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The roles of strange axial form factor and axial mass for both neutral-current and charged-current reactions
are investigated in the quasi-elastic neutrino-nucleus scattering within a relativistic single-particle model. The
calculation is performed for various target nuclei like 12C, 40Ca, 56Fe, and 208Pb at the incident neutrino
(antineutrino) energies of 1.0 and 2.0 GeV. Then we discuss the dependence of differential cross section
on the role of axial mass and strange axial form factor with different target nuclei on both neutral-current
and charged-current reactions. Finally we compare our results with the MiniBooNE, T2K, and MINERνA
experimental data for the double-differential cross section and the scaled total cross section.
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I. INTRODUCTION

Neutrino-nucleus (ν-A) scattering experiments have been
recently performed at several laboratories [1–8]. These neu-
trino experiments provide high-precision measurements of
differential cross sections from various target nuclei. In par-
ticular, quasi-elastic ν-A scattering is one of tools used to
study several fields of physics for accelerator-based oscillation
experiments, but this requires models for neutrino kinematics,
target nucleus, and electroweak current operator. The neutrino
flux is used by averaging energy as the neutrino beam due to
detecting the neutrino, and the relativistic mean field (RMF),
the random-phase approximation (RPA), the Fermi gas, or
so on are used to model the target nucleus. The electroweak
current operator is composed of two vectors, F1,2(Q2), one
axial vector, GA(Q2), and one pseudoscalar, GP(Q2). In this
operator, there are some ambiguities for the strange axial form
factor and axial mass in the axial form factor.

From the measurement of the flux-averaged differential
cross section at the MiniBooNE experiment [2], new values
of axial mass (MA) and strange axial form factor (gs

A) from
the neutral-current (NC) reaction were extracted at four-
momentum transfer squared, Q2 = 0, which are MA = 1.39 ±
0.11 GeV and gs

A = 0.08 ± 0.26. The other value of MA was
measured to be 1.23+0.13

−0.09 GeV at the MINOS experiment [9]
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in the charged-current (CC) quasi-elastic scattering from 56Fe
and was also measured to be 1.26+0.21

−0.18 GeV at the T2K
experiment [10] from 12C. Another value of MA was measured
to be 0.99 GeV by the MINERνA Collaboration [5], which is
in good agreement with standard value, 1.032 GeV.

There have been many theoretical works [11–19] for the
axial strange form factor and the nonstandard axial mass.
Reference [11] calculated the NC quasi-elastic cross section
with the relativistic Green’s function method, and the results
describe the experimental data with the standard value of the
nucleon MA and also studied the role of gs

A, which hardly affect
the cross section. Butkevich and Perevalov [12] obtained the
gs

A = −0.11 by using the MiniBooNE data in the high-energy
region with the relativistic distorted-wave impulse approxima-
tion (RDWIA), and also extracted MA = 1.37 GeV with the
RDWIA and MA = 1.36 GeV by using a relativistic Fermi gas
model (RFGM). The authors of Ref. [13] calculated the ν-12C
cross section associated with MiniBooNE data by including
the multinucleon (np-nh) contribution. In Ref. [14], the CC
double cross section was calculated including two-nucleon
processes and π - production, and then they compared their
results with the MiniBooNE data by scaling MA = 1.03 GeV
to MA = 1.35 GeV with the underestimation of the neutrino
flux. Moreover, the authors of Ref. [15] calculated the CC
double cross section with multinucleon processes and ex-
tracted MA = 1.08 ± 0.03 GeV with a global normalization
scale value, λ = 0.92 ± 0.03. That is, these papers argued that

2469-9985/2019/100(3)/034604(8) 034604-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.100.034604&domain=pdf&date_stamp=2019-09-04
https://doi.org/10.1103/PhysRevC.100.034604


KIM, CHOI, CHEOUN, SO, AND MOON PHYSICAL REVIEW C 100, 034604 (2019)

the standard axial mass could explain the MiniBooNE data
with the contribution from multinucleon excitations like the
2p-2h contribution.

