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We present a study of the role played by realistic three-body forces in providing a reliable monopole
component of the effective shell-model Hamiltonian. To this end, starting from a nuclear potential built up within
the chiral perturbation theory, we derive effective shell-model Hamiltonians with and without the contribution
of the three-body potential and compare the results of shell-model calculations with a set of observables that
evidence shell-evolution properties. The testing ground of our investigation is nuclei belonging to the f p
shell, since the shell-evolution towards shell closures in 48Ca and 56Ni provides a paradigm for shell-model
Hamiltonians. Our analysis shows that only by including contributions of the three-body force is the monopole
component of the effective shell-model Hamiltonian then able to reproduce the experimental shell evolution
towards and beyond the closure at N = 28.
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I. INTRODUCTION

The evolution of the nuclear spectroscopic properties along
isotopic and isotonic chains, towards the formation of magic
numbers, is the feature that has revealed the central role of
the nuclear shell model (SM) and its success during the past
70 years [1–3]. Consequently, it is very desirable that effec-
tive Hamiltonians, which are employed to study the nuclear
structure in the framework of the shell model, should be able
to reproduce the observed shell evolution and closures.

Zuker and coworkers have extensively investigated the
properties of the two-body matrix elements (TBMEs) of the
residual interaction derived from realistic potentials by way of
many-body perturbation theory [4], and, having performed a
multipole decomposition of realistic SM Hamiltonians, have
shown that their monopole component needs to be modified
in order to reproduce the evolution of shell closures as a
function of the number of valence nucleons [5–7]. They
have inferred that this should trace back to the lack of a
three-nucleon force (3NF) in the nuclear realistic potentials
employed to derive the effective SM Hamiltonian Heff , af-
fecting its monopole component that, consequently, has to be
corrected [8].

Extensive direct investigations about the role of 3NFs
in realistic Heff s have been carried out by Schwenk and
coworkers, who have performed studies of oxygen [9–13] and
calcium [11,13–15] isotopic chains. In the aforementioned
works, the Heff s blue have been derived starting from nuclear
potentials built up within the chiral perturbative expansion and
softened by way of the Vlow-k technique [16,17] or the sim-
ilarity renormalization-group (SRG) approach [18,19], and
the results have supported the need of introducing three-
body forces to reproduce the experimental behavior of the

ground-state and yrast excitation energies as a function of the
valence-nucleon number.

In order to investigate the role played by three-body forces
in driving the shell evolution, we have found inspiration
from the calculation of the effective single-particle energies
(ESPEs) for p-shell nuclei, whose results we have presented
in Ref. [20]. More precisely, we have found that the ESPEs
calculated from the Heff that includes contributions from both
two- and three-body chiral potentials, provide a constant
energy-splitting of the spin-orbit partners 0p3/2, 0p1/2 as a
function of the mass number A. This splitting characterizes
the correct reproduction of the subshell closure at Z, N = 6
observed in 12C, at variance with the result we have obtained
omitting the contribution of the 3NF. As a matter of fact, the
relative ESPE rapidly drops down if only the two-nucleon
force (2NF) is included, and becomes even negative around
A = 8. Then, the reproduction of the shell closure deterio-
rates, namely the observed energy of the 12C yrast Jπ = 2+

state is underestimated by ∼1 MeV.
Since the ESPE of a level is calculated in terms of the

bare single-particle (SP) energy and the monopole part of the
TBMEs [21], it is clear that the above-mentioned results point
to an intimate relationship between 3NF and the monopole
component of Heff .

On the above grounds, we devote the present paper to
studying this connection choosing, as a testing ground, the
nuclei belonging to the f p shell, namely those that can be
described in terms of the degrees of freedom of valence
nucleons outside doubly closed 40Ca, interacting in the model
space composed by 0 f 1p orbitals. This region represents a
paradigm to investigate the shell evolution within the shell
model, since, as is well known, the spin-orbit component of
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the SM mean field separates the 0 f7/2 orbital from the others
leading to the appearance of the magic number Z, N = 28 and,
consequently, of the two doubly magic nuclei 48Ca and 56Ni.

The starting point of our calculation is a nuclear potential
based on chiral perturbation theory (ChPT) [22,23], a choice
that is motivated by two main considerations.

(a) First, within this class of potentials long-range forces
are ruled by the symmetries of low-energy quantum
chromodynamics (QCD)—in particular the sponta-
neously broken chiral symmetry—and the short-range
dynamics is absorbed into a complete basis of contact
terms that are proportional to low-energy constants
(LECs) fitted to two-nucleon data.

(b) The second major characteristic of ChPT is that nu-
clear 2NF and many-body forces are generated on an
equal footing [23–25], since most interaction vertices
that appear in the 3NF and in the four-nucleon force
(4NF) also occur in the 2NF.

For the sake of completeness, we point out that, as in
Ref. [20], a high-precision 2NF potential derived within the
ChPT at next-to-next-to-next-to-leading order (N3LO) [23,26]
is considered in our calculation, without any renormalization
of its high-momentum components, juxtaposed with a N2LO
3NF potential, since this many-body contribution appears
from this order on. Nowadays, these potentials are widely
employed in nuclear theory aiming to link the fundamental
theory of strong interactions, the QCD, to nuclear many-body
phenomena.

