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Microscopic analysis of quasielastic scattering and breakup reactions
of the neutron-rich nuclei 12,14Be
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A microscopic analysis of the optical potentials (OPs) and cross sections of quasielastic scattering of 12,14Be
on 12C at 56 MeV/nucleon and on protons at an energy near 700 MeV is carried out. For lower energy scattering
the real part of the OP is calculated by using the double-folding procedure accounting for the antisymmetrization
effects, while the imaginary part is obtained on the basis of the high-energy approximation (HEA). The HEA
is also applied to the calculations of both real and imaginary OPs when solving the relativistic equation for the
high-energy proton-nucleus elastic scattering. The neutron and proton density distributions computed in different
microscopic models for 12Be and 14Be are used. In the present hybrid model of the optical potential the only free
parameters are the depths of the real and imaginary parts of the OP obtained by fitting the experimental data. The
role of the inelastic scattering channel to the first excited 2+ and 3− states in 12C when calculating the quasielastic
cross sections, as well as the modified density of the 12C target accounting for the surface effects, are studied.
In addition, the cluster model, in which 14Be consists of a 2n halo and the 12Be core, is applied to calculate the
cross sections of diffraction breakup and stripping reactions in 14Be + 12C scattering and longitudinal momentum
distributions of 12Be fragments at an energy of 56 MeV/nucleon. A good agreement of the theoretical results
with the available experimental data of both quasielstic scattering and breakup processes is obtained.
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I. INTRODUCTION

Since the pioneering works of Tanihata et al. [1,2] the study
of halo nuclei has attracted much attention. Halo nuclei are
commonly considered to have a compact nuclear core and
a few valence nucleons surrounding the core. Characteristic
features displayed by these nuclei include weak binding en-
ergy of the valence nucleons, narrow momentum distributions
of the reaction products due to fragmentation, and an anoma-
lously large interaction cross section.

The microscopic studies of elastic scattering of 6,8He, 11Li,
10,11Be, and 8B on protons and nuclei and breakup processes
performed in our previous works [3–8] have confirmed the
specific internal spatial structure of these neutron- and proton-
halo nuclei and have shed light on the relative contributions
of different reaction mechanisms. Studying this series of light
nuclei, the interest in considering very neutron-rich beryllium
isotopes is provoked, for instance, by the magicity loss for
the N = 8 nucleus 12Be [9–13] and the halo structure of
14Be nucleus, which is located at the neutron drip line and
has two-neutron separation energy S2n = 1.26(13) MeV [14].
14Be is a Borromean nucleus like 11Li and it has a two-
neutron halo structure with a 12Be core plus two loosely bound
neutrons [15–19].

Here we note that the task of determining the structure
of the two-neutron halo nuclei is of important interest in
connection with the general question about the behavior of
dineutron (2n) formations in exotic nuclei. First, we note the
work of Migdal [20], in which it was shown that the attractive
force between two neutrons (itself too weak to form a bound

2n system) in the presence of a nucleus (itself unable to bind a
single neutron) may lead to a bound state of the three particles,
i.e., it is a dineutron coupled to a nuclear core (see also studies,
e.g., in Refs. [21–26]). The possibility that cluster states more
complex than dineutrons may exist has been pointed out also
in Ref. [20].

The interest in 2n formations has increased also in relation
to the experiments that showed a ground state dineutron decay
of the 16Be nucleus [27]. It has been observed therein a small
angle of emission between two neutrons, and a value of the
two-neutron separation energy of S2n = 1.35(10) MeV has
been measured. Here we note that in the case of the 14Be
nucleus this energy (S2n = 1.26 MeV) is close to that in 16Be.

As noted in Ref. [16], the 14Be system is even more
interesting than 11Li since the wave function of the last two
neutrons in 14Be is expected to contain a larger (2s1/2)2 shell-
model component. In addition, the two-neutron separation
energy in 14Be is much larger than that of 11Li (S2n = 0.376
MeV). So, it is of interest to study this effect of extra binding
on the properties of the neutron halo (see also Ref. [28]). At
the same time, however, one must bear in mind the relatively
small difference between the halo rms radii of both nuclei
(6 fm in 11Li [29] and 5.5 fm in 14Be [1,2,15]). All the men-
tioned facts give a reason for more detailed studies of these
neutron-rich systems with a 2n halo and their interactions
with nuclei.

Many experimental and theoretical studies of the matter
density distributions in nuclei far from stability show an
extended low-density tail at large radial distances in their
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behavior. As an example, calculations in the framework of the
relativistic Hartree-Bogoliubov model have predicted a very
large neutron skin in 14Be and a large prolate deformation
of this nucleus [30]. Besides, the extraordinarily large radii
related to the matter densities (see, for instance, Refs. [31,32])
are in favor of the halo structure of the neutron(proton)-rich
nuclei.

From the analyses of proton elastic scattering in in-
verse kinematics at an intermediate energy of about
700 MeV/nucleon, Ilieva et al. [21] showed an extended
matter distribution for 12,14Be nuclei. Clear evidence of a halo
structure has been obtained, demonstrating a better qualitative
description of the p-14Be cross section when the 14Be nucleus
is supposed to consist of a 12Be core and two halo neutrons
rather than a 10Be core plus four valence neutrons. Sev-
eral phenomenological parametrizations including the sym-
metrized Fermi function, as well as a sum of Gaussian ones,
were used for the nuclear-matter density distribution in the
analysis performed in Ref. [21].