The NC cross section [16] was calculated within two
nuclear models: the superscaling (SuSA) model and the RMF
model. The value of the MA was 1.34 ± 0.06 GeV for RMF
and was 1.42 ± 0.06 GeV for SuSA, and that of gs

A was 0.04 ±
0.28 for RMF and −0.06 ± 0.31 for SuSA. Another value of
MA [17] was extracted as about MA = 0.84+0.12

−0.04 ± 0.11 GeV
in the range of Q2 = 0.1–1.0 (GeV/c)2 using the antineu-
trino CC scattering data from MiniBooNE [3]. The Granada
group [18] studied the role of gs

A by using an axial-vector-
meson-dominance model, and the most sensitive region in the
MiniBooNE data is in the range 0.2 � Q2 � 0.6 (GeV/c)2.
They also investigated the effect of the functional form of
the axial form factor providing meson dominance and proper
perturbative QCD. The 2p-2h meson-exchange currents in
Ref. [19] were evaluated on the CC ν-A scattering through
the analysis of 2p-2h axial and vector contributions in a
relativistic Fermi gas model.

In our previous paper [20], we studied the effect of gs
A

on the cross section, the asymmetry, and the ratio of NC to
CC reactions and as the result, the effect appears to be on
the asymmetry and the ratio although it is very small on the
corresponding cross sections. Recently, we investigated the
influence of both MA and gs

A on the cross section, the separated
cross sections associated with the longitudinal and transverse
response functions, the asymmetry, and the various ratios of
NC to CC reactions [21].

On the other hand, there are some works [22,23] on other
functional forms of the axial form factor of nucleon. The
axial form factor in Ref. [22] was studied in a two-component
model consisting of a three-quark structure surrounded by a
meson cloud and the axial form factor extracted from the ex-
perimental data in the spacelike region are model dependent.
In Ref. [23], the axial form factor was extracted from neutrino-
deuteron scattering data by using the Bayesian approach for
feed-forward neural networks and then the corrections from
the deuteron structure play a crucial role at the low-Q2 region
(0.05 < Q2 < 0.10 GeV2).

Furthermore, it is worth studying the relevance of the
different nuclear targets for current and forthcoming neutrino
oscillation experiments as well as the potential of the RMF
to model asymmetric nuclear targets in neutrino experiments
due to its realistic separation into proton and neutron contribu-
tions. In this work, we investigate the effects of MA and gs

A by
calculating the inclusive NC and CC reactions in the ν(ν̄)-A
scattering from various target nuclei such as 12C, 40Ca, 56Fe,
and 208Pb. In particular, since 56Fe is an asymmetric target
because of its differing numbers of protons and neutrons, we
may obtain interesting information regarding the difference
between proton and neutron by separately detecting knockout
protons and neutrons. To do these calculations, a relativistic
single-particle model is used for bound and continuum nucle-
ons. The bound nucleon wave functions are generated by solv-
ing the Dirac equation in the presence of the scalar and vector
potential based on the σ -ω model [24]. The wave functions
of the continuum nucleon are obtained by the same potential

of the bound nucleons, called the RMF. This RMF model
guarantees the current conservation and gauge invariance and
provides very good agreement [25,26] with (e, e′) Bates and
SLAC experimental data with the inclusion of the Coulomb
distortion for the incoming and outgoing electrons [27]. This
approach based on the RMF may help us to analyze not only
the lepton kinematics but also hadron kinematics, which has
been used in the electron-scattering analysis in ν-A scattering,
as recently done in the MINERvA [28] and T2K experiments
[29].

The outline of this paper is as follows: In Sec. II we
present briefly the formalism for the NC and CC reactions,
in Sec. III the results are presented, and finally the summary
and conclusion are given in Sec. IV.

II. FORMALISM

To calculate the ν(ν̄)-A scattering, we use the laboratory
coordinate system where the target nucleus is at the origin of
the coordinate system. The four-momenta of the incident and
outgoing neutrinos (antineutrinos) are labeled pμ

i = (Ei, pi )
and pμ

f = (E f , p f ). pμ
A = (EA, pA), pμ

A−1 = (EA−1, pA−1), and
pμ = (EN , p) represent the four-momenta of the target nu-
cleus, the residual nucleus, and the knocked-out nucleon,
respectively. For the NC and CC reactions, the inclusive cross
section, where the outgoing lepton is not detected, is given by
the contraction between lepton and hadron tensor:

dσ

dTN
= 4π2 MN MA−1

(2π )3MA

∫
sin θl dθl

∫
sin θN dθN p f −1

rec σ Z, W ±
M

× [vLRL + vT RT + hv′
T R′

T ], (1)

where θl denotes the scattering angle of the lepton, θN is the
polar angle of the knocked-out nucleons, and h = −1(h =
+1) corresponds to the intrinsic helicity of the incident neu-
trino (antineutrino). RL, RT , and R′