Then, the Heff s for systems with one- and two-valence
nucleons outside the 40Ca core are derived by way of the
energy-independent linked-diagram perturbation theory [27],
where 2NF-vertices diagrams are included up to third order
and contributions of 3NF up to first order in the perturbative
expansion.

For those nuclei with a number of valence nucleons larger
than 2—we will report calculations for Z = 20, 22, 24, 26,
and 28 up to N = 40—the effect of many-body correlations
is taken into account by including the contributions of three-
body diagrams calculated at second order in perturbation
theory [28]. These correlations arise from the interaction via
the two-body force of the valence nucleons with excitations
outside the model space [29]. Since our SM code cannot
manage three-body Hamiltonians, we have derived a density-
dependent two-body contribution at one-loop order from the
three-body correlation diagrams, summing over the partially-
filled model-space orbitals.

A description of the perturbative approach to the derivation
of our effective SM Hamiltonian is reported in Sec. II, where
the perturbative properties are also discussed in some detail.
In Sec. III we introduce first the results of the calculation of
the ESPEs, in order to analyze the properties of the monopole
component of the effective Hamiltonians, obtained with and
without the contribution from a chiral 3NF. Then, we compare
the results of the full diagonalization of these Heff s with
observables that are sensitive to the shell evolution of f p
isotopic chains. We focus on the evolution of collectivity in
N = 28 isotones too, that is a key point to evaluate the balance

between the monopole and quadrupole components of the
effective SM Hamiltonian. Finally, in Sec. IV we draw the
conclusions of our study and the outlook of our future work.

II. OUTLINE OF CALCULATIONS

As mentioned in the Introduction, we choose, as 2NF, the
chiral N3LO potential derived by Entem and Machleidt in
Ref. [26], and as 3NF a chiral N2LO potential, which shares
the regulator function of a nonlocal form and some of the
LECs with the 2NF. It is worth pointing out that the N2LO
3NF is composed of three components, namely the two-pion
(2π ) exchange term V (2π )

3NF , the one-pion (1π ) exchange plus
contact term V (1π )

3NF , and the contact term V (ct)
3NF.

For the sake of consistency, the c1, c3, and c4 LECs ap-
pearing in V (2π )

3NF , are the same as those in the N3LO 2NF, their
values being determined by the renormalization procedure
that fits the nucleon-nucleon (NN) data [23].

Moreover, the 3NF 1π -exchange and contact terms are
characterized by two extra LECs (known as cD and cE , respec-
tively), which cannot be constrained by two-body observables,
but need to be determined by reproducing observables in
systems with mass A > 2.

We adopt the same cD, cE values employed in Ref. [20],
namely cD = −1 and cE = −0.34, that have been determined
by way of no-core shell model (NCSM) calculations [30,31].
More precisely, in Ref. [30] a set of observables in light
p-shell nuclei have been identified that are strongly sensitive
to the cD value in order to fix it, then cE has been constrained
to reproduce the binding energies of the A = 3 system.

Details about the calculation of our 3NF matrix elements
in the harmonic-oscillator (HO) basis are reported in the
Appendix of Ref. [20]. Note that the Coulomb potential is
explicitly taken into account in our calculations.

In the same paper, a comprehensive description of the
derivation of our effective SM Hamiltonians for one- and
two-valence nucleon systems, starting from 2NF and 3NF, can
also be found, while in the following we present only a short
summary.

As mentioned before, our Heff is derived in the model space
spanned by the four 0 f 1p proton and neutron orbitals outside
doubly closed 40Ca.

To this end, an auxiliary one-body potential U is introduced
in order to break up the Hamiltonian H for a system of A nu-
cleons as the sum of a one-body term H0, which describes the
independent motion of the nucleons, and a residual interaction
H1:

H =
A∑

i=1

p2
i

2m
+

A∑

i< j=1

V 2NF
i j +

A∑

i< j<k=1

V 3NF
i jk

= T + V 2NF + V 3NF = (T + U ) +
+ (V 2NF − U ) + V 3NF = H0 + H2NF

1 + H3NF
1 . (1)

In our calculation we use the HO potential, U = 1
2 mω2r2,

with an oscillator parameter h̄ω = 11 MeV, according to the
expression [32] h̄ω = 45A−1/3 − 25A−2/3 for A = 40.

Once H0 has been introduced, the reduced model space is
defined in terms of a finite subset of H0’s eigenvectors. The
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FIG. 1. First-order one- and two-body diagrams with a three-
body-force vertex. See text for details.

diagonalization of the many-body Hamiltonian in Eq. (1)
within the infinite Hilbert space, that it is obviously unfea-
sible, is then reduced to the solution of an eigenvalue problem
for an effective Hamiltonian Heff in a finite space.

Our approach to the derivation of Heff is the time-
dependent perturbation theory [27,33,34]. Namely, Heff is ex-
pressed through the Kuo-Lee-Ratcliff (KLR) folded-diagram
expansion in terms of the vertex function Q̂ box, which is
composed of irreducible valence-linked diagrams [35,36]. We
include in the Q̂ box one- and two-body Goldstone diagrams
through third order in H2NF

1 and up to first order in H3NF
1 .