The ground-state proton, neutron, and matter densities,
the corresponding root-mean-square (rms) radii, and elastic
charge form factors of 12Be and 14Be nuclei have been studied
through shell-model calculations using different model spaces
for the core and the extra two halo neutrons [33] and in a
three-body model of (core + n + n), where the core and halo
density distributions were described by the single-particle
wave functions of the Woods-Saxon (WS) potential [28].
A renormalized zero-range version of the same three-body
model has been applied to study the rms radii of weakly
bound light nuclei (6He, 11Li, 14Be, and 20C), particularly
the mean square distance between the two neutrons forming
a halo in them [34]. The good qualitative agreement between
the recently measured data and the theoretical results indicates
that the model is reasonable for 14Be, validating the large
probability of the halo neutrons being found outside the
interaction range. Under the assumption of a similar decompo-
sition of the matter density with core and halo contributions,
in Ref. [35] simple analytic expressions for nuclear densities
with a correct asymptotic behavior were proposed for exotic
nuclei, including the 7–14Be isotopes.

A “long tail” of neutron density distribution compared
with the proton density distribution in the 14Be nucleus based
on the relativistic mean-field (RMF) theory is displayed in
Ref. [36]. It was shown in Ref. [37] that the density-dependent
RMF formalism can satisfactorily reproduce the experimental
data of the abnormally large rms radius of 14Be, in which the
halo neutrons occupy the already mentioned above 2s1/2 level
instead of the 1d5/2 level. In contrast, the dominance of the d
configuration in the N = 8 shell in 12Be was strongly revealed
from the breakup reaction on a proton target at intermediate
energy [38]. Also, different measurements of reaction cross
sections of 14Be on protons and a carbon target at about
41 and 76 MeV/nucleon [39], on Be, C, and Al targets at
several energies in the range of 45–120 MeV/nucleon [40], as
well as at relativistic energies [41], allowed deduction of the
matter density distribution of this two-neutron halo nucleus,
supporting the s-wave dominance in the ground-state density
of 14Be. The fact that the ground-state wave function of the
14Be includes a strong 2s1/2 admixture was confirmed in

the experiment of Labiche et al. [42], in which they studied
the dissociation of 14Be at 35 MeV/nucleon on carbon and
lead targets in a kinematically complete measurement. Here
we would like to mention the result for the 14Be nucleus
from more sophisticated microscopic calculations within the
three-cluster generator coordinate method (GCM) [43], in-
volving the results for the proton and neutron densities
of 12,14Be.

The widths of the measured momentum distributions fol-
lowing the fragmentation of 12,14Be on 12C at incident ener-
gies of 56 and 65 MeV/nucleon offer a clear qualitative sig-
nature of the spatial distribution of the halo particles [16,44].
The deduced value (92.2 ± 2.7 MeV/c) of the width param-
eter of the Lorentzian momentum distribution that describes
the measured 12Be longitudinal momentum distribution at
56 MeV/nucleon via the telescope method and the full width
at half maximum (FWHF) equal to 95.6 ± 4.2 MeV/c of the
single Gaussian that fits the distribution at 65 MeV/nucleon
obtained via the spectrograph method were shown to be in
agreement with the “neutron halo” structure of 14Be. The di-
rect fragmentation model was applied in Ref. [45] to calculate
both longitudinal and transverse momentum distributions of
the 12Be fragments emitted in 14Be induced breakup reactions
on 208Pb and 12C targets at a beam energy of 56 MeV/nucleon,
and the results for the widths are very similar to the data of
Zahar et al. [16].

In the earlier works (e.g., Refs. [46,47]) the quasielastic
scattering cross sections of 12,14Be on 12C at 56 MeV/nucleon
laboratory incident energy were calculated using phenomeno-
logical optical potentials (OPs) of volume Woods-Saxon
shapes plus surface terms (normalized derivative of WS vol-
ume terms) for both real (ReOP) and imaginary (ImOP) parts.
In Ref. [46] for the case of 12Be + 12C scattering such an
additional real surface potential was not included. A substan-
tial difference is seen from a comparison of the values of
the ReOP and ImOP depths in both analyses [46,47]. For
instance, to obtain a good fit of the experimental 12,14Be
angular distributions, the volume real potentials in [46] turned
out to be twice deeper than the corresponding ones shown in
Ref. [47]. At the same time the difference between the values
of the volume imaginary potentials is even larger. This is the
reason for the different total reaction cross sections σR (1238
and 1900 mb for 12Be and 14Be projectiles, respectively, in
Ref. [46] and 911 and 1123 mb in Ref. [47]). The values
of σR obtained in Ref. [47] fit better the experimentally
measured values by Tanihata et al. [15] (927 and 1139 mb,
respectively).

Recently, proximity potentials as an alternative way to
produce the ReOP have been applied in the analysis of
scattering cross sections of Be isotopes [48]. However, the
Woods-Saxon potential is used for the imaginary part of the
OP. The first-order Dirac OP with direct and exchange parts
and the relativistic impulse approximation from Ref. [36]
were applied in Ref. [49] to calculate the cross sections of the
elastic scattering of protons at Elab = 100 and 200 MeV on
14Be and on stable 12C and 16O nuclei. It has been concluded
that the halo neutrons in 14Be have effects only in the small
angular region 4◦ < θ < 11◦. A step ahead in constructing
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nucleus-nucleus potentials was made very recently in
Ref. [50] by using the double-folding method based on lo-
cal chiral effective field theory interactions for the 16O-16O
system.

In our present work we aim to perform a fully microscopic
analysis of quasielastic scattering and breakup reactions of the
neutron-rich nuclei 12,14Be. The hybrid model of OP [51,52],
which was successfully applied before in our papers [3–8], is
used to analyze the existing data of processes with 12,14Be iso-
topes at incident energies E < 100 MeV/nucleon (12,14Be +
12C quasielastic scattering) [16,46,47] up to relativistic energy
of 700 MeV (p + 12,14Be elastic scattering) [21]. In the fold-
ing procedure the ReOP consists of both direct and exchange
potentials with the isoscalar and isovector parts included. We
use the effective nucleon-nucleon potential from Ref. [53] (see
also [54]) and microscopic density distributions for 12Be ob-
tained within the variational Monte Carlo (VMC) model [55]
and the generator coordinate method [43]. For 14Be only the
available GCM density [43] is used. The ImOP is obtained
within the high-energy approximation (HEA) model [56,57],
where the known parametrization of the elementary nucleon-
nucleon (NN) cross section and scattering amplitude at θ = 0◦

are used. In contrast to the analyses of quasielastic 12,14Be
on 12C performed in Refs. [46,47] with a large number of
optical model fitting parameters, the only free parameters in
our model are the depths of the real and imaginary parts
of the microscopic OP obtained by fitting the experimental
differential cross section data.