T are the longitudinal,
transverse, and transverse interference response functions,
respectively. Detailed forms for the kinematical coefficients
v and the corresponding response functions R for ν(ν̄)-A scat-
tering are given in Refs. [20,30]. The squared four-momentum
transfer is given by Q2 = q2 − ω2 = −q2

μ. For the NC reac-
tion, the kinematic factor σ Z

M is defined by

σ Z
M =

(
GF cos (θl/2)E f M2

Z√
2π

(
Q2 + M2

Z

)
)2

, (2)

and for the CC reaction

σW ±
M =

√
1 − M2

l

E f

(
GF cos (θC )E f M2

W

2π
(
Q2 + M2

W

)
)2

, (3)

where MZ and MW are the rest mass of the Z boson and W
boson, respectively. θC represents the Cabibbo angle given by
cos2 θC � 0.9749. GF denotes the Fermi constant. The recoil
factor frec is written as

frec = EA−1

MA

∣∣∣∣1 + Ep

EA−1

[
1 − q · p

p2

]∣∣∣∣. (4)
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The weak current Jμ represents the Fourier transform of
the nucleon current density and is written as

Jμ =
∫

ψ̄pĴμψbeiq·rd3r, (5)

where Ĵμ is a free weak nucleon current operator, and ψp

and ψb are wave functions of the knocked-out nucleon and
the bound-state nucleon, respectively. For a free nucleon, the
current operator comprises the weak vector and the axial-
vector form factors:

Ĵμ = FV
1 (Q2)γ μ + FV

2 (Q2)
i

2MN
σμνqν

+ GA(Q2)γ μγ 5 + 1

2MN
GP(Q2)qμγ 5, (6)

where MN denotes the mass of the nucleon. By the conserva-
tion of the vector current (CVC) hypothesis, the vector form
factors for the proton (neutron), FV, p(n)

i (Q2), are expressed as

FV, p(n)
i (Q2) = (

1
2 − 2 sin2 θW

)
F p(n)

i (Q2)

− 1
2 F n(p)

i (Q2) − 1
2 F s

i (Q2) for the NC,

FV
i (Q2) = F p

i (Q2) − F n
i (Q2) for the CC, (7)

where θW is the Weinberg angle given by sin2 θW = 0.2224.
The strange vector form factor F s

i (Q2) in Eq. (7) are
usually given as a dipole form, independently of the nucleon
isospin:

F s
1 (Q2) = F s

1 (0)Q2

(1 + τ )
(
1 + Q2

/
M2

V

)2 ,

F s
2 (Q2) = F s

2 (0)

(1 + τ )
(
1 + Q2

/
M2

V

)2 , (8)

where τ = Q2/(4M2
N ) and MV = 0.843 GeV is the cutoff

mass parameter usually adopted for nucleon electromagnetic
form factors. F s

1 (0) is defined as the squared strange radius
of the nucleus, F s

1 (0) = dGs
E (Q2)/dQ2|Q2=0 = 0.53 GeV−2,

and F s
2 (0) = μs = −0.4 is an anomalous strange magnetic

moment.
The axial form factors are given by

GA(Q2) = 1
2

( ∓ gA + gs
A

)/(
1 + Q2

/
M2

A

)2
, (9)

where gA = 1.262, MA = 1.032 GeV, and gs
A = −0.19, which

represents the strange quark contents on the nucleon. The
sign − (+) coming from the isospin dependence denotes the
knocked-out proton (neutron), respectively.

The induced pseudoscalar form factor is parametrized by
the Goldberger-Treimann relation

GP(Q2) = 2MN

Q2 + m2
π

GA(Q2), (10)

where mπ is the pion mass. But the contribution of the pseu-
doscalar form factor vanishes for the NC reaction because of
the negligible final lepton mass participating in this reaction.
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FIG. 1. Differential cross sections of the NC ν-A scattering
in terms of the kinetic energy of the knocked-out nucleon for
incident neutrino (left panels) and antineutrino (right panels) en-
ergy of 1.0 GeV from 40Ca. Solid (red) curves are the results
for MA = 1.032 GeV and gs

A = −0.19, dashed (black) curves are
for MA = 1.032 GeV and gs

A = 0.08, and dotted (blue) curves
are for MA = 1.39 GeV and gs

A = −0.19. The second and third
panels from the top are the results for only protons and neutrons in
the target nucleus participating the reaction, respectively.

