in [2]. The decay of fission
fragments from 235U(n, f ) was simulated by assuming that
particles are only emitted from the fully accelerated fission
fragments. The pre-neutron-emission fragment yield matrix is
used to sample the total kinetic energy directly and the mass
of the heavy fragment and then to determine the charge, spin,
and parity of fission fragments.

In Ref. [3], Pasca et al. studied the shape of charge and
mass distributions of the fission fragments for 235U(n, f ) and
239Pu(n, f ) with increasing incident neutron energy from the
thermal energy up to 55 MeV using the statistical method of
a dinuclear system model (DNS). Here, statistical equilibrium
is assumed to be established at scission, and observable char-
acteristics of fission processes are also assumed to be formed
near the prescission configuration of the fissioning nucleus.
Using a deformation, mass (charge) asymmetry dependent
potential energy, they have calculated mass and charge dis-
tributions, total kinetic energy, and neutron multiplicity. With
increasing incident neutron energy, the mass yields (charge
yields) showed a decrease of asymmetric peak and an increase
of fission yields in the near-symmetric mass (charge) region.
They concluded that the washing of shell effects with an
increase in excitation energy might be the cause for the change
in mass and charge distributions.

In Ref. [4] Romano et al. measured the change of fission-
fragment mass distribution of 235U as a function of incident
neutron energy. In this experiment, the neutrons are created
in a (γ , n) reaction and are slowed down by successive
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scattering collisions in the lead. The neutron energy is used
to determine energy-dependent, neutron-induced fission cross
sections as a function of neutron slowing-down time. Change
of total kinetic energy (TKE) of the fission fragments is
also examined and the TKE was found to increase with an
increase in incident neutron energy. In Ref. [5], Paradela et al.
measured the cross-section ratio of 238U(n, f )/235U(n, f ) at
the n_TOF facility at CERN from 0.5 MeV to 1 GeV. They
have compared the cross-section ratio for neutron energies
from 500 keV to 20 MeV with the data from ENDF/B-VII.1
[6,7].

In Ref. [8], Yanez et al. measured the total kinetic energy
release in the neutron-induced fission of 235U for neutron
energies from 3.2 to 50 MeV. A decrease in total kinetic
energy was observed with increasing neutron energy, which
reflected the increase in symmetric fission with an increase
in excitation energy. Further, their results are compared with
the predictions from the GEF model (GEneral description of
Fission observables) [9]. Yanez et al. in [10] measured the
total kinetic energy release in the fast neutron-induced fission
of 235U in the neutron energies from 2 to 100 MeV. The spal-
lation neutrons from a tungsten target were made to collide
on a 235U target, to detect the fission products using photo-
diodes. They found that the mean total kinetic energy values
decrease nonlinearly with increasing neutron energy. Further,
the measured total kinetic energy distributions are compared
with the results from the GEF model [11]. In addition, many
experiments were performed to determine the total γ -ray
emission from neutron-induced fission of 235U [12–14]. The
GEF model applies to all fissioning systems from spontaneous
fission up to excitation energies of 100 MeV. The model is
suitable for large-scale calculations. In this model, properties
like fission mode, mass division, fragment excitation energy,
total kinetic energy were determined. A global fit procedure is
done on the ingredients of the model and its parameter values,
hence the deviations from the experimental values are found
to be minimum.

Recently, a new statistical scission-point model, called
SPY [15] was developed to evaluate the mass distributions
and mean values of all fission observables based on the
Wilkins model [16]. In this model, scission-point distance is
the only parameter. The model is based on the assumption
that the gross properties of fission fragments depend on the
available energy at the scission point. Statistical treatment is
applied assuming thermodynamic equilibrium at scission. The
scission configuration is characterized by neutron, proton, and
deformation parameters of fragments and their separation dis-
tance. The potential energy, calculated within Hartree-Fock-
Bogoliubov (HFB) formalism, was used to evaluate fission
observables in the thermal fission of 235U. A satisfactory re-
production was obtained for the total kinetic energy and mass
yields. Taking clues from SPY model and the Wilkins model,
one of us recently reported ternary fission mass distributions
[17].

In Ref. [18], the static aspects of induced fission is studied
in terms of a microscopic theory as a function of the excitation
energy of the incident neutron. In this work, the excited states
are described by random phase approximation or the generator
coordinate method. Schunck et al. have studied the evolution

of fission barriers by assuming the potential energy surface
(PES) of the compound nucleus in the HFB approximation.
They have analyzed the influence of incident neutron energy
on the fission barriers of the compound nucleus 240Pu. In
Ref. [19], the time evolution of 240Pu is studied using the
time-dependent density functional theory. Using the Skyrme
parametrization, the structure of the nuclear energy density
functional is obtained. The dynamics of the fission process is
given by simulations from which the relative shape evolution
could be understood.