We also search for other effects that should be incorporated
in the microscopic study, namely, to account for the inelastic
scattering to the low-lying 2+ and 3− collective states in
12C in the quasielastic process and the role of the density
distribution of the 12C target with inclusion of surface terms.
Such an investigation is intended to figure out the role of the
neutron halo for both Be projectiles. Second, in addition to the
analysis of quasielastic scattering cross sections, we estimate
important characteristics of the reactions with 14Be, such as
the breakup cross sections for the diffraction and stripping
processes and the momentum distributions of 12Be fragments
from the breakup reaction 14Be + 12C for which experimental
data are available [16]. Such a complex study based on the mi-
croscopic method to obtain the OPs with a minimal number of
free parameters and by testing density distributions of 12,14Be
which reflect their two-neutron halo structure would lead to a
better understanding the structure of these neutron-rich nuclei
and to a reduction of the inconsistency when describing the
available data.

The structure of the paper is as follows. The theoretical
scheme to calculate microscopically within the hybrid model
the ReOP and the ImOP, as well as the results for the 12,14Be +
12C quasielastic- and p + 12,14Be elastic-scattering differential
cross sections, are presented in Sec. II. Section III contains
the basic formulas to estimate the 14Be breakup on 12C in the
stripping and diffraction processes within the cluster model
with the two-neutron halo of 14Be and the corresponding
results for the longitudinal momentum distributions of 12Be
fragments. The summary and conclusions of the work are
given in Sec. IV.

II. QUASIELASTIC SCATTERING OF 12,14Be ON 12C
AND PROTONS

A. Hybrid model for the optical potential

The microscopic OP used in our calculations of quasielas-
tic scattering differential cross sections contains a volume real
part (V F ) including both the direct and exchange terms and a
HEA microscopically calculated imaginary part (W H ). It has
the form

U (r) = NRV F (r) + iNIW
H (r). (1)

The parameters NR and NI entering Eq. (1) renormalize the
strength of OP and are fitted by comparison with the experi-
mental cross sections.

The real part V F realized numerically in [54] consists
of direct (V D) and exchange (V EX ) single(double)-folding
integrals that include effective NN potentials and density
distribution functions of colliding nuclei. The V D and V EX

parts of the ReOP have isoscalar (IS) and isovector (IV)
contributions. The IS ones of both terms are

V D
IS (r) =

∫
d3rpd3rtρp(rp)ρt (rt )v

D
NN (s), (2)

V EX
IS (r) =

∫
d3rpd3rtρp(rp, rp + s)ρt (rt , rt − s)

× vEX
NN (s) exp

[
iK(r) · s

M

]
, (3)

where s = r + rt − rp is the vector between two nucleons,
one of which belongs to the projectile and another one to
the target nucleus. In Eq. (2) ρp(rp) and ρt (rt ) are the
densities of the projectile and the target, respectively, while
in Eq. (3) ρp(rp, rp + s) and ρt (rt , rt − s) are the density
matrices for the projectile and the target that are usually taken
in an approximate form [58,59] (see also Refs. [3,4]). The
effective NN interactions vD

NN and vEX
NN have their IS and

IV components in the form of the M3Y interaction obtained
within g-matrix calculations using the Paris NN potential [53].
The expressions for the energy and density dependence of the
effective NN interaction are given, e.g., in Ref. [7]. In Eq. (3)
K(r) is the local momentum of the nucleus-nucleus relative
motion:

K (r) =
{

2Mm

h̄2 [E − V F (r) − Vc(r)]

}1/2

(4)

with M = ApAt/(Ap + At ), where Ap, At , m are the projectile
and target atomic numbers and the nucleon mass. As can be
seen, K (r) depends on the folding potential V F (r) that has
to be calculated itself and, thus, nonlinearity effects occur as
typical ingredients of the model and have to be taken carefully
into account.

Concerning the ImOP, it corresponds to the full micro-
scopic OP derived in Refs. [51,52,60] within the HEA [56,57]:

U H = VH (r) + iW H (r) = − h̄v

(2π )2
σ̄N (ᾱ + i)

×
∫ ∞

0
j0(qr)ρp(q)ρt (q) fN (q)q2dq. (5)
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FIG. 1. (a) Point-proton (normalized to Z = 4) and point-neutron (normalized to N = 8) densities of 12Be obtained in the VMC method
and in the GCM. (b) Point-proton (normalized to Z = 4) and point-neutron (normalized to N = 10) densities of 14Be obtained in the GCM.

In Eq. (5) ρ(q) are the corresponding form factors of the
nuclear densities, ᾱ is the ratio of the real to imaginary parts
of the NN scattering amplitude at forward angles, fN (q) =
exp(−β̄q2/2) is the q dependence of the NN scattering am-
plitude, and σ̄N is the total NN scattering cross section that
has been parametrized as function of the energy up to 1
GeV [61–63]. The values of ᾱ, σ̄N , and β̄ are averaged over
the isospin of the nucleus.

B. Results of calculations of cross sections

We calculate the OP [Eq. (1)] and the elastic scattering
cross sections of 12,14Be on 12C and protons using the DWUCK4
code [64] for solving the Schrödinger equation. All the scat-
tering cross sections will be shown in the figures as ratios to
the Rutherford cross sections (dσ/dσR).