III. RESULTS

We study the effects of the axial mass and the strange form
factor in the NC and CC reactions for the ν(ν̄ )-A scattering
from various target nuclei like 12C, 40Ca, 56Fe, and 208Pb
within the framework of a relativistic single-particle model.

In Fig. 1, we calculate the differential cross sections for
the NC reaction in terms of the kinetic energies of the
knocked-out nucleons from 40Ca at the incident neutrino
energy 1.0 GeV. The left panels are the results for the incident
neutrino and the right panels are for the incident antineutrino.
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FIG. 2. The same as in Fig. 1 but for an incident neutrino
(antineutrino) energy of 2.0 GeV.

034604-3



KIM, CHOI, CHEOUN, SO, AND MOON PHYSICAL REVIEW C 100, 034604 (2019)

0

10

20

30

40

50

dσ
/d

T N
 [f

m
2  M

eV
-1

]

(a)

40Ca(νμ, μ-)

E=1.0 GeV 

X 10-15

0

10

20

30

X 10-15

(b)

E=1.0 GeV 

40Ca(ν-μ, μ+)

0

10

20

30

40

50

0 250 500 750 1000

dσ
/d

T N
 [f

m
2  M

eV
-1

]

TN [MeV]

X 10-15

E=2.0 GeV 

(c)

40Ca(νμ, μ-)

0

10

20

30

40

0 250 500 750 1000
TN [MeV]

X 10-15

E=2.0 GeV 

(d)

40Ca(ν-μ, μ+)

FIG. 3. Differential cross sections of the CC ν-A scattering in
terms of the kinetic energy of the knocked-out nucleon for the
incident neutrino energies of 1.0 GeV and 2.0 GeV from 40Ca. Solid
(red) curves are the results for MA = 1.032 GeV and dashed (black)
curves are for MA = 1.39 GeV. The left panels are the results for the
neutrino and the right panels are for the antineutrino.

Solid (red) curves are the results for MA = 1.032 GeV and
gs

A = −0.19, dashed (black) curves are for MA = 1.032 GeV
and gs

A = 0.08, and dotted (blue) curves are for MA =
1.39 GeV and gs

A = −0.19. The first panel [Figs. 1(a) and
1(b)] shows the results of the summation of all nucleons
participating in the reaction from a target nucleus. The second
and third panels from the top are the results for proton knock-
out [Figs. 1(c) and 1(d)] and neutron knockout [Figs. 1(e)
and 1(f)] in the target nucleus participating the reaction,
respectively.
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FIG. 4. Differential cross sections of the NC ν-A scattering in
terms of the kinetic energy of the knocked-out nucleon for an
incident neutrino energy of 1.0 GeV from 12C, 40Ca, 56Fe, and 208Pb.
Solid (red) curves are the results for MA = 1.032 GeV and gs

A =
−0.19, dashed (black) curves are for MA = 1.032 GeV and
gs

A = 0.08, and dotted (blue) curves are for MA = 1.39 GeV and
gs

A = −0.19.
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FIG. 5. The same as in Fig. 4 but for an incident antineutrino.

Around the peak, the role of gs
A reduces the cross section

for proton knockout by about 42% but enhances it for neutron
knockout by about 30% for the incident neutrino, and for the
antineutrino decreases it by about 40% for proton knockout
but increases it by about 32% for neutron knockout because
of the sign in Eq. (9). The gs

A contribution reduces the sum of
the cross section by about 1.5% for the incident neutrino and
by about 2.5% for the antineutrino because it cancels out for
proton knockout and neutron knockout. The increase of MA

enhances the cross sections for proton knockout by about 17%
and for neutron knockout by about 11%, and consequently
the contribution of MA enhances the sum of the differential
cross section by about 15%. Note that the contribution of MA

is almost the same for both incident-neutrino and -antineutrino
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FIG. 6. Differential cross sections of the CC ν-A scattering in
terms of the kinetic energy of the knocked-out nucleon for an
incident neutrino energy of 1.0 GeV from 12C, 40Ca, 56Fe, and 208Pb.
Solid (red) curves are the results for MA = 1.032 GeV and dashed
(black) curves are for MA = 1.39 GeV.
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FIG. 7. The same as in Fig. 6 but for an incident antineutrino.