With the collective wave function as the only input, the
Gaussian overlap approximation of the time-dependent gener-
ator coordinate method (TDGCM-GOA) is used to study the
dynamics of 238U in Ref. [20]. In this work, the low-energy
fission-fragment distributions, density plots, pairing energy,
total kinetic energy, and mass distributions are studied. In
Ref. [21], the TDGCM-GOA is used to investigate the tran-
sition from asymmetric to symmetric fission in neutron-rich
fermium isotopes along with the Gaussian overlap approxi-
mation. In TDGCM-GOA, the many-body quantum state is
determined by a variational approximation of the many-body
dynamics. Potential energy landscapes, fission-fragment dis-
tributions, and primary-fragment charge yields are obtained
for various fermium isotopes. It was observed that with an
increase in neutron number, the symmetric mode dominates.
Further, the role of initial state or energy of the fissioning
system is studied using the Gogny interaction by assuming
ground-state deformation.

Using the Fourier decomposition of nuclear shape, nu-
clear deformation-energy landscapes were investigated for
pre-actinides and actinides (78 � Z � 94) in [22]. Here, the
deformation properties of the nuclei, including the deforma-
tion energy, fission barrier height, Q value of α decay, α-decay
half-lives, most probable fission path, etc., were studied in a
four-dimensional deformation space of collective coordinates.
Nuclear shape evolution in terms of a Metropolis walk treat-
ment based on the Langevin framework was used in [23] for
predicting fission-fragment mass distribution. Langevin equa-
tions for the five-dimensional shape parameter were solved
to calculate the fission-fragment mass distribution. The mass
and charge yields for the fission of 234U at E∗ = 11 MeV were
studied at different damping energy values. Benchmarking of
the 70 fission-fragment charge yields was done against the
measured yields. Langevin equations in a five-dimensional
space of nuclear deformations were solved in [24] to study
the fission of nuclei at low and medium excitation energies.
They measured the fragment mass yield and kinetic energy by
varying the incident energy of the neutron.

The fission fragment mass yields for 987 nuclides have
been evaluated using the benchmarked Brownian shape-
motion method [25]. In Ref. [26], a four-dimensional
Langevin dynamical model was developed employing
{c, h, α} parametrization to generate nuclear shape. The evo-
lution of the collective coordinates was treated as the motion
of Brownian particles and then coupled Langevin equations
were solved. The parameters of the mass-energy distribution
of fission fragments, fission time, fission rate, the angular
distribution of fission fragments, and prescission particle mul-
tiplicities were also studied.
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In Ref. [27], Gherghescu et al. studied the dynamics of
the fission process and the associated nuclear shapes for
deformed fragments within the framework of the two-center
shell model. It is shown that cold energy valleys due to the
deformed shell structure of the fragments can be studied in
this deformed two-center shell model for the fissioning of a
deformed parent nucleus into deformed fragments. The level
schemes and the shell correction energy were evaluated for
the fission of 306122 and 252Cf. The deformed two-center shell
model developed for ellipsoidal fission fragments was applied
for the experimentally studied fusion reactions and for the
synthesis of the superheavy nucleus 296116 [28]. Poenaru et al.
studied the nuclear shapes for binary, ternary, and quaternary
fission by solving integrodifferential equations based on the
liquid-drop model [29].

We used the dynamical cluster decay model (DCM) de-
veloped by Gupta and collaborators in this work to study the
neutron-induced reactions, with the following two aspects,
which thus far have not been studied within DCM.

(1) The temperature considered so far is a constant value
for all decaying channels corresponding to the excitation
energy of the compound nuclear (CN) system. However,
if a constant temperature is used to evaluate the excitation
energies of the fragments of each channel, then the sum of
the excitation energies of the fissioning fragments is found to
be not equal to the excitation energy of the compound nucleus.
This requirement demands different temperatures for different
channels, so that their total excitation energy is conserved.
Such temperature tuning has been demonstrated by one of us
recently in the studies of ternary fission [30], which has been
now extended in DCM to the neutron-induced fission of 235U.

(2) The DCM stems from the ideas of quantum mechan-
ical fragmentation theory, which considers the dynamical
collective mass motion of the preformed fragments (chan-
nels) through the confining potential barrier. The success
of the DCM is the treatment of light-particle emission and
intermediate-mass fragment emission, as well as fission-
fragment emission in the same footing, unlike other models,
such as the scission-point or saddle-point models, which treat
particle emission and fission-fragment emission separately.
One of the important concepts considered in DCM is the
probability of preformation of fragments. For fissile systems
like U , experimentally, the mass distributions are reported to
be confined to a particular mass window. In this work, the role
of mass window restriction and the preformation probability
are analyzed within DCM.