In Fig. 1 we report the contribution at first order in pertur-
bation theory to the single-particle component of the Q̂ box of
a three-body potential, whose explicit expression is

〈 ja|1b3N| ja〉 =
∑

h1, h2
J12J

Ĵ2

2 ĵa
2 〈[( jh1 jh2 )J12 , ja]J |V3N|

× [( jh1 jh2 )J12 , ja]J〉 . (2)

The expression of the first-order two-body diagram with a 3N
vertex, shown in Fig. 1, is

〈( ja jb)J |2b3N|( jc jd )J〉 =
∑

h,J ′

Ĵ ′2

Ĵ2
〈[( ja jb)J , jh]J ′ |V3N|

× [( jc jd )J , jh]J ′ 〉 . (3)

The three-body matrix element (3BME) 〈[( ja jb)Jab, jc]J |V3N|
[( jd je)Jde , j f ]J〉, expressed within the proton-neutron formal-
ism, is antisymmetrized but not normalized.

We recall that the expressions in Eqs. (2) and (3) are the
coefficients of the one-body and two-body terms, respectively,
arising from the normal-ordering decomposition of the three-
body component of a many-body Hamiltonian [37].

As mentioned in the Introduction, we also include in the
calculation of the Q̂ box the effect of second-order three-
body diagrams, which, for those nuclei with more than 2
valence nucleons, account for the interaction via the two-body
force of the valence nucleons with core excitations as well as
with virtual intermediate nucleons scattered above the model
space.

The SM code we employ [38] cannot perform the di-
agonalization of a three-body Heff , so we derive from the
leading-order three-body contribution a density-dependent
two-body term. To this end, we calculate nine one-loop

a
b

c d
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d

a

c
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J
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J
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cd
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FIG. 2. Density-dependent two-body contribution that is ob-
tained from a three-body one. α is obtained by summing over one
incoming and outgoing particle of the three-body graph A (see text
for details).

diagrams—the graph (α) in Fig. 2—from the corresponding
diagrams reported in Fig. 3 of Ref. [28].

Their explicit form, in terms of the three-body graph (A),
is the same as in Eq. (3):

〈( ja jb)J |V α|( jc jd )J〉 =
∑

m,J ′
ρm

Ĵ ′2

Ĵ2
〈[( ja jb)J , jm]J ′ |V A|

× [( jc jd )J , jm]J ′ 〉 , (4)

where the summation over the m index runs in the model space
and the expressions of the nine second-order diagrams (A) are
reported in the Appendix of Ref. [28]. ρm is the unperturbed
occupation density of the orbital jm according to the number
of valence nucleons.

Finally, the perturbative expression of the Q̂ box con-
tains one- and two-body diagrams up to third order in the
N3LO 2NF [34], one- and two-body first-order contributions
in the N2LO 3NF [20], and a density-dependent two-body
contribution that accounts for three-body diagrams at second-
order in the N3LO 2NF [28,29].

It should be pointed out that the latter term will lead to
the derivation of specific effective shell-model Hamiltonians
depending on the number of valence protons and neutrons,
that obviously differ only for the two-body matrix elements.

The folded-diagram series is then summed up to all orders
using the Lee-Suzuki iteration method [39].

We stress that the input chiral 2NF and 3NF have not been
modified by way of any renormalization procedure, and here
we will show a few details about the perturbative properties
of the effective Hamiltonian. A similar discussion about the
perturbative expansion of the Q̂ box from the N3LO 2NF
potential has been reported in Ref. [34].

First, it should be pointed out that the truncation of the
number of intermediate states appearing in the perturbative
expansion is the same as in Ref. [34], i.e., the intermediate
states whose unperturbed excitation energy is greater than a
fixed value Emax = Nmax h̄ω are disregarded. As mentioned
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FIG. 3. Low-lying energy spectrum of 42Ca, obtained starting
from Q̂ boxes at first, second, and third-order in perturbation theory,
and their Padé approximant [2|1]. See text for details.

above, the value we have chosen for the HO parameter is
h̄ω = 11 MeV. Because of our present limitation of the stor-
age of the total number of two-body matrix elements, we can
include a maximum number of intermediate states that do not
exceed Nmax = 18.

After these clarifying details, we present in Fig. 3 the first
excited states of 42Ca spectrum, which have been obtained
employing Heff s with contributions of 3NF, and starting from
Q̂ boxes at first, second, and third order in perturbation
theory, and their Padé approximant [2|1] [40]. We employ the
Padé approximant in order to obtain a better estimate of the
convergence value of the perturbation series [34], as suggested
in [41]. The number of intermediate states is the largest we can
employ, corresponding to Nmax = 18.

As can be seen, the results show a very satisfactory conver-
gence of the Heff with respect to the order-by-order behavior
of the perturbative expansion.

We now move our focus to the issue of the depen-
dence of Heff with respect to the number of intermediate
states included in the calculation of second- and third-order
diagrams.

In Fig. 4 the energy spectra of 41Ca are reported, obtained
from one-valence-neutron Heff s derived by employing the
Padé approximant [2|1] of the Q̂ box, and including a number
of intermediates states ranging from Nmax = 2 to 18.