cases. From these results, the sensitivity of proton knockout is
slightly higher for the role of both gs

A and MA.
Figure 2 shows the cross sections of the incident neutrino

energy 2.0 GeV, and the kinematics are the same as in Fig. 1.
The shapes are similar to those of Fig. 1 but the magnitude
of the cross sections is slightly smaller than that for the case
of an energy of 1.0 GeV. As shown in Fig. 1, the role of gs

A
with the incident neutrino reduces the cross section for proton
knockout by about 44% but enhances it for neutron knockout
by about 30%, and with the antineutrino decreases it by about
48% for proton knockout but increases it by about 31% for
neutron knockout. The effect of gs

A reduces the sum of the
cross section by about 1.5% for the incident neutrino and by
about 2.0% for the antineutrino. The increase in MA enhances
the cross sections for proton knockout by about 17% and for
neutron knockout by about 11%, and as a result the effect
of MA enhances the differential cross section by about 14%.
From the results of Figs. 1 and 2, the role of gs

A and MA is less
sensitive to incident neutrino (antineutrino) energies.

In Fig. 3, we calculate the differential cross sections for the
CC reaction in terms of the kinetic energies of the knocked-out
nucleons from 40Ca at the incident neutrino (antineutrino)
energies of 1.0 and 2.0 GeV. The left panels show the results
for an incident neutrino and the right panels are for an incident
antineutrino. Solid (red) curves are the results for MA =
1.032 GeV and dashed (black) curves are for MA = 1.39 GeV.
Around the peak, the effect of MA enhances the cross sections
for the neutrino by about 12% and for the antineutrino by
about 11% for the two incident energies of 1.0 and 2.0 GeV.

TABLE I. The changing ratios of gs
A by switching −0.19 to 0.08

around the peak position. The ratios are decreasing percentages for
12C and 40Ca, and are increasing percentages for 56Fe and 208Pb.

gs
A

12C 40Ca 56Fe 208Pb

(ν, ν ′) 1.0% 1.5% 1.5% 5.0%
(ν̄, ν̄ ′) 2.0% 3.0% 1.0% 5.0%

TABLE II. The increasing percentages of MA by switching
1.032 GeV to 1.39 GeV around the peak position.

MA
12C 40Ca 56Fe 208Pb

(ν, ν ′) 14% 14% 17% 17%
(ν̄, ν̄ ′) 14% 15% 14% 14%
(νμ, μ−) 12% 12% 15% 15%
(ν̄μ, μ+) 5% 11% 11% 11%

Like the result of the NC reaction, the contribution of MA does
not depend on the incident neutrino (antineutrino) energies.

As shown in Fig. 4, we calculate the differential cross
sections for the NC reaction in terms of the kinetic energies
of the knocked-out nucleons from 12C, 40Ca, 56Fe, and 208Pb
at the incident neutrino energy 1.0 GeV. Solid (red) curves
are the results for MA = 1.032 GeV and gs

A = −0.19, dashed
(black) curves are for MA = 1.032 GeV and gs

A = 0.08, and
dotted (blue) curves are for MA = 1.39 GeV and gs

A = −0.19.
The effect of gs

A reduces the cross section by about 1.0% for
12C and by about 1.5% for 40Ca but enhances it by about 1.5%
for 56Fe and by about 5.0% for 208Pb. While the effect of
gs

A reduces the cross sections for 12C and 40Ca, it enhances
the cross sections for 56Fe and 208Pb because the number of
protons and neutrons is the same for 12C and 40Ca but for
56Fe and 208Pb the number of neutrons is more than number of
protons. Note that the effect of MA enhances the cross sections
by about 14% from 12C and 40Ca and by about 17% from 56Fe
and 208Pb.