The role of neck distance and excitation energy is also
studied, in addition to the temperature tuning, mass window
restriction. The model description is discussed in the follow-
ing section. In the subsequent sections, the calculation and
results are presented, followed by a summary.

II. METHOD

The dynamical cluster-decay model is a nonstatistical de-
scription developed by Gupta and collaborators [31–33] based
on the preformed cluster model (PCM) of Gupta et al. [34–37]
which in turn is based on quantum mechanical fragmentation
theory (QMFT) [37–39] developed for the ground-state de-

FIG. 1. Explanation of the coordinates used in QMFT. Shown is
the shape of the nuclear system obtained in the fissioning of 236U
with η = 0.5, β1 = 0.8, β2 = 0.9, and ε = 1.

cays. QMFT, a unified description of both fission and fusion
of nuclei, gives a dynamical evolution of fissioning systems.
This theory is based on the two-center shell model and is
worked in terms of the measurable coordinates of mass and
charge fragmentations and a few collective coordinates given
as follows: (i) the relative separation coordinate R between the
two nuclei or fragments, (ii) intrinsic structure of two nuclei
defined in terms of β1 and β2, (iii) neck parameter ε, and (iv)
mass- and charge-fragmentation coordinates η and ηZ . The
coordinates used in QMFT are represented in Fig. 1. The two
dynamical collective coordinates [39] of mass η and charge
asymmetry ηZ of two fragments are defined as

η = (A1 − A2)

(A1 + A2)
; ηZ = (Z1 − Z2)

(Z1 + Z2)
. (1)

The subscripts 1 and 2 refer respectively to the heavy and
light fragments. |η| = 1 corresponds to the complete fusion
of nuclei and η = 0 indicates symmetric fission of nuclei. The
collective Hamiltonian in terms of collective coordinates and
their velocities is given as

H = T (R, β, η, ηZ ; Ṙ, β̇, η̇, η̇Z ) + V (R, β, η, ηZ ), (2)

where the kinetic energy in terms of mass parameters Bi j is

T = 1
2 BRRṘ2 + 1

2 Bβββ̇2 + 1
2 Bηηη̇

2 + 1
2 BηZ ηZ η̇Z

2

+ BRβ Ṙβ̇ + BRηṘη̇ + BRηZ Ṙη̇Z

+ Bβηβ̇η̇ + BβηZ β̇η̇Z + BηηZ η̇η̇Z . (3)

The collective potential V is evaluated based on the Strutinsky
macro-microscopic approach with the macroscopic part con-
tributed by the liquid-drop model (LDM) and the microscopic
part by the single-particle energies of the asymmetric two-
center shell model (ATCSM). The single-particle levels are
used to obtain the shell corrections. A detailed account of
the shell effect in TCSM has been presented in Ref. [27].
The resulting Hamiltonian after minimizing the collective
potential in ε, β1, and β2 for the η motion is

H (η, R) = 1
2 BRRṘ2 + 1

2 Bηηη̇
2 + BRηṘη̇ + V (R, η). (4)

034607-3



C. KOKILA AND M. BALASUBRAMANIAM PHYSICAL REVIEW C 100, 034607 (2019)

The coupling mass BRη can be neglected. Using these, the
time-dependent Schrödinger equation for coupled η (includ-
ing mass and charge asymmetry) and R coordinates can be
constructed as

H (η, R)�(η, R, t ) = ih̄
∂

∂t
�(η, R, t ), (5)

with the Hamiltonian constructed as

H (η, R) = − h̄2

2
√

Bηη

∂

∂η

1√
Bηη

∂

∂η
− h̄2

2
√

BRR

∂

∂R

1√
BRR

∂

∂R

+ V (η) + V (R) + V (η, R). (6)

The coupling term in the potential V (η, R) is small and so
after the separation of variables, we obtain

�(η, R, t ) = ψ (η, t )φ(R, t ). (7)

For the η motion (at fixed R),[
− h̄2

2
√

Bηη

∂

∂η

1√
Bηη

∂

∂η
+ V (η)

]
ψ (η, t ) = ih̄

∂

∂t
ψ (η, t ).

(8)

For the R motion (at fixed η),[
− h̄2

2
√

BRR

∂

∂R

1√
BRR

∂

∂R
+ V (R)

]
φ(R, t ) = ih̄

∂

∂t
φ(R, t ).