Concerning the 12,14Be isotopes, we apply the den-
sity distributions obtained within the generator coordinate
method [43]. In Ref. [43] the 14Be nucleus is investigated
in the three-cluster GCM, involving several 12Be + n + n
configurations. The 12Be core nucleus is described in the
harmonic-oscillator model with all possible configurations in
the p shell. For the 12Be density we use also the one obtained
in the framework of the variational Monte Carlo model [55].
In our case, within the VMC method the proton and neutron
densities were computed with the AV18+UX Hamiltonian,
in which the Argonne v18 two-nucleon and Urbana X three-
nucleon potentials are used [55]. Urbana X is intermediate
between the Urbana IX and Illinois-7 models (the latter was
used by us in Ref. [7] for the densities of the 10Be nucleus).

Complementary to microscopic densities of both the
neutron-rich 12,14Be isotopes, a phenomenological density
distribution in the form of the symmetrized Fermi function
(SF) is applied:

ρSF(r) = ρ0
sinh(R/a)

cosh(R/a) + cosh(r/a)
, (6)

where

ρ0 = A

(4πR3/3)

[
1 +

(πa

R

)2
]−1

. (7)

The SF density parameters, the radius R, and the diffuseness
a in Eq. (6) were determined in Ref. [21] by fitting (within
the Glauber approach) to the experimental cross section data
of the 12,14Be + p elastic scattering at 700 MeV. In our cal-
culations we adopt their values, namely R = 1.37 fm, a =
0.67 fm for 12Be and R = 0.99 fm, a = 0.84 fm for 14Be.
Here we would like to note the bigger diffuseness parameter a
in the case of the 14Be nucleus, which supports the existence
of a halo structure in it. The same SF form with radius and
diffuseness parameters 2.275 and 0.393 fm was taken for the
density of 12C target nucleus when calculating the OPs for
12,14Be + 12C quasielastic scattering.

Additionally, we apply a modified SF density of 12C,

ρ(r) = ρSF(r) + ρ
(1)
SF (r), (8)

where the surface effects are revealed through the term ρ
(1)
SF (r),

being the first derivative of ρSF(r). The parameters of this
density were obtained in Ref. [65] by fitting to electron-
nucleus scattering data. In general, the form (8) of the density
distribution has a specific bump near the nuclear surface,
where the elastic process is mainly expected to take place.

As can be seen from Fig. 1, the proton densities are very
similar in 12Be and 14Be nuclei. In contrast, neutron densities
are quite different: whereas neutron density in 12Be is nearly
proportional to the proton density, the neutron contribution in
14Be has a very long tail. This long-range neutron density is
typical for neutron-rich halo nuclei and yields fairly large rms
radii (a value of 2.95 fm obtained in the GCM was reported
in Ref. [43]). One can observe also from Fig. 1 a different
behavior of the point-neutron densities of 12Be calculated
with GCM and VMC methods. In the GCM the 12Be internal
wave functions are defined in the p-shell harmonic-oscillator
model that leads to a more steep decrease of the corresponding
density [43]. In contrast, the VMC neutron density exhibits
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FIG. 2. (a) Matter density distribution (normalized to A = 12) of 12Be obtained with the SF function, in the VMC method and in the GCM.
(b) Matter density distribution (normalized to A = 14) of 14Be obtained with the SF function and in the GCM.

a broader shape, presumably due to the 10Be core plus 2n
cluster structure effectively accounted for in the variational
calculations [55]. Similar behaviors of the proton and neutron
densities of 10Be and 11Be nuclei obtained in the GCM and
in the quantum Monte Carlo method can be seen from Fig. 1
of Ref. [7]. As a result, from these differences in the surface
region, the neutron rms radius rn of 12Be obtained within the
VMC method has a value of 2.60 fm that is larger than the
corresponding value of rn deduced from the GCM (2.33 fm).

In Fig. 2 we present the matter density distributions in 12Be
and 14Be nuclei. As can be seen, the SF matter density of 12Be
exceeds the VMC and GCM densities in the central region
(r < 1.5 fm), while in the region 2 < r < 3 fm its values
are smaller than the ones of the two microscopic densities,
which signals a mixed p-sd state for the valence neutrons in
12Be [21]. Also, the SF matter density of 12Be indicates an
extended tail in comparison with VMC and GCM densities.
It was mentioned in Ref. [21] that there is a tendency for
a slightly larger rms matter radius, as compared to those
obtained in previous measurements. In addition, the relatively
big diffuseness parameter a = 0.67 fm obtained for the SF
model leads to the enhanced matter distribution in the 12Be
nucleus.

The values of the rms radii of the point-proton, point-
neutron, and matter distributions of 12,14Be used in our cal-
culations are listed in Table I together with the experimental
data deduced from the Glauber analysis of the interaction and

TABLE I. Proton, neutron, and matter rms radii (in fm) of 12Be
and 14Be nuclei obtained with the VMC method [55] and GCM [43].
Experimental data are taken from Ref. [15].

Nucleus Model rp rn rm

12Be VMC 2.29 2.60 2.50
GCM 2.20 2.33 2.29

Expt. [15] 2.49 2.65 2.59
14Be GCM 2.28 2.95 2.78

Expt. [15] 3.00 3.22 3.16

reaction cross sections [15]. In addition, the values of the
matter rms radii of 12Be and 14Be nuclei of SF distributions
shown in Fig. 2 are 2.71 and 3.22 fm, respectively [21].

1. Quasielastic scattering cross sections of 12,14Be + 12C

Similarly to our previous works (for instance, Ref. [8]),
we consider the set of the Ni coefficients [NR and NI ; see
Eq. (1) for the OP] as parameters to be found from the fit
to the experimental data for the cross sections using the χ2

procedure. The fitted N’s related to the depths of the ReOP
and ImOP can be considered as a measure of deviations of
our microscopic OPs from the case when the values of N’s are
equal to unity.

