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Background: Atomic nuclei are remarkable quantum many-body systems where clustering properties develop
naturally from underlying interactions between the constituent nucleons. Clustering degrees of freedom manifest
themselves in multiple structure and reaction observables.
Purpose: Our goal is to study nuclear clustering and its emergence in many-nucleon dynamics from nucleon-
nucleon interactions. Clustering is a phenomenon that is known to emerge on the boundary between structure and
reactions, therefore developing appropriate techniques that bridge the structure-reaction divide and establishing
connections to observables is among our principal objectives. Showing consistency and how the new techniques
can be reduced to well established other methods is an important part of this work.
Methods: The configuration-interaction technique based on second quantization is used to treat the quantum
many-body problem assuring that fermionic antisymmetry is fully satisfied. The use of the harmonic oscillator
single-particle basis allows for the center-of-mass coordinate to be separated and prepared in a desired oscillator
state for each cluster. The relative motion reaction basis channels are constructed by coupling clusters in different
harmonic oscillator states with respect to their relative motion. Finally, using a resonating group method strategy
we solve the generalized eigenvalue problem to obtain scattering channels. Structural clustering characteristics
are discussed and the modified harmonic oscillator representation for scattering equations method is used to
extract scattering observables.
Results: New methods for treating clustering problems have been put forward. We demonstrate broad
applicability of the developed techniques. Examples highlight connections with algebraic techniques, and
the role of approximations leading to algebraic limits is assessed using realistic examples. Various types of
clustering characteristics are used to study alpha clustering in light nuclei that are relevant to currently ongoing
experimental efforts. We demonstrate the emergence of strongly clustered bands of states in beryllium, triple
alpha channels in 12C, and molecular type clustering in 21Ne. Starting from nucleon-nucleon interactions without
any additional assumptions scattering phase shifts for alpha-alpha scattering are determined and shown to be
consistent with those observed.
Conclusions: In this work we put forward a new configuration-interaction-based method that targets the physics
of clustering, and further unifies nuclear structure and reactions. We provide detailed discussions and many
examples highlighting features and advantages of the approach.
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I. INTRODUCTION

Understanding the formation of substructures within
atomic nuclei, also known as nuclear clustering, from micro-
scopic principles remains one of the most complex problems
in nuclear physics. This emergence of clustering from the
nucleon-nucleon interactions has a significant impact on the
structure of light nuclei. Along with clustering, the emergence
of regularities such as nuclear shell structure, rotational bands,
and vibrational states to name a few, and their interplay, is a
central question of modern nuclear many-body physics [1,2].

In the following part of this Introduction we highlight
several key theoretical questions addressed in this work along
with some abbreviated historical perspectives that help to
position our work in the field.

*Present address: Lawrence Livermore National Laboratory, P. O.
Box 808, Livermore, CA 94551, USA.

The concept of a nucleus as being comprised of α particles
has existed since the early days of nuclear physics [3–5].
Strong binding of an α particle and abundance of experi-
mentally known α decaying elements support this concept.
In further support, theories in Refs. [3,4,6] emphasized that
the binding energies of N = Z nuclei seem to be proportional
to the number of bonds that can be made between the α

constituents of the nucleus. Currently, the antisymmetrized
molecular dynamics method continues this direction of work,
being extensively applied to the problem of molecular-type
states in clustered nuclei [7]. Such states are known to exist in
N > Z nuclei [8,9], with the extra neutrons forming valence
bonds between the α, or other heavier cores, similar to the
role of electrons in molecules. Relying on group theory,
algebraic symmetry-based approaches have been used to fur-
ther explore molecularlike physics of clustering suggesting
triangular and tetrahedral spatial symmetries in 12C and 16O
[10,11].
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With the discovery of the neutron, attention shifted to
models built using nucleonic degrees of freedom, such as
the nuclear shell model. Cluster models and the nuclear shell
model have been evolving in parallel, presenting a need for a
unified theory that would explain the emergence and survival
of clustering.

A vast number of states possessing cluster characteristics
of both α and non-α type [12,13] were found to lie at energies
near the respective cluster decay threshold, prompting Ikeda
to exemplify this property in the, now famous, Ikeda diagram
[14]. This idea ties in nicely with the Gamow theory of α

decay, in which an already preformed α particle tunnels from
the nuclear surface through the Coulomb barrier. Our theo-
retical interest today targets the question of quantum many-
body structure and its interaction with reaction continuum.
Clustered states and clustered rotational bands in many nuclei,
including those with N = Z , have been observed with high
angular momentum, deeply in the continuum at very high
excitation energies, and remarkably unmixed with enormous
number of other states [15–17]. The role of coupling to
the reaction continuum in reorganizing quantum many-body
structure into a few superradiant states that are strongly cou-
pled and separating them from those that nearly do not decay
has been actively discussed recently [18–21].