(9)

Assuming the fission to be an adiabatic process, η and ηZ mo-
tions can be considered as fast compared to the relative R mo-
tion. R motion is slow after the system has tunneled through
the barrier and so R can be taken as a time-independent
parameter. Therefore, we consider the η motion at fixed R
and the corresponding Schrödinger equation. The dynamics in
fission process or the fission charge (and mass) distributions
remain the same from saddle (Rsaddle or Rsaddle + �R) to
scission point. The ηZ motion can be solved analytically for
fixed R (= Rsaddle + �R) value under the initial condition of a
narrow Gaussian distribution. The calculations show that the
charge (and mass) distributions get fixed at an R value very
close to the saddle point and remain fixed till the scission
configuration by running down the Coulomb barrier. The role
of coupling of η motion to the relative R motion is studied
using the Hill and Wheeler penetrability [40] and through a
parametrized friction [41]. Comparing both the results with
the experimental data indicate that the coupling effects of η

and R(t ) motions are weak. Hence, in this work as in other
DCM calculations, we will consider the η motion alone at
fixed R (more specifically at the saddle point). The stationary
Schrödinger equation in the η coordinate at a fixed R value
can be written more precisely as[

− h̄2

2
√

Bηη

∂

∂η

1√
Bηη

∂

∂η
+ V (η)R

]
ψ

(ν)
R (η) = E (ν)

R ψ
(ν)
R (η).

(10)

Here, ηZ is fixed for η motion by the charge minimization
procedure. The kinetic energy part is represented using the
classical hydrodynamical mass of Kröger and Scheid [42]
which is shown to compare with the microscopic cranking

FIG. 2. Smooth hydrodynamical mass parameters Bηη as a func-
tion of mass asymmetry.

masses. In Fig. 2, the smooth hydrodynamic mass is presented
as a function of mass asymmetry. Any explicit temperature
dependence is not considered in evaluating Bηη values and
hence the constant mass means a complete washing of shell
effects in it. Further, for the actual calculations, the shell
corrections are not calculated explicitly from the two-center
shell model, rather, the analytical expression of Myers and
Swiatecki is used. As the static potentials V (η)R contain
important information concerning fission, fusion, and cluster
radioactivity, we consider that the potential at the touching
configuration would carry the necessary information. In the
asymptotic region, the collective potential is the sum of ex-
perimental binding energies of two fragments, the Coulomb
and nuclear interaction between them, given by

V (η)R = −
2∑

i=1

B(Ai, Zi ) + Z1Z2e2

R
+ VN , (11)

ψν
R (η) are the vibrational states in the potential V (η), and

ν has values as ν = 0, 1, 2, . . . with ν = 0 referring to the
ground state. Here ψ

(ν)
R is the eigenwavefunction obtained

with the energy eigenvalue as E (ν)
R . For spontaneous fission,

only the lowest vibrational state (ν = 0) should be occupied.
The mass (or charge) distribution yield of finding a certain
mass (or charge) fragmentation at a position R on the fission
path and normalized to 200% is given in general as

Y ( fi ) = |ψR(η( fi))|2
√

Bηη( fi )
200%

ACN/2
, (12)

with fi = Ai or Zi, i = 1 or 2. Normalizing and scaling
|ψ (η)|2 to give the fractional mass yield, at mass A2 of
the cluster, is defined as preformation probability P0 for the
ground-state decay, and normalization to 2 is given by

P0(A2) = |ψ (η)|2√Bηη

(
2

ACN

)
. (13)

034607-4



ROLE OF CHANNEL TEMPERATURE AND MASS WINDOW … PHYSICAL REVIEW C 100, 034607 (2019)

FIG. 3. Preformation probability P0 as a function of hydrody-
namical mass parameter Bηη.

If the nucleus fissions from an excited state or if the coupling
between R and η degrees of freedom causes some internal
excitation, then higher states in η become excited and so
temperature effects have to be included. The excitations of
higher vibrational states are included through a Boltzmann-
like occupation of excited states. Thus, we define the prefor-
mation probability P0 as

|ψR|2 =
∞∑

ν=0

∣∣ψ (ν)
R

∣∣2
exp

( − E (ν)
R

/
TCN

)
. (14)

TCN is the nuclear temperature or the temperature of the
compound nucleus (in MeV) of mass ACN and is related to
the excitation energy E∗

CN through a semiempirical statistical
relation [43,44]

E∗
CN = ACN

9
T 2

CN − TCN. (15)