It is worthwhile to mention that the experimental data of
12,14Be scattering on 12C [46,47] are considered to include
contributions of the scattering to the first excited 2+ (4.439
MeV) and 3− (9.641 MeV) states of 12C. Therefore, to cal-
culate the angular distributions and to compare them with the
experimental data we write the following sum:(

dσ

dσR

)
quasi

=
(

dσ

dσR

)
el

+ C

(
dσ

dσR

)
inel

, (9)

where the first term corresponds to pure elastic scattering
while the second term gives the contribution of the inelastic
scattering to the 2+ and 3− states of 12C. Accounting for the
latter states is important since the coupling between 2+ state
and the ground state of 12C is strong. In Eq. (9) the coefficient
C, which is an additional fitting parameter, is related to the
potential radius Rpot and the deformation parameter β as
C = (βRpot )2. We adopt Rpot = 4.25 fm as in Ref. [46]. Then,
the value of the parameter β can be determined. Concerning
the contribution of the inelastic channel, the inelastic OP is
calculated within our approach via the microscopic optical
potential (1): Uinel(r) = −Rpot[dU (r)/dr].

First, before estimating the role of the inelastic channels in
the scattering process, it is useful to perform calculations of
the elastic scattering only. The elastic scattering cross sections
of 12Be + 12C and 14Be + 12C calculated within the hybrid
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FIG. 3. 12Be + 12C (a) and 14Be + 12C (b) at E =
56 MeV/nucleon elastic scattering cross sections. Black solid
line: calculations with the SF densities of 12,14Be; red dashed line:
calculations with the GCM densities of 12,14Be; blue dotted line:
calculations with the VMC density of 12Be. Experimental data are
taken from Ref. [46].

model at energy E = 56 MeV/nucleon in the laboratory
frame are given in Fig. 3 and compared with the experimental
data [46]. It can be seen in the case of the 12Be + 12C scat-
tering that, with the exception of the deep first minimum, all
three SF, GCM, and VMC densities of 12Be give a reasonable
agreement with the data. In the case of 14Be + 12C, however,
an agreement can be seen only at θc.m. > 5◦.

Here we note that the experimental data given in
Refs. [46,47] are presented by the authors as quasielastic cross
sections, in which there are contributions of elastic scattering
and also of inelastic scattering with an excitation of low-lying
2+ and 3− states of the 12C nucleus. In Fig. 4 we give the
cross section for the quasielastic 12Be + 12C process using
only the SF density and including the contribution of the
inelastic scattering to the first 2+ and 3− states. It can be seen
that accounting for the inelastic scattering reduces the depth
of the first minimum and provides the left-shift correction of
its place. We note that the role of the scattering to the 3− state
turns out to be negligible. The similar qualities of the results
can be seen in Fig. 5, where the quasielastic cross sections
calculated with the SF, GCM, and VMC densities of 12Be for
the 12Be + 12C case and with SF and GCM densities of 14Be
for the 14Be + 12C case are considered.
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FIG. 4. 12Be + 12C quasielastic scattering cross sections at E =
56 MeV/nucleon calculated using the SF density of 12Be. Black solid
line: pure elastic scattering; red dashed line: elastic plus inelastic
scattering to the 2+ state of 12C; blue dotted line: elastic plus inelastic
scattering to the first 2+ and 3− states of 12C. Experimental data are
taken from Ref. [46].

In the upper part of Fig. 6 we present the quasielastic cross
section for the 12Be + 12C case using the SF density of 12Be
with excitation of 2+ and 3− states of 12C and also including
the surface part (ρ (1)

SF ) of the 12C density. The latter leads to a
further decrease of the depth of the first minimum. As can be

1
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12Be + 12C  56 MeV/nucleon

12C: SF
quasielastic (2+,3−)

12Be:

(a)

SF
GCM
VMC

1
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10−2

10−1

 0  2  4  6  8  10  12  14  16  18  20

14Be + 12C  56 MeV/nucleon

12C: SF

quasielastic (2+,3−)
14Be:

(b)dσ
/d

σ R

θc.m. [deg]

SF
GCM

FIG. 5. The same as in Fig. 3 but for the quasielastic scattering
cross sections, accounting for inelastic scattering to the first 2+ and
3− states in 12C.
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(b)dσ
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FIG. 6. (a) 12Be + 12C quasielastic scattering cross sections at
E = 56 MeV/nucleon calculated using the SF density of 12Be and
SF [Eq. (6)] (black solid line) and modified SF [Eq. (8)] (red dashed
line) densities of 12C. Panel (b) illustrates the calculations with the
modified SF density of 12C [Eq. (8)] and using the SF (black solid
line), GCM (red dashed line), and VMC (blue dotted line) densities
of 12Be.

seen in the lower part of Fig. 6, the situation is similar also in
the cases of GCM and VMC densities of 12Be. In our opinion,
the use of the SF density gives a better agreement with the
data.

The results of the calculations in the case of 14Be + 12C
at 56 MeV/nucleon given in Fig. 7 show that accounting for
the surface part (ρ (1)

SF ) of the 12C density does not improve
the agreement of the quasielastic scattering at angles θc.m. <

5◦ for both SF and GCM densities. As can be seen from
Figs. 4–7, a better agreement with the data (in the case of
12Be + 12C) up to 8◦ is obtained by accounting only for the
elastic channel, while for larger angles up to 17◦ the contribu-
tions of the elastic and inelastic scattering (with an excitation
mainly of the 2+ state) are similar in their magnitude, and their
sum is in agreement with the data.

The obtained values of the parameters NR, NI , the deforma-
tion parameter β2+ , and the total reaction cross section σR for
12,14Be + 12C quasielastic scattering at 56 MeV/nucleon inci-
dent energy are presented in Table II for different densities, for
the pure elastic channel, also when the inelastic channels are
included, and when the surface part of the target 12C density
is accounted for. It can be seen from Table II that our “best
fit” of results to the experimental angular distributions using
microscopic OPs lead, to values of the predicted total reaction

1
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14Be:

(b)dσ
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SF
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FIG. 7. The same as in Fig. 6 but for the 14Be + 12C quasielastic
scattering cross sections at E = 56 MeV/nucleon. In panel (b) re-
sults with SF and GCM densities of 14Be are shown.

cross sections σR occupying an intermediate region between
the respective values (discussed in the Introduction) from the
analyses of the data in Refs. [46] and [47].