From the inspection of Fig. 4, it is evident that there is no
sign of convergence of the single-particle spectrum of 41Ca up
to Nmax = 18. Since the cutoff of both 2NF and 3NF is slightly
larger than 2.5 fm−1 and we have chosen a value of the HO
parameter to be equal to 11 MeV, we estimate that we need
at least Nmax ≈ 24–26 to reach the convergence. However, it
can be clearly seen that from Nmax ≈ 12–14 on, the energy
spacings are stable with respect to the increase in the number
of intermediate states. This is an important feature, since
the Heff for one valence-nucleon systems provides the SP
energies for the SM calculations, and it is highly desirable to
obtain a convergent set of theoretical SP energies to calculate
excitation spectra of f p-shell nuclei.

Actually, the fact that the SP energies which are calculated
with respect to the closed 40Ca do not converge with the
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FIG. 4. Low-lying energy spectrum of 41Ca relative to 40Ca as a
function of Nmax (see text for details).

increasing number of intermediate states affects only the value
of the ground-state energy of open-shell systems. Conse-
quently, from now on we will employ, for our calculations, SP
spacings obtained from the theory while the value of the SP
energy of the 0 f7/2 orbital is fixed at −1.1 MeV for protons
and −8.4 MeV for neutrons, consistently with experimental
values of 41Sc and 41Ca [42].

After the above considerations, we move to discuss the
convergence of two-valence-nucleon Heff with respect to the
number of intermediate states. As a matter of fact, this will be
a test for our theoretical TBME, since we have just observed
that the SP energy spacings are convergent.

The calculated low-lying energy spectra of 42Ca, as a
function of Nmax, are reported in Fig. 5 up to Nmax = 18. The
Padè approximant [2|1] of the Q̂ box has been calculated to
derive the Heff s, and the theoretical SP spacings are considered
relative to the experimental SP energy of the 0 f7/2 orbital, as
mentioned before.

As it happens for 41Ca, we observe that also the 42Ca
spectrum converges from Nmax = 12–14 on. This leads to the
conclusion that both SP spacings and TBME of our Heff ,
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FIG. 5. Low-lying energy spectrum of 42Ca as a function of the
number of intermediate states included in the perturbative calculation
of the Q̂ box. See text for details.
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FIG. 6. Excitation energies of yrast Jπ = 2+ states and S2n ob-
tained for values of h̄ω ranging from 10 to 12 MeV. Blue bands
corresponds to the Q̂ boxes including U -insertion diagrams only at
first order, red bands represent results obtained including U -insertion
diagrams up to third order in perturbation theory. See text for details.

calculated with Nmax = 18, can be considered substantially
stable.

Besides the convergence behavior of our Heff , it is also
important to point out that, owing to the presence of the −U
term in H2NF

1 , U -insertion diagrams arise in the Q̂ box, and
are responsible for controlling the h̄ω dependence introduced
by the auxiliary potential U .

We have already addressed this issue in Ref. [34] (see
Fig. 11 therein) and, in order to consider it within the present
study, we show the results of the calculated yrast Jπ = 2+
excitation energies and two-neutron separation energies (S2n)
for calcium isotopes up to N = 36 in Fig. 6, obtained with
different values of the HO parameter.

The results reported in Fig. 6 have been obtained varying
h̄ω from 10 to 12 MeV. The blue bands represent the variation
that is obtained if only first-order U -insertion diagrams are
included in the calculation of the Q̂ box, while the red bands
are obtained if U -insertion diagrams are calculated through
third order in perturbation theory.

We observe a substantial reduction of the dependence on
the choice of the HO parameter as higher-order contributions
of the U -insertion diagrams are included, in particular the
closure properties at N = 28 are very sensitive to this issue.

As mentioned before, the Heff derived for one-valence
nucleon systems contains only one-body contributions and
provides the SP energies for the SM calculation, while the
two-body matrix elements are obtained from Heff derived
from the two-valence nucleon systems, once the theoret-
ical SP energies are subtracted from its diagonal matrix
elements.

In order to perform our study, we have derived for each
nucleus two classes of Heff s; one has been obtained calculating
Q̂-box diagrams with 2NF vertices only, dubbed as H2NF

eff . The
other, indicated as H3NF

eff , has been built up including also H3NF
1

first-order contributions in the collection of Q̂-box diagrams
(see Fig. 1). In the Supplemental Material [43] the TBMEs of
H2NF

eff , H3NF
eff for systems with two valence nucleons only can

be found, while the proton and neutron SP energies calculated

TABLE I. Theoretical proton and neutron SP energies (in MeV)
from H2NF

eff and H3NF
eff .

H 2NF
eff H 3NF

eff

επ εν επ εν

0 f7/2 0.0 0.0 0.0 0.0
0 f5/2 4.2 5.1 5.5 7.4
1p3/2 0.0 0.5 1.6 2.8
1p1/2 1.0 2.0 2.9 4.9

with respect to the 0 f7/2 orbital—επ and εν , respectively—are
reported in Table I.