Here, for the compound nucleus 236U∗, the excitation energy
E∗

CN of 10 MeV corresponds to a temperature of 0.636 MeV,
and this is the temperature of the compound nucleus formed.
In Fig. 3, we present the calculated preformation probability
as a function of the mass parameter for the compound nucleus
236U∗ corresponding to an excitation energy of 10 MeV. The
structural information contained in the preformation probabil-
ity is actually due to the static potential defined in Eq. (11),
rather than the mass parameters. The mass parameter values
are considered for all the mass asymmetry in this figure. In
DCM, the complex fragments [the intermediate mass frag-
ments (IMFs) or clusters] are treated as a dynamical collective
mass motion of preformed fragments through the barrier. At
fixed R, the fission process depends on the temperature as well
as on η. The energy transfer in the incident path is

Ec.m. + Qin = E∗
CN = (E∗

1 + E∗
2 )saddle. (16)

The sum of kinetic energy Ec.m. and Q value of the entrance
channel gives the excitation energy of the compound nucleus
E∗

CN. Here E∗
1 and E∗

2 are the excitation energies of the two

fragments at the saddle. Thus far in DCM, the temperature is
assumed to be the same for all outgoing fission channels in the
binary breakup of the compound nucleus. However, the sum
of excitation energy of the two fragments evaluated with this
temperature gives a value larger than E∗

CN. Hence, we attempt
here to include specific temperature for each channel. The
excitation energy of the equilibrated compound system E∗

CN in
the thermal equilibrium at a fixed distance R (say at a saddle
distance) is shared as the individual excitation energies of the
two fragments. The fission energy will be due to the running
down of the fragments under Coulomb repulsion.

As noted earlier, the concept of using fixed TCN for all
outgoing channels does not conserve energy as in Eq. (16).
Hence, the temperature for each channel is iteratively tuned
such that the sum of their excitation energies is always approx-
imately equal to E∗

CN [30]. To calculate the temperature for
each channel, an arbitrary initial temperature is considered.
Then the temperature-dependent binding energy [45] [given in
Eq. (19)] of two fragments in a particular channel is calculated
corresponding to this arbitrary temperature and their respec-
tive excitation energies are evaluated as the difference in
binding energies at the specific temperature to that at ground
state as

E∗
i (Ai, Zi ) = B.E (T, Ai, Zi ) − B.E (T = 0, Ai, Zi, ), (17)

with i = 1, 2 for the two fragments. The arbitrary temperature
is tuned such that the sum total of individual excitation
energies of the fragments is equal to the excitation energy of
the compound nucleus, i.e., E∗

1 (A1, Z1) + E∗
2 (A2, Z2) ≈ E∗

CN.
The temperature thus obtained is referred to as the channel
temperature Tη. The variation of this channel temperature is
presented in Fig. 4(a) corresponding to the compound nucleus
excitation energy of E∗

CN = 10 MeV. The dashed line in this
figure is the temperature of the compound nucleus (TCN =
0.636 MeV). Figure 4(b) presents the excitation energies of
the fragments corresponding to the channel temperatures
presented in Fig. 4(a). The sum of these excitation energies
would give the total energy of 10 MeV (≈ E∗

CN). This channel
temperature is further used in the calculation of fragmentation
potential energy VR(η, Tη ) [Eq. (11)] along with the damping
of shell effect which decays exponentially. The potential is

VR(η, Tη, l ) =
2∑

i=1

[BELDM(Ai, Zi, Tη )]

+
2∑

i=1

(δUi ) exp

(
−T 2

η

T 2
0

)
+ VC (Tη ) + VP(Tη ).

(18)

BELDM(Tη ) is the temperature-dependent binding energy cal-
culated from the expression given by Krappe in [45]. This
binding energy expression contains temperature-dependent
Wigner and pairing terms in addition to the temperature-
dependent liquid-drop term. The temperature-dependent mass
formula is given by

E (Z, N, shape, T ) = MH Z + MnN + Eld(T ) + EW + Epair

+ f (k f rp)
Z2

A
− ca(N − Z ) − aelZ

2.39,

(19)
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FIG. 4. (a) Variation of channel temperature obtained by con-
serving the excitation energies plotted as a function of the fragment
mass number for E∗

CN = 10 MeV and �R = 0 fm. (b) Excitation
energies of fragments A1 and A2, whose sum would be equal to the
compound nucleus excitation energy E∗

CN = 10 MeV, plotted as a
function of fragment mass number.

with MH = 7.289 MeV, Mn = 8.071 MeV, Fermi wave num-
ber k f = ( 9πZ

4A )
1/3

r−1
0 , ca = 0.145 MeV, rp = 0.80 fm, and

ael = 1.433 × 10−5. The proper liquid-drop energy is given
as

Eld = − aV (1 − kV I2)A + aS (1 − kSI2)B1A2/3 + c0A0

+ c1
Z2

A1/3
B3 − c4

Z4/3

A1/3
, (20)

where I = (N − Z )/(N + Z ) is the neutron excess param-
eter and the seven parameters r0, a, aden, aV , kV , aS , and
kS are assumed to have quadratic temperature dependence
and are defined as a j (Tη ) = a j (T = 0)(1 − x jT 2

η ). Their val-
ues are taken as in [45].