2. Elastic scattering cross sections of 12,14Be + p

In Fig. 8 we present, in comparison with the experimen-
tal data from [21], our results of calculations for the cross
sections of 12Be + p scattering at E = 703.5 MeV/nucleon
(upper panel) and of 14Be + p at E = 702.9 MeV/nucleon
(lower panel) using SF, GCM, and VMC densities in the
former case and SF and GCM densities in the latter case.

As shown in [66,67], the effects of relativization are very
important at these energies. Here, in calculating differen-
tial cross sections the respective optical potentials (5) are
used dependent on the relativistic velocity v = k/

√
k2 + m2

(c = 1) for high energies. For our purposes the DWUCK4
code [64] was adapted for relativistic energies to solve
the relativistic wave equation at kinetic energies T � |U H |
(below, h̄ = c = 1):

(	 + k2)ψ (r) = 2μ̄U (r)ψ (r), U = U H + UC . (10)

In Eq. (10) k is the relativistic momentum of a nucleon in the
center-of-mass (c.m.) system,

k = Mklab√
(M + m)2 + 2MT lab

, klab =
√

T lab(T lab + 2m),

(11)
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TABLE II. The renormalization parameters NR, NI , the deforma-
tion parameter β2+ , and the total reaction cross sections σR (in mb)
for results of the 12,14Be + 12C quasielastic scattering processes at
56 MeV/nucleon incident energy considered and shown in Figs. 3–7
using different model densities of 12,14Be and 12C (for details, see the
text).

Nucleus Model Model NR NI β2+ σR
12,14Be 12C

12Be elastic SF SF 0.767 0.593 1124.80
GCM 0.804 0.855 1018.47
VMC 0.721 0.660 1055.15

quasielastic SF 0.702 1.294 0.635 1353.04
GCM 0.496 1.431 0.437 1111.34
VMC 0.583 1.156 0.487 1180.38

SF mod. SF 0.647 1.094 0.665 1422.01
GCM 0.592 1.133 0.526 1228.79
VMC 0.596 1.106 0.593 1309.78

14Be elastic SF SF 0.913 1.310 1666.02
GCM 1.080 2.000 1597.48

quasielastic SF 0.701 1.252 0.365 1636.39
GCM 0.638 2.000 0.375 1583.53

SF mod. SF 0.599 0.952 0.362 1629.13
GCM 0.708 1.920 0.369 1701.64

μ̄ = EM/(E + M ) is the relativistic reduced mass with E =√
k2 + m2 being the total energy in c.m. system, T lab is the

kinetic energy, and m and M are the nucleon and nucleus
masses.

In Ref. [67] the 12,14Be + p cross sections at 700
MeV/nucleon were calculated by using the NN amplitude
parameters σ̄N and ᾱ from Ref. [21], and they reasonably
reproduce the experimental data. In this work, to improve the
agreement with the data [21], the respective parameters σ̄N

and ᾱ of the optical potential (5) were fitted to the data, and
the obtained results are presented in Table III. The value of
β̄ = 0.17 fm2 from Ref. [21] was used.

It can be seen from Fig. 8 that for 12Be + p scattering the
tested VMC density provides a reasonable agreement with all
the data, and the GSM density is consistent with the data only
at θ < 8◦, while in the case of SF density one gets good fit
of the data at all angles of scattering. In the case of 14Be
one obtains remarkable accordance with the data for the SF
density, while in the case of GCM density a considerable
excess of the data at θ > 7◦ is seen.

III. BREAKUP REACTIONS OF 14Be

Along with the small separation energy of one or two
neutrons (protons) and a large rms radius of the corresponding
density distribution, the narrow momentum distributions of
the fragments in the breakup of a given nucleus is proof of a
largely extended distribution. In our previous works we calcu-
lated the breakup cross sections and momentum distributions
of the cluster fragments in the scattering of 11Li on protons
at 62 MeV/nucleon [6], of 11Be on 9Be, 93Nb, 181Ta, and
238U [7], as well as of 8B on 9Be, 12C, and 197Au targets [8].
A cluster model, in which the nucleus consists of a halo and

1

10

102

103

104
12Be + p  703.5 MeV/nucleon(a)

SF
GCM
VMC

1

10

102

103

104

 0  2  4  6  8  10  12  14  16

14Be + p  702.9 MeV/nucleon(b)

dσ
/d

Ω
 [m

b/
sr

]

θc.m. [deg]

SF
GCM

FIG. 8. Differential cross sections for 12Be + p at E =
703.5 MeV/nucleon (a) and 14Be + p at E = 702.9 MeV/nucleon
(b) elastic scattering. Calculations are performed with the modified
SF density of 12C [Eq. (8)] and different densities of 12,14Be. Black
solid line: calculations with the SF densities of 12,14Be; red dashed
line: calculations with the GCM densities of 12,14Be; blue dotted
line: calculations with the VMC density of 12Be. Experimental data
are taken from Ref. [21].

a core, was used in the calculations. In the present section
we calculate the breakup cross sections and momentum dis-
tributions of 12Be fragments from the breakup of the halo
nucleus 14Be on 12C at energy 56.8 MeV/nucleon [16]. This
part of the work is related to the general question, already
mentioned in the Introduction, about the behavior of dineutron
formations in exotic nuclei predicted theoretically in Ref. [20]
and considered also, e.g., in Refs. [21–26], as well as to the
results of the experiments on dineutron decay of 16Be and its
properties, observed in Ref. [27].