In order to accomplish our goal to investigate the shell
evolution of spectroscopic properties of f p nuclei, we have
performed a multipole decomposition of H2NF

eff and H3NF
eff for

any isotope under investigation [44,45], focusing our interest
on their monopole components. It is worth recalling that
the angular-momentum-averaged monopole component of the
shell-model Hamiltonian is defined as follows:

〈i, j|Hmon
eff |i, j〉 = εi + ε j +

∑
J (2J + 1)〈i, j|Veff |i, j〉J∑

J (2J + 1)

= εi + ε j + V mon
i j , (5)

where Veff is the two-body component of Heff , i and j indicate
the quantum numbers of the SP states, and the εi are the SP
energies. Consequently, we have also studied the evolution of
the proton and neutron ESPEs as a function of the valence
nucleons, that are defined as

ESPE( j) = ε j +
∑

j′
V mon

j j′ n j′ , (6)

where the sum runs over the model-space levels j′, n j being
the number of particles in the level j.

III. RESULTS

A. Monopole components of the effective SM Hamiltonians

Before we start our discussion about the characteristics
of the monopole component of H2NF

eff and H3NF
eff , it is worth

coming back to the calculated SP energies of both effective
Hamiltonians, which can be found in Fig. 7 as single-particle
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FIG. 7. Calculated SP spectra of 41Sc and 41Ca, as obtained from
H 2NF

eff and H3NF
eff . They represent the proton and neutron SP energies,

respectively, employed in our calculations.
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spectra of 41Sc and 41Ca. We do not show in this figure any
experimental counterpart, because the experimental informa-
tion about the spectroscopic factors of both nuclei are rather
scanty, and consequently we have no clear indications on the
SP nature of the observed low-energy levels [46].

From the inspection of Fig. 7, we observe that H2NF
eff does

not provide enough spin-orbit splitting between the 0 f7/2,5/2

orbitals in both 41Sc and 41Ca. Moreover, the 0 f7/2 and 1p3/2

orbitals are not well separated and, consequently, it can be
inferred that calculations with H2NF

eff might not be able to
describe the shell closure that is observed at Z, N = 28. On
the other hand, the contribution coming from the 3NF is able
to heal this defect of the SM Hamiltonian, and in the SP
spectrum of H3NF

eff the 0 f7/2 orbital is lowered enough with
respect to the 1p3/2, 1p1/2, 0 f5/2 orbitals to lay the foundation
of a better shell closure at N, Z = 28.

Actually, a shell closure cannot be guaranteed only by
the SP energy spacings, since the TBMEs of Heff play a
crucial role in their evolution as a function of the valence-
nucleon number. As a matter of fact, in Ref. [20] the SP
energies of p-shell nuclei, calculated with and without 3NF
contributions, start both from a sufficient spin-orbit splitting to
provide, in principle, the Z, N = 6 subshell closure. However,
we have found that the monopole component of H2NF

eff com-
presses the separation between the 0p3/2 and 0p1/2 orbitals
when increasing the valence-nucleon number, at variance with
the H3NF

eff monopole term that preserves a constant energy
spacing.

On the above grounds, a study of the evolution of the
ESPEs of H2NF

eff and H3NF
eff in terms of the valence-nucleon

number is highly desirable to understand how to obtain a
sound description of their shell closure properties. This evo-
lution of the ESPEs depends only on the TBMEs, and, in
the following, we decide to report the neutron ESPEs of
calcium isotopes and both neutron and proton ESPEs of nickel
isotopes, as a function of the number of valence neutrons,
calculated by employing the TBMEs of H2NF

eff and H3NF
eff ,

but starting from the same set of SP energies, namely those
of H3NF

eff . This is done to evidence the relevant features of
H2NF

eff , H3NF
eff monopole components, and to infer their different

shell-evolution properties around doubly closed 48Ca and
56Ni.

Figure 8 shows the neutron ESPEs of calcium and nickel
isotopes obtained with H2NF

eff TBMEs, starting from H3NF
eff SP

energies, and evolved as a function of the valence neutrons
up to N = 40. Black dots, blue squares, green diamonds, and
indigo triangles indicate the 0 f7/2, 0 f5/2, 1p3/2, and 1p1/2

ESPE, respectively.
As can be seen, the spacings between the f p orbitals

remain almost constant with respect to the evolution of the
valence-neutron number with the 0 f7/2 ESPE well separated
from the other ones. For the calcium isotopes also 1p1/2,
0 f5/2 orbitals are separated from the 1p3/2 one and between
themselves too, while neutron ESPEs of nickel isotopes reveal
that these three orbitals are grouped and very close to each
other.

This feature seems to point to a reasonable shell closure
in doubly closed 48Ca when employing the H3NF

eff neutron SP
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FIG. 8. Neutron ESPEs from H2NF
eff TBMEs for calcium and

nickel isotopes as a function of the neutron number (see the text for
details).

spacings reported in Table I and TBME obtained from H2NF
eff ,

and also to a pronounced subshell closure at N = 32 and N =
34 for calcium isotopes. This is consistent with the results
we obtained in a previous work [47], whose focus was the
study of the spectroscopic properties of neutron-rich calcium
isotopes. In that paper, the TBME were extracted from a
HVlow-k

eff derived from the CD-bonn potential [48] renormalized
by way of the Vlow-k procedure, while the SP energies were
fitted on experimental SP states in 47,49Ca. As a matter of
fact, the role of three-body forces is mainly absorbed by the
procedure of fixing SP energies to reproduce SP observables;
actually, in a recent paper [49] we have shown that the theo-
retical SP energies obtained from HVlow-k

eff do not reproduce the
observed shell closure of the neutron 0 f7/2 orbital in 48Ca, the
agreement between the experimental and calculated spectra of
this nucleus being only qualitative.