The second terms in Eq. (18) correspond to the shell
corrections, calculated from the analytical expression by
Myers and Swiatecki [46] and are considered to vanish ex-
ponentially with temperature. VC (Tη ) and VP(Tη ) in Eq. (18)
are respectively the T -dependent Coulomb potential and the
nuclear proximity potential based on [47]. The temperature
dependence in Coulomb and proximity potential are included
through the radius expression given by

Ri(Tη ) = 1.16
(
1 + 7.63 × 10−4T 2

η

)
A1/3

i fm. (21)

Here i = 1 and 2 correspond respectively to the heavy and
light fragments. The temperature-dependent Coulomb energy
is

VC (Tη ) = Z1Z2e2

R(Tη )
MeV, (22)

with R(Tη ) as the relative separation distance between the
centers of the fragments, and R(T ) at the touching point is de-
noted as R(Tη ) = Rt (Tη ) = R1(Tη ) + R2(Tη ) + �R(Tη ). The
center to center distance can be varied by the term �R(Tη ),
known as the neck distance which takes the value of zero when
the surfaces of the two fragments are touching. Any higher
value of �R refers to the separated fragments by the distance
of �R. The neck parameter ε defined earlier to represent the
two-center shape is connected to �R corresponding to the
no-neck configuration, since we consider the fragments to
be spherical (βi = 0) and the calculations at fixed �R from
the touching configuration and beyond. The nuclear proximity
potential is defined as

VP(Tη ) = 4π R̄(Tη )γ b(Tη )φ[s(Tη )] MeV, (23)

with R̄(T ) defining the inverse of the rms radius of the Gaus-
sian curvature. φ[s(Tη )] and γ are universal functions inde-
pendent of the geometry of the system and the nuclear surface
energy coefficient, respectively. The proximity potential of
Blocki et al. [47] is a surface effect which plays an important
role in the physics of heavy-ion collisions. The interacting
force between two gently curved surfaces in proximity is
given in terms of a geometrical factor representing the mean
curvature of the interacting surface and a universal function
of separation. The universal function gives the interaction
potential per unit area between two flat surfaces. In Ref. [48]
the semiclassical extended Thomas Fermi (ETF) approach
based on Skyrme forces was used to evaluate the universal
function. Various terms used in Eq. (23) are

γ = 0.9517

[
1 − 1.7826

(
N − Z

A

)2
]

MeV fm−2, (24)

φ[s(Tη )]

=
{

− 1
2 (s − 2.54)2 − 0.0852(s − 2.54)3, s � 1.2511,

−3.437exp(−s/0.75), s � 1.2511.

(25)

s(Tη ) = R(Tη ) − [R1(Tη ) + R2(Tη )]

b(Tη )
(26)
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is the separation distance between the two surfaces with

b(Tη ) = 0.68
(
1 + 7.37 × 10−3T 2

η

)
fm. (27)

The pairing and shell correction terms, though essential for
reproducing the ground-state binding energies, do not have
much significance at higher excitation energies as is shown in
[49]. The contributions of pairing and shell corrections vanish
beyond the temperature value of 2 MeV. However, the Wigner
term has a significant contribution in the mass formula and
does not vanish up to the temperature of around 4 MeV.

In the present work, we consider only the η motion, since
it would give the required mass distribution. The R motion
and the cross-section calculations as done in DCM are not
attempted here.

III. RESULTS AND DISCUSSION

In the fission mass distribution studies, the most probable
mass and charge numbers of fission fragments can be chosen
either by taking charge to mass ratio of the fissioning frag-
ments to be equal to the charge to mass ratio of the fissioning
nucleus as

ZCN

ACN
= Zi

Ai
, (28)

or by minimizing the potential energy. Plenty of other methods
also exist to estimate the fragmentation yields such as the
methods developed in [50,51], where the particle number
formalism is used to extract the fragmentation associated with
the quasiparticle Slater determinants. However, for the sake of
simplicity, we estimate the fragmentation by using one of the
above two methods, namely, the charge to mass ratio method.
In Eq. (28), ZCN, ACN and Zi, Ai (i = 1, 2) stand respectively
for charge and mass number of compound nuclei and for the
two fragments. This empirical equivalence of charge to mass
ratio is found to agree with experimental mass distribution.
Once, using this conservation, the entire mass asymmetry is
obtained; then the corresponding fragmentation potential at
given excitation energy and in turn the probability can be
computed as discussed above.