A. The 12Be + 2n model of 14Be

We consider the characteristics of breakup processes of
the 14Be nucleus, namely diffraction and stripping reaction
cross sections and momentum distributions of the fragments.
A simple cluster model is used, in which 14Be consists of a
12Be core and a valence 2n halo. In this case the hybrid model
is applied to calculate the OPs of the interactions of 12Be and
2n with the target. The sum of OPs is folded with the density
distribution, which corresponds to the wave function of the
relative motion of the clusters in 14Be. This wave function

034602-8



MICROSCOPIC ANALYSIS OF QUASIELASTIC … PHYSICAL REVIEW C 100, 034602 (2019)

TABLE III. Parameters σ̄N (in fm2), ᾱ, and the total reac-
tion cross sections σR (in mb) for results of the 12,14Be + p elas-
tic scattering processes at incident energies E = 702.9 and E =
703.5 MeV/nucleon considered and shown in Fig. 8 using different
model densities of 12,14Be.

Nucleus E/A Model σ̄N ᾱ σR

12Be 703.5 SF 4.4 −0.237 278.49
GCM 3.5 −0.483 219.02
VMC 3.8 −0.416 246.18

14Be 702.9 SF 4.136 −0.2086 333.19
GCM 3.46 −0.35 270.24

is obtained as a solution of the Schrödinger wave equation
with the WS potential for a particle with a reduced mass of
the two clusters. The values of the parameters of the WS
potentials are obtained by a fitting procedure to reach the
empirical two-neutron separation energy S2n of the dineutron
halo and the rms radius Rrms corresponding to the cluster wave
function.

The eikonal formalism for the S matrix as a function of
the impact parameter b is used to calculate the breakup cross
sections and momentum distributions of fragments:

S(b) = exp

[
− i

h̄v

∫ ∞

−∞
U (

√
b2 + z2)dz

]
, (12)

where

U = V + iW (13)

is the OP. The probability that after the collision with the
target (z → ∞) the core (c) or the valence halo (v = 2n) with
impact parameter b remains in the elastic channel (i = c, v)
is given by

|Si(b)|2 = exp

[
− 2

h̄v

∫ ∞

−∞
dz |Wi(

√
b2 + z2)|

]
. (14)

The probability of a cluster being removed from the elas-
tic channel is (1 − |Si|2). The probability of both clusters
(c and v) leaving the elastic channel is (1 − |Sc|2)(1 − |Sv|2).
We note that this procedure can lead to several groups of
parameters of the OPs which fulfill the conditions. They can
be similar, but at the same time to lead to different values of
the rms radius of the 2n cluster (the distance between 12Be and
2n in the case of 14Be). In our calculations we use different
values of the rms radii corresponding to the cluster wave
functions, as was done in our work on 8B breakup processes
(see Ref. [8], Table 4), where we used three values of the
relative distances in the system of 7Be and p clusters.

For the cross section of the breakup of the incident nucleus
(a) into two clusters (a + A → c + v + A) we use, following
Ref. [68], the form

dσ

dk‖dk⊥
= 1

2l + 1

4k⊥
k2

∫
d2b

∑
M,m

∣∣∣∣
∫

dr
∫

d (cos θ )

×
∑

L

(−i)Luk,L(r)gl (r)ỸL,M (θk )Ỹ ∗
L,M (θ )Ỹl,m(θ )

×
∫

dϕ exp(i(m − M )ϕ)Sc(bc)Sv (bv )

∣∣∣∣
2

, (15)
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FIG. 9. Cross sections of the stripping reaction in 14Be + 12C
scattering at 56.8 MeV/nucleon. Blue solid line: result with rms
radius Rrms = 3.10 fm; red dashed line: result with rms radius Rrms =
3.50 fm. Experimental data are taken from Fig 3(a) of Ref. [16].

where k is the relative momentum of both clusters in their
c.m. frame and k‖ and k⊥ are its parallel and transverse com-
ponents. The relative motion wave function of the fragments
of a = c + v in the continuous final state was taken as

φk(r) = 4π
∑
L,M

iL uk,L(r)

kr
YLM (r̂)Y ∗

LM (k̂), (16)

where in the further estimations we neglect the distortion
effect and thus use uk,L(r) = kr jL(kr). Also, gl (r) is the radial
part of the initial bound state wave function of the clusters c
and v, and YLM (k̂) = ỸL,M (θk ) exp(iMϕk ).

In the case of the s state for the mutual motion of the
clusters in the incident nucleus a = c + v, the cross section of
the stripping reaction when the valance cluster v = 2n leaves
the elastic channel is(

dσ

dk‖

)
str

= 1

2π2

∫
d2bv[1 − |Sv (bv )|2]

∫
d2ρ|Sc(bc)|2

×
[∫

dz cos(k‖z)φ0(
√

ρ2 + z2)

]2

, (17)

with r = ρ + z and ρ = bv − bc.

B. Results of calculations of breakup reactions

The results of our calculations of the 12Be longitudinal
momentum distribution from 14Be fragmentation on 12C at
an incident energy of 56.8 MeV/nucleon for stripping and
diffraction processes are given in Figs. 9 and 10, respectively.
In both figures they are compared with the experimental data
taken from Fig. 3(a) of Ref. [16] (obtained there via the
telescope method). In order to check the sensitivity of the
results towards the value of the rms radius corresponding to
the wave function of the relative motion of the clusters in
14Be, in each of the figures we present two theoretical curves.
They illustrate the results for rms radii Rrms = 3.10 fm and
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FIG. 10. Cross sections of diffraction breakup reaction in 14Be +
12C scattering at 56.8 MeV/nucleon. Blue solid line: result with rms
radius Rrms = 3.10 fm; red dashed line: result with rms radius Rrms =
3.50 fm. Experimental data are taken from Fig 3(a) of Ref. [16].