As regards the nickel isotopes, the close values of 1p3/2,
1p1/2, 0 f5/2 ESPEs may influence the shell closure in 56Ni and
provide the disappearance of N = 32 and N = 34 subshell
closures.

The neutron ESPEs obtained from H3NF
eff TBME are pre-

sented in Fig. 9 for both calcium and nickel isotopes.
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FIG. 9. Same as in Fig. 8, but for H3NF
eff .

The inclusion of 3NF effects does not affect the general
behavior of the neutron ESPEs for both isotopic chains, but
some specific details may reveal relevant features that will
show up in the results of the full SM calculations in the next
section.

As regards the calcium isotopes, at N = 28 the neutron
monopole component of H3NF

eff enlarges the 0 f7/2-1p3/2 gap
by 0.7 MeV, inducing a stronger shell closure. Also the
1p1/2-1p3/2 and 0 f5/2-1p1/2 splittings at N = 32 and N = 34,
respectively, grow and strengthen the corresponding subshell
closures, as we will show in the next section.

The 3NF contribution to the neutron ESPEs provides also a
stronger closure in 56Ni since the gap between 1p3/2 and 0 f7/2

orbitals at N = 28 is 1 MeV larger than the one reported in
Fig. 8, that is calculated with TBME obtained from H2NF

eff .
The above considerations about the 56Ni shell closure

are strengthened if we consider also the evolution of proton
ESPEs of nickel isotopes as a function of the valence-neutron
number.

As can be seen in Figs. 10, 11, the separation in energy
between the 0 f5/2 and 0 f7/2 ESPEs is about 5.8 MeV and
8.6 MeV at N = 28, calculated with H2NF

eff and H3NF
eff , respec-

tively. Moreover, the gap between the proton ESPEs of 0 f5/2
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FIG. 10. Proton ESPEs from H2NF
eff TBMEs for nickel isotopes as

a function of the neutron number.

and 1p3/2 orbitals reduces to 0.8 MeV at N = 28, if only 2NF
is considered to derive the shell-model effective Hamiltonian,
while the 3NF contributions limit this reduction to 1.6 MeV.

These features should induce a collective effect at N = 28,
and a less pronounced shell closure for 56Ni than 48Ca. This
collectivity affects the results obtained with H2NF

eff more than
those with H3NF

eff , as we will see in the next section.

B. Shell-model calculations

There are some spectroscopic features which reveal the
shell closure properties, and among them two of the most
important ones are the behavior of the excitation energy of
Jπ

1 = 2+ states and the evolution of the ground-state (g.s.)
energy in even mass isotopic/isotonic chains, with respect to
the number of valence neutrons/protons.

These properties will be investigated by diagonalizing the
two classes of Hamiltonians H2NF

eff and H3NF
eff , and employing

for both of them the set of SP energies provided by H3NF
eff .

We refer to them as the class of effective Hamiltonians since,
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FIG. 11. Same as in Fig. 10, but for H3NF
eff proton ESPEs.
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FIG. 12. Experimental and calculated excitation energies of the
yrast Jπ = 2+ states for calcium isotopes from N = 22 to 38. See
text for details.

as reported in Sec. II, they change according to the number
of valence protons and neutrons because of the density de-
pendence introduced by accounting for three-body correlation
diagrams.

In addition to these two classes of effective SM Hamiltoni-
ans, we have built another one, that we dub Hmon

eff , by summing
the monopole component of H3NF

eff and the multipole ones
belonging to H2NF

eff . The scope of this operation is to evidence
the interplay of the monopole and multipole components
through the diagonalization of the effective SM Hamiltonian,
and will be better clarified in the discussion of the result of
our calculations.

The experimental and theoretical results obtained with
H2NF

eff , H3NF
eff , and Hmon

eff will be indicated in the figures with
red dots, blue triangles, black diamonds, and indigo squares,
respectively.

We start our study with calcium isotopes, and in Fig. 12
the Jπ = 2+

1 excitation energies from N = 22 up to N = 38
are shown.

We observe that the results obtained with all three Hamilto-
nians are very similar. The shell closure at N = 28 is very-well
reproduced by H3NF

eff and Hmon
eff , while the Jπ = 2+

1 excitation
energy obtained with H2NF

eff is about 0.7 MeV lower than the
experimental one [46]. The different results for the 48Ca shell
closure trace back to the different energy gap between the
1p3/2 and 0 f7/2 neutron ESPE when we employ the monopole
term of H2NF

eff and H3NF
eff , as can be seen in Figs. 8 and 9.