In the method of minimizing potential energy, the fragmen-
tation potential as defined in Eq. (18) can be calculated for a
given mass asymmetry for all possible charge asymmetries.
The probability is computed by minimizing the potential en-
ergy corresponding to a particular charge asymmetry. Though
the former method is empirical, the computation is easy, as
one is limited only to one charge asymmetry for a given mass
asymmetry. Due to the tuning of temperature in the present
study, this method is more convenient. However, the second
method is cumbersome, since all the charge asymmetries are
to be considered for a given mass asymmetry and further, with
temperature tuning, the charge minimization of the fragmen-
tation potential becomes computationally intensive.

For the present work, both these methods are considered.
The first method is initially considered to understand the
role of mass window restriction, excitation energy, and neck
length. From the results obtained, for a chosen mass window,
excitation energy, and neck length, the calculations are done
using the second method, by properly charge minimizing the

FIG. 5. Mass window variation in the yield and/or mass distribu-
tions as a function of the mass number of the fragments for different
windows at compound nucleus excitation energy 10 MeV and �R =
0 fm. For each mass window, the calculations are done starting from
the mentioned A2 values up to A2 = 118 and its reflected values, but
shown only for the mass range of 80–156.

fragmentation potential energy with the tuning of temperature.
Experimentally, the reported fission mass distribution is lim-
ited to a restricted mass range and accordingly in this work,
we report the role of the mass window in the probability calcu-
lation of fission mass distribution. However, in fragmentation
theory, the probability for the entire mass asymmetry can be
studied.

Figure 5 presents the calculated preformation probabil-
ity as a function of the mass number of fission fragments
for various mass windows, corresponding to the excitation
energy of 10 MeV and a neck distance of 0 fm. It is to
be mentioned here that the potential energy is minimized
at a static distance and smooth hydrodynamical masses are
used instead of minimizing the action integral for proper
dynamical treatment. However, though explicit effects of
temperature and shell effects are not considered in evalu-
ating the mass parameter Bηη, the obtained results exhibit
a structural variation in the preformation probability in-
dicating that the use of constant mass inertia tensor and
fixed distance between the centers also accounts for the
observed structural variation. In this figure, various lines
correspond to the calculation of different mass windows but
only plotted for the mass range of 80–160. The solid line
corresponds to all possible binary fragmentation starting from
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FIG. 6. Excitation energy variation in the yield distribution for a
fixed mass window from A2 = 80 to 156 and �R = 0 fm.

A2 = 1 with mass asymmetry nearly equal to 0.99 to A2 =
118 with mass asymmetry equal to zero. The probability
values are reflected beyond 118, and the total probability is
normalized to 2. For this case, the magnitude of the probabil-
ity for the fragments in the near-symmetric region is found
to be very low (10−30 to 10−35). This is because, for very
light particles, the probability is found to be very large. If the
mass window is restricted, say, by not considering fragments
up to A2 = 10, and considering only from A2 = 11 to A2 =
118, a drastic change in the magnitude of the probability
is seen. Nearly 20 orders of magnitude difference is seen
in the probability values. For this case, the magnitude for
the fragments in the near-symmetric region is found to be
around 10−15. However, in both these cases, the fragments
corresponding to the maximum yield remains the same, except
for its magnitude. A further restriction of mass window is
shown for A2 = 21 to 118, A2 = 31 to 118, A2 = 41 to 118,
A2 = 51 to 118, A2 = 61 to 118 and A2 = 71 to 118. For the
A2 = 21 and A2 = 31 windows, a larger variation for lighter
fragments is seen, but the probability values become com-
parable for fragments in the near-symmetric region. More-
over, the strong minima seen corresponding to symmetric
breakup for the A2 = 21 mass window become shallower for
the A2 = 31 mass window. With the further restriction in
the mass window, corresponding to A2 = 41 to A2 = 81, the
probability values are found to converge. Thus, the restriction
of the mass window significantly alters the magnitude of the

FIG. 7. Neck length variation in the yield distribution for a fixed
mass window from A2 = 80 to 156 and E∗

CN = 10 MeV.

probability values. However, the most probable fragment pair
in all windows remains the same except for its magnitude. For
further calculations, we consider a restricted mass window
of A2 = 79 to A2 = 118, similar to the experimental mass
window.