Figure 5 shows the cross sections of the incident antineu-
trino, and the kinematics are the same as in Fig. 4. The effect
of gs

A reduces the cross section by about 2.0% for 12C and by
about 3.0% for 40Ca but enhances it by about 1.0% for 56Fe
and by about 5.0% for 208Pb. The effect of MA enhances the
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FIG. 8. Double-differential cross sections of CC ν-A scattering
in terms of the kinetic energy and the scattering angle of the out-
going muon from 12C. Solid (red) curves are the results for MA =
1.032 GeV, dashed (black) curves are for MA = 1.39 GeV, and the
data were measured from the MiniBooNE [1].
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FIG. 9. Double-differential flux-integrated cross section in terms
of the incident muon momentum at fixed angle of muon. The
experimental data were measured from T2K [10]. Solid (red) curves
are the results for MA = 1.032 GeV, and dashed (black) curves are
for MA = 1.39 GeV.

cross sections by about 15% from 40Ca and by about 14%
from 12C, 56Fe, and 208Pb. From the results of Figs. 4 and
5, the role of MA is not sensitive to the target nuclei but the
contribution of gs

A increases with heavier nuclei.
In Fig. 6, we calculate the differential cross sections for the

CC reaction in terms of the kinetic energies of the knocked-
out nucleons from 12C, 40Ca, 56Fe, and 208Pb at the incident
neutrino energy of 1.0 GeV. Solid (red) curves are the results
for MA = 1.032 GeV and dashed (black) curves are for MA =
1.39 GeV. The effect of MA enhances the cross sections by
about 12% from 12C and 40Ca and by about 15% from 56Fe
and 208Pb.

Figure 7 shows the cross sections of the incident antineu-
trino, and the kinematics are the same as in Fig. 6. The effect
of MA enhances the cross sections by about 5% from 12C and
by about 11% from 40Ca, 56Fe, and 208Pb.

For simplicity, we summarize the increasing and decreas-
ing ratios of gs

A and MA for different target nuclei at the peak
in Tables I and II.

Finally, we compare our results with the MiniBooNE, T2k,
and MINERνA experimental data. In Fig. 8, the double-
differential cross sections are calculated in terms of the scat-
tering angle cos θμ [Figs. 8(a) and 8(b)] and the kinetic energy

Tμ [Figs. 8(c) and 8(d)] of the outgoing muon from 12C.
The solid lines (red) are the results for MA = 1.032 GeV and
the dashed lines are for MA = 1.39 GeV. The solid curves
underestimate the experimental data at low Tμ and cos θμ but,
for higher values of these quantities, they describe the data
relatively well. The dashed lines overestimate the data for the
higher values but also underestimate the data, especially in
Fig. 8(a). According to Figs. 8(a) and 8(b), the peak position
shifts toward the right side with higher kinetic energies; that
is, the outgoing muon with high kinetic energy passes by the
target at a small angle. The peak moves to the right side with
smaller scattering angle for the same reason. At the peak, the
effect of MA decreases by about 42% to 35% with higher Tμ

[Figs. 8(a) and 8(b)] and decreases by 32% to 26% with larger
cos θμ [Figs. 8(c) and 8(d)].

Recently, two experiments were performed at T2K and
MINERνA whose kinematics are different from the Mini-
BooNE. In Figs. 9 and 10, we show the double-differential
flux integrated cross sections with T2K and MINERνA
kinematics. The solid (red) lines are the results for MA =
1.032 MeV and the dashed (black) curves are for MA = 1.39
MeV. Figure 9 shows the cross sections for the muon neutrino
versus muon momentum at fixed muon polar angle, and
the data were measured from T2K [10]. The kinematics are
similar to the MiniBooNE kinematics and then the solid curve
describes the T2K experimental data relatively well but the
dashed line overestimates the data. The differences between
the solid and dashed curves are about 20% for Fig. 9(a) and
15% for Fig. 9(b) around the peak.