There are present also two subshell closures at N = 32, 34,
the second one being too strong when compared with exper-
iment. As a matter of fact, a preliminary study of calcium
isotopes, performed with a larger model space that includes
the 0g9/2 orbital too, shows that this enlargement of the model
space is mandatory to reproduce the observed behavior at
N = 32, 34 [50].

Different closure properties, related to whether 3NF are
included or not in the derivation of the effective SM Hamil-
tonian, are present also in the calculation of the S2n that are
shown in Fig. 13 for the calcium isotopes up to N = 40. As
already mentioned in the previous section, we have shifted the
SP energies in Table I in order to reproduce the experimental
g.s. energy of 41Ca and 41Sc with respect to 40Ca.
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FIG. 13. Experimental and calculated two-neutron separation en-
ergies for calcium isotopes from N = 22 to 40. Data are taken from
[42,51,52], open circles correspond to estimated values reported in
Ref. [42]. See text for details.

As can be seen, both experimental [42,51,52] and theoreti-
cal S2n show a rather flat behavior up to N = 28, then a sudden
drop occurs at N = 30 that is a signature of the shell closure
due to the 0 f7/2 filling. Another decrease appears at N = 34
because at that point the valence neutrons start to occupy the
1p1/2 and 0 f5/2 orbitals.

It should be recalled that recently the comparison between
experimental and calculated masses at N = 32, 34 of neutron-
rich calcium isotopes has been spotted as a way to pin down
the role of 3NF in nuclear structure calculations [15,51].

The results obtained with H3NF
eff and Hmon

eff follow closely
the behavior of the experimental S2n up to N = 34, while those
obtained with H2NF

eff provide a less satisfactory energy drop
between N = 28 and 30.

At N = 36, the repulsive 3NF effects contribute to a sud-
den drop of the two-neutron separation energies, in contrast
with the experimental values. As for the case of the calculated
yrast Jπ = 2+ excitation energies, we need to point out that
a larger model space, including at least the 0g9/2 orbital, im-
proves the depiction of the spectroscopic properties of heavy-
calcium isotopes [50]. Within such an enlarged model space,
we have found that H3NF

eff and Hmon
eff provide a limit of the

neutron dripline that is consistent with the recent observation
of a bound 60Ca [53], while from the inspection of Fig. 13
we observe that present results predict the calcium dripline
located at N = 38.

Now we move from systems with identical valence particle
to those with both valence protons and neutrons, in order
to investigate the changes in the shell evolution and closure
properties originating from the collectivity ignited by the T =
0 channel of the residual interaction.

In Fig. 14 the calculated Jπ = 2+
1 excitation energies of

titanium isotopes are reported and compared with data [46].
We observe that the experimental behavior is, overall, well
reproduced by all three SM Hamiltonians up to N = 34, the
largest discrepancies occurring for 42Ti and 52Ti with all
effective Hamiltonians, and for 54Ti with H2NF

eff .
As regards the results for heavier isotopes, the underes-

timation of the experimental results points to the need to
employ a larger model space, as already mentioned.
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FIG. 14. Same as in Fig. 12, but for titanium isotopes from N =
20 to 40. See text for details.

From the inspection of Fig. 15, we observe that also the
S2n experimental behavior [42] is well reproduced by H3NF

eff
and Hmon

eff , while the calculations with H2NF
eff underestimate

the drop of two-neutron separation energy between N = 28
and 30. The latter feature evidences that also when the T = 0
channel is involved, the contribution of 3NF helps to obtain a
better comparison with experiment up to N = 34.

The collective behavior increases with the number of
interacting protons and neutrons, as can be observed for
the chromium and iron isotopes. In Figs. 16, 17 we re-
port the experimental [46] and calculated excitation energies
of the yrast Jπ = 2+ states up to N = 40 for both isotopic
chains. We observe in both cases that the calculations with
H2NF

eff provide too much collectivity at N = 28, while effective
SM Hamiltonians, whose monopole component includes 3NF
contributions, are able to reproduce the experimental behavior
up to N = 34–36 rather well.

Similar considerations follow from the inspection of
Figs. 18, 19, where the experimental [42] and calculated S2n

for chromium and iron isotopes up to N = 40 are shown, re-
spectively. We remind that empty red circles refer to estimated
values reported in Ref. [42].

As can be seen, for these isotopes, the observed S2n de-
crease from N = 28 to N = 30 is no longer as steep as in
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FIG. 15. Same as in Fig. 13, but for titanium isotopes from N =
22 to 40. See text for details.
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FIG. 16. Same as in Fig. 14, but for chromium isotopes. See text
for details.

calcium and titanium isotopes, evidencing the quenching of
the N = 28 shell closure.

Once again the 3NF contribution, which is included in
the monopole component of H3NF

eff and Hmon
eff , provides a

better reproduction of the experimental behavior at least up to
N = 34.

Finally, we examine the nickel isotopes whose study is piv-
otal to understand the shell-closure properties of SM Hamilto-
nians. As we have seen, the proton closure at Z = 28 is eroded
by the increment of the number of valence neutrons approach-
ing doubly closed 56Ni because of the collectivity induced by
the proton-neutron interaction. Consequently, reproducing the
evolution of the spectroscopic properties of nickel isotopes
towards the shell closure may represent a challenging test for
the theoretical SP energies and TBMEs.