The role of excitation energy with temperature tuning is
studied and presented in Fig. 6. The preformation probability
values denoted as Pw

0 , with w referring to mass window
restriction, corresponding to a neck distance of �R = 0 fm is
plotted against fragment mass number for different excitation
energies from E∗

CN = 5 – 40 MeV. As is known, the increase
in excitation energy increases the probability values; more or
less a linear scaling in the increase is seen except around the
symmetric region. The deeper minimum seen corresponding
to the symmetric fragments is found to become shallower
as the excitation energy increases. Irrespective of different
excitation energies considered, the most probable fragment
pair remains the same.

The role of neck distance is presented in Fig. 7. For the
restricted mass window and fixed excitation energy of E∗

CN =
10 MeV, different neck distances are considered from 0 to
3 fm. For �R = 0 and 1 fm, linear scaling with a decrease in
probability values is seen. However, structural variations are
present in the preformation probability values in the asym-
metric region around mass numbers 80–90 with an increase
in the neck distance. There is no significant change in the
preformation probability values around the near-symmetric
and symmetric regions for various neck distances considered.
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FIG. 8. (a) Comparison of our calculated mass distribution using
fixed excitation energy denoted as Tη (Z/A) and fixed temperature
denoted as TCN with the experimental values taken from Ref. [52]
plotted as a function of the mass number of the fragments. The
excitation energy E∗

CN is 6.5 MeV, �R = 0 fm for a mass window
restriction of A2 = 79 to 157. (b) Same as (a), but for fixed excitation
energy computed using the Z/A method denoted as Tη (Z/A) and a
charge minimization method denoted as Tη(Zmin ).

The neck distance of �R = 0 fm is found to have a maximum
preformation probability. Hence we use �R = 0 fm for the
study.

The experimental yield values corresponding to thermal
neutron-induced reactions are taken from ENDF/B-VIII.0
[52] for the comparison of our results of mass distribution.
Corresponding to the experimental energy, excitation energy
of E∗

CN = 6.5 MeV is considered in the calculations at a neck
distance of 0 fm. The calculated values using the charge to
mass ratio conservation method with tuned temperature as
well as the fixed temperature corresponding to the excitation
energy are presented in Fig. 8(a). The double-humped distri-
bution is seen in both calculations. The tuning of temperature

results in some structural details, whereas the distribution
is smooth when a constant temperature is considered for
all the channels. Compared to experimental distribution, the
calculated double-humped structure (solid and dashed lines)
is narrower with the largest value for fragments with mass
numbers A2 = 102 and A1 = 134 and A2 = 108 and A1 =
128. It is to be mentioned that, the experimental yield values
are for the separated fragments which underwent a transition
from a mononucleus to two fragments along the deformation
coordinate. However, the calculations are limited to the mass
asymmetry motion, and the relative motion is not considered.
Hence, the comparison is only a qualitative comparison as has
been reported earlier in the statistical scission-point models
[15,16,53].

Figure 8(b) presents similar results corresponding to the
charge to mass ratio conservation method and potential energy
minimization method for obtaining the tuned channel tem-
peratures. Both the calculations, more or less, have a similar
structure with the latter exhibiting a smooth variation. Our
calculated yield at peak values is associated with a closed shell
of the fragments. The peak corresponding to A2 = 102 and
A1 = 134 may be attributed to the nearly closed shell of the
proton number ∼52 of the fragment A1 = 134 mass. The other
peak for the mass numbers A2 = 82 and A1 = 154 may be
attributed to the closed-shell neutron number ∼50 associated
with A2.

IV. SUMMARY

The dynamical cluster decay model has been used to
study the neutron-induced fission reaction forming 236U∗ by
considering two different aspects: temperature tuning for each
mass asymmetry value and restriction of the mass window.
The idea of a channel temperature is studied for the first time
instead of a fixed temperature as used in DCM in earlier
studies. The proper conservation of excitation energy between
the fragments with respect to the excitation energy of the
parent nucleus is ensured. The role of mass window restriction
is demonstrated to have a significant effect on the magnitude
of the probability values of the mass distributions. It is shown
that as the mass window is narrowed down, the probability
values are found to converge. The variation of excitation
energy results in a linear scaling of the mass distribution with
an increase in excitation energy. The effect of neck length is
also studied. The computed probabilities using fixed excita-
tion energy and hence in turn, various channel temperatures,
as well as fixed temperature, are compared with available
experimental yield values, and a qualitative comparison is
seen. Studying the role of relative motion within this model is
planned. The applicability of this idea of temperature tuning
will be studied in low-energy light-mass and medium-mass
compound systems formed in heavy-ion induced reactions.
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