In Fig. 10 the double-differential cross sections are shown
for the muon antineutrino in terms of the pT , where p‖ and
pT represent the longitudinal and transverse component of
the muon with respect to the incoming antineutrino beam,
respectively. This kinematics was exploited to include nuclear
effects in the neutrino scattering, for which more detailed
explanations are available in Ref. [28]. The experimental data
were measured from MINERνA [8]. Figures 10(a)–10(c) are
the results for 1.5 < p‖ < 2.0, 2.0 < p‖ < 2.5, and 2.5 <

p‖ < 3.0 (GeV/c), respectively. The differences between the
solid and dashed curves are about 20% for Fig. 9(a) and
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FIG. 10. Double-differential flux-integrated cross section versus muon transverse momentum at fixed muon longitudinal momentum. The
experimental data were measured from MINERνA [8]. Solid (red) curves are the results for MA = 1.032 GeV, and dashed (black) curves are
for MA = 1.39 GeV.
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FIG. 11. Total scaled cross sections of the CC ν-A scattering in
terms of the incident neutrino energy from 12C, 40Ca, 56Fe, and 208Pb.
Solid (red) curves are the results for MA = 1.032 GeV, dashed (black)
curves are for MA = 139 GeV, and the data were measured from
MiniBooNE [1].

45% for Figs. 10(b) and 10(c) around the peak. Note that the
contributions for which the angle of the final muon is greater
than 20◦ are removed according to the MINERνA kinematic
restriction. From these results, we learn that the role of MA is
sensitive to the kinematics. Note that our results are similar to
those of a recent work [31].

On the other hand, our results do not describe the
MINERνA data at all because the momentum of the muon
is too large, especially, p‖ > 2.5 GeV/c. The reason is that
the wave functions of the final nucleons are generated by
solving the Dirac equation with partial-wave expansion, so a
very big angular quantum number for such a large momentum
is needed. Unfortunately, within our model, we do not solve
the difficulty for such a high momentum of the final nucleon,
although we obtained the recipe of this problem for the lepton
part with an approximation [27]. Therefore, the result of
Fig. 10(c) is not reliable.

In Fig. 11, we calculate the total scaled cross sections in
terms of the incident neutrino energies for the CC reaction.
The total scaled cross section is the total cross section divided
by the number of nucleons which participate in the reaction.
For the case of MA = 1.032 GeV, our results underestimate the
experimental data by about 25% but for MA = 1.39 GeV our
results describe the data well. The effect of the MA is almost
25% in the total scaled cross section for all four nuclei. Note
that the total cross sections are scaled very well.

On the other hand, while we calculate the quasielastic cross
section without multinucleon knocked-out processes, there
were several works to include the processes like 2p-2h states
[32–34]. They found that the 2p-2h states play an important
role for the double-differential and total cross sections by
comparing with the MiniBooNE data.

IV. SUMMARY

In this paper, we investigate the effects of the strange axial
form factor (gs

A) and axial mass (MA) for the NC and CC
reactions from 12C, 40Ca, 56Fe, and 208Pb nuclei within the
framework of a relativistic single-particle model. To inves-
tigate the effects, we calculate the differential cross section
for the NC and CC reactions and the cross section separately
from the proton and the neutron knockouts in the target
nucleus. For both proton and neutron knockouts, the effect
of MA enhances the magnitude of the cross sections. It also
increases the magnitude of the cross section for the NC and
CC reactions about 10%–15% for the all cases except the CC
ν̄-12C scattering.

For the case of proton knockout, the effect of gs
A reduces

the cross sections but increases them for the neutron knockout.
The effect of gs

A reduces the cross sections for 12C and 40Ca
but it enhances the cross sections for 56Fe and 208Pb because
the number of protons and neutrons is the same at 12C and
40Ca but at 56Fe and 208Pb the number of neutrons is more
than the number of protons. The role of gs

A for 12C, 40Ca, and
56Fe is small; about 1%–2%, but is about 5% at heavy nuclei
such as 208Pb. From this result, one may deduce that the con-
tribution of gs

A increases with heavier nuclei, especially with
neutron-rich nuclei. Furthermore, according to the compari-
son of our results with the MiniBooNE, T2K, and MINERνA
data (Figs. 8–11), we cannot estimate the value of MA because
the other effects beyond the quasielastic regime such as pion
production or 2p-2h contribution are not included.

In conclusion, the effect of MA is slightly dependent on
the target nuclei and is sensitive to the kinematics, but the
role of gs

A increases with heavier nuclei. Furthermore, the
dependence on the asymmetry in these targets is not large
enough to discuss the effects of the asymmetry in the present
calculation, as shown in Tables I and II. The roles of MA

and gs
A are not sensitive to incident neutrino (antineutrino)

energies. In the future, it will be necessary to reproduce the
recent experimental data like T2K and MINERνA data with
improving our current nuclear model; for example, the effects
of nonlinear sigma or chirality will be included.
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