In Fig. 20 we show the behavior of the experimental Jπ =
2+

1 excitation energies of nickel isotopes up to N = 40 [46],
and the calculated ones up to N = 38. This different choice is
due to the fact that the calculated values of the yrast Jπ = 2+
excitation energies for 68Ni are larger than 7 and 5 MeV with
and without 3NF contribution, respectively. Such an overesti-
mated result overshoots the energy scale of Fig. 20—we have
chosen to have the same scale in all similar figures for the sake
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FIG. 17. Same as in Fig. 14, but for iron isotopes. See text for
details.
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FIG. 18. Same as in Fig. 15, but for chromium isotopes. See text
for details.

of consistency—and is a mere consequence of the limitation
of f p-shell model space to describe heavier systems.

As can be seen, the three effective Hamiltonians predict
a shell closure at N = 20 (48Ni), although less marked with
H2NF

eff , that confirms the ability of their monopole components
to provide a similar behavior in the identical-particle channel.

Actually, both H3NF
eff and Hmon

eff results compare themselves
quite well with 52,54,56Ni data, while those obtained with H2NF

eff
exhibit a too strong collective behavior, failing to reproduce
the shell closure at N = Z = 28. As a matter of fact, the
comparison between the results obtained with H2NF

eff and Hmon
eff

evidences very clearly that the correct shell evolution may be
obtained only including 3NF contributions in the monopole
component of the SM Hamiltonian, the SP energies being not
sufficient to balance the collectivity induced by the T = 0
multipole component of the TBMEs.

The same conclusions may be drawn from the inspection of
the behavior of the S2n as a function of the valence neutrons,
which are reported in Fig. 21. For nickel isotopes the drop in
energy between N = 28 and N = 30 appears again, and the
experimental behavior [42] is obtained correctly by means of
H3NF

eff and Hmon
eff .

We conclude our discussion about the evolution of the N =
28 shell closure summarizing our results in Fig. 22, where
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FIG. 19. Same as in Fig. 15, but for iron isotopes. See text for
details.
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FIG. 20. Same as in Fig. 14, but for nickel isotopes. See text for
details.

we have reported, for the N = 28 isotones, the experimental
and calculated behavior of both Jπ = 2+

1 excitation energies
and B(E2; 2+

1 → 0+
1 ) transition rates. The proton and neutron

effective charges to calculate the B(E2)s have been obtained
by way of many-body perturbation theory using only 2NF
vertices, and details of the derivation of effective SM one-
body operators can be found in Ref. [49].

As can be seen, the filling of the proton 0 f7/2 orbital tunes
the collectivity at N = 28 between the doubly closed 48Ca and
56Ni, and the evolution of such a collective behavior is well
reproduced including 3NF contributions, but it is a failure by
considering only 2NF.

IV. CONCLUDING REMARKS AND OUTLOOK

In this paper we have presented the results of SM calcu-
lations for f p-shell nuclei in the framework of the realistic
shell model, starting from chiral 2NF and 3NF, and deriving
effective SM Hamiltonians within the many-body perturba-
tion theory. These effective Hamiltonians account also, in
their two-body matrix elements, for the different number of
valence protons and neutrons characterizing each nucleus
under investigation.

In particular, we have calculated the contribution at first
order in perturbation theory of a N2LO chiral 3NF potential
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FIG. 21. Same as in Fig. 15, but for nickel isotopes. See text for
details.
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to the Heff , in order to study how it affects its monopole com-
ponent and the ability to describe the observed shell-closure
properties of f p isotopic chains. To this end, starting from
two different class of Heff s—one including 3NF contributions
and the other one not—we have first carried out an analysis of
the effective single-particle energies for calcium and nickel
isotopes as a function of the valence-neutron number. This
study has provided information about shell-closure properties
and their dependence on the 3NF effects included in the
monopole components of Heff .

Successively, we have performed a full diagonalization of
our Heff s for the calcium, titanium, chromium, iron, and nickel
isotopes, and focused our attention on the shell evolution of
the excitation energies of the yrast Jπ = 2+ states and the two-
neutron separation energies.

The conclusion of our study can be summarized as
follows:

(i) Starting from realistic potentials, derived within the
chiral perturbation theory, the role of the 3NF is
fundamental to obtain SP energies and TBMEs that
may reproduce the shell evolution as observed from
the experiment.

(ii) The TBMEs of Heff derived from 2NF only own de-
ficient monopole components, which cannot balance
the collectivity induced by higher multipole compo-
nents in the proton-neutron channel. The result is an
erosion of the N = 28 shell closure when the number
of valence protons increases.

(iii) The central role of the monopole component of the
Heff is testified by the fact that when it is subtracted
from H2NF

eff , and substituted with the monopole of
H3NF

eff , the observed shell evolution and the N = 28
shell closure is restored.

The outlook of our future work points towards the im-
provement of the derivation of H3NF

eff by including higher-order
contributions with 3N vertices in the perturbative expansion
of the Q̂ box, and the investigation of heavier systems in
order to assess the reliability of the present approach in exotic
neutron-rich nuclear systems.
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