Rrms = 3.50 fm, which are related to possible estimated limits
of the values of the rms radius of 14Be: namely, when using
its total SF density (rm = 3.22 fm), and also by estimations
on the basis of the values of the rms radius of the core 12Be
of 2.8 fm [1,16] and a rms halo radius of 14Be of about
5.5 fm [1] (both taken from Ref. [16]). The weighted mean
rms matter radius of 14Be, deduced in Ref. [21] from several
one-body density parametrizations that are obtained by fitting
the experimental p + 14Be elastic scattering cross sections, is
3.25(11) fm.

As can be seen, the theoretical results for the stripping and
diffractive processes have a similar shape. This is expected for
the energies considered in our work, having in mind the results
obtained in Ref. [68] (see also Refs. [69–72]) for energies up
to 100 MeV/nucleon.

The obtained values of the widths are 80.2 and 77.8 MeV/c
with Rrms = 3.10 fm and Rrms = 3.50 fm, respectively, for the
stripping reaction, and 115.7 and 112.7 MeV/c for the same
values of radii in the case of the diffraction process. These
values are in reasonable agreement with the experimental
width ( = 92.2 ± 2.7 MeV/c) estimated in Ref. [16]. A
quite weak dependence of the width at a given energy on
the choice of the rms radius was found. It turns out that the
main condition for the width to have a correct value is having
the parameters of the potential well (e.g., of Woods-Saxon
type) that provide the right value of the binding energy of the
pair of neutrons in the 14Be nucleus. In our calculations the
parameter values of the Woods-Saxon potential are V0 = 20.6
MeV, r0 = 2.7 fm, a0 = 0.30 fm for Rrms = 3.10 fm and V0 =
16.8 MeV, r0 = 3.0 fm, a0 = 0.40 fm for Rrms = 3.50 fm.

IV. CONCLUSIONS

In the present work we followed two main aims. The first
one was to study elastic and quasielastic scattering of the

neutron-rich exotic nuclei 12Be and 14Be on a 12C target at
an energy of 56 MeV/nucleon, as well as their scattering
on protons at 703.5 and 702.9 MeV/nucleon, respectively.
The second aim was to calculate the longitudinal momentum
distribution of 12Be from the fragmentation of 14Be on 12C at
an incident energy 56.8 MeV/nucleon.

In our hybrid model we calculate the real part of the
optical potential microscopically by the folding procedure
in which microscopic densities from GCM and VMC for
12Be and from GCM for the 14Be nucleus, as well as the
symmetrized Fermi density (SF) for both nuclei, were used.
Another ingredient of the folding procedure is the effective
NN interaction related to the g matrix obtained on the basis
of the Paris NN potential. The ReOP includes isoscalar and
isovector direct and exchange components. The ImOP is
calculated microscopically as the folding OP that reproduces
the phase of the scattering in the high-energy approxima-
tion. The free parameters of the model are the depths of
the real and imaginary parts of the OP. Their values are
obtained by fitting the experimental data on differential cross
sections. We calculated also the contributions of inelastic
scattering to the first 2+ and 3− excited states in 12C in the
quasielastic 12,14Be + 12C processes. In addition, we studied
the role of the surface part ρ

(1)
SF of the density of the 12C

target.
The main results from the work can be summarized as

follows:

(i) In the case of the quasielastic 12Be + 12C scattering
all three densities of 12Be (from SF, GCM, and VMC)
give a reasonable agreement with the data with the
exception of the depth and the position of the first
minimum when only the elastic channel is included.
In the case of 14Be + 12C an agreement can be seen
only at θc.m. > 5◦.

(ii) Acounting for the contribution of inelastic scatter-
ing to the first 2+ state improves the depth of the
first minimum and leads to a left-shift correction of
its place for both processes. We note that a better
agreement with the data for the 12Be + 12C case for
θc.m. < 8◦ is obtained by accounting only for the
elastic scattering, while for larger angles up to 17◦
the elastic and inelastic scattering (to the 2+ state)
give similar contributions and their sum allows a
reasonable agreement with the experimental data to
be obtained.

(iii) The inclusion of the surface part ρ
(1)
SF of the 12C

density leads to a correct reduction of the depth of
the first minimum, and a good overall agreement with
the data for the 12Be + 12C case is achieved. However,
for 14Be + 12C this does not improve the agreement at
angles θc.m. < 5◦.

(iv) A good agreement with the experimental 12Be +
p data for the differential cross sections at 703.5
MeV/nucleon in the whole range of angles is ob-
tained with the use of SF and VMC densities of 12Be.
The use of the SF density of 14Be leads also to a very
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good agreement with the experimental 14Be + p cross
section data at 702.9 MeV/nucleon. The successful
description of both elastic scattering processes proves
the important role of the effects of relativization in-
cluded in the calculations.

(v) In the second part of the work the longitudinal mo-
mentum distribution of fragments in stripping and
diffractive breakup processes of the 14Be nucleus on
12C is calculated in a cluster model in which 14Be
consists of 12Be core and a 2n halo. OPs of the inter-
actions of 12Be and 2n with the target are calculated
within our hybrid model, and their sum is used in the
folding procedure with the density corresponding to
the wave function of the relative motion of the clusters
in 14Be. Using the cluster OPs, the corresponding core
(c) and valence halo (v = 2n) functions Sc and Sv

(matrices) are obtained within the eikonal formalism.
They are used to calculate the longitudinal momen-
tum distributions of 12Be fragments produced in the
breakup of the halo nucleus 14Be + 12C at an energy
of 56.8 MeV/nucleon. The obtained widths are in a
reasonable agreement with the experimental data and
give important information on the halo structure of
these nuclei. A quite weak sensitivity of the computed

widths to the choice of the rms radius of 14Be was
found.

In general, we can conclude that our microscopic approach
applied to reaction studies with the neutron-rich 12,14Be nuclei
is capable of reproducing the existing experimental data,
and it supports the two-neutron halo interpretation of these
nuclei. More definite conclusions about the relative role of
the theoretical ingredients of the microscopic model can be
drawn when complete and precise data from new reactions
measurements, e.g., with the new generation of radioactive
nuclear beam facilities, will become available.
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