The triple-α clustered, second excited 0+ state in 12C is
among the most important ones in astrophysics. In 1954 Sir
Fred Hoyle predicted [22,23] the existence of this state as a
necessary doorway for the creation of 12C in the universe.
Given that the 2α system 8Be is unbound, and there exists
no bound A = 5 system, the formation of elements heavier
than A = 4 would otherwise be hindered. From this argument
the state is expected to have a strong triple-α character,
a result verified experimentally. Only recently it has been
shown that the decay proceeds predominantly through the
short-lived 8Be 0+ ground state resonance [24–28]. Complex
multifragment decay channels, internal structure and final
state interactions are all challenging theoretical questions; see
Ref. [29] and references therein.

In the 1970s a large body of experimental data was col-
lected aiming at investigating cluster aspects of light nuclei;
see Refs. [30–32] for some specific examples, or Ref. [33]
for a more complete survey of experimental data. The main
tools of choice were the α transfer reactions, such as (6Li, d ),
(7Li, t ), and α knockout reactions such as (p, pα). These
reactions were found to be selective to populating or depop-
ulating states with some degree of clusterization. Attempts to
describe α clustering using the many-body techniques of the
nuclear shell model led to the development of powerful SU(3)
symmetry-based approaches [34,35]. Despite some degree of
success [36,37], significant deviations from experiment call
for further theoretical research. This is one of the motivating
factors for this work.

Coupling of the many-body structure to cluster reactions
gave rise to the resonating group method (RGM) [38,39],
which aimed at an explicit description of the nucleus as a
multifragment clustered state, while maintaining a micro-
scopic description for the cluster fragments and employing
a fully antisymmetric wave function on the nucleonic level.
The method based on harmonic oscillator representation of

scattering equations (HORSE) [40] has been widely used
recently to tackle the structure-reactions interface.

Using Green’s function Monte Carlo calculations the emer-
gence of clustering in 8Be has been demonstrated starting
from a nucleon-nucleon (NN) interaction [41]. This fun-
damental result reignited present-day theoretical interest to
clustering; mean field approaches [42], lattice models [43,44],
large-scale ab initio shell model calculations [45], and Bose-
Einstein condensate wave functions [46–48] have all been em-
ployed in an attempt to better understand how the clusters are
formed, and which aspects of nuclear structure and reactions
are most affected by the formation of substructures within the
nucleus.

In this work we seek to further advance and bring closer
the above-mentioned questions and research directions.

We describe clustering starting with nucleon degrees of
freedom and nucleon-nucleon interactions, and show the
emergence of clustering degrees of freedom without any a
priori assumptions. We make an explicit effort to connect our
work with algebraic techniques which highlight the transi-
tional physics between the single particle and collective pic-
tures of the nucleus. Finally, we bridge structure and reaction
physics and discuss the connection between theoretical clus-
tering characteristics and experimentally extracted quantities
such as spectroscopic factors and scattering phase shifts.

The work is organized as follows. In Sec. II we present
theory concerning the many-body structure of clustering chan-
nels; this includes a review of the configuration interaction
technique, treatment of the center of mass in the harmonic
oscillator (HO) basis and manipulations using the boosting
technique, construction of special many body configurations
that correspond to clustered states (referred to in our work as
cluster basis channels), and finally we use these cluster basis
states as a basis for the RGM approach where the many-body
Hamiltonian is used to determine the resonant cluster channel
variationally.

In Sec. II we also highlight the important connections of
this theory with previously used methods. We show that basis
cluster channels take the form of stretched irreducible repre-
sentations of SU(3) algebra if some simplified assumption of
the alpha particle wave function is made. We demonstrate that
previously discussed spectroscopic characteristics correspond
to overlaps with cluster basis channels, using both normalized
and bare channels for comparison.

While keeping in mind all of the limitations of these
spectroscopic characteristics, we put forward dynamic spec-
troscopic factors, a natural generalization, suggesting the sub-
stitution of the static basis channels with actual dynamic RGM
solutions (referred to as cluster channels).

In Sec. III present the bulk of our studies, showing how
the method is used, how clustering emerges, and how it is
related to cluster channels and their positions in the energy
spectra. We also address the structure of various channels in-
cluding those of three alpha particles. We present examples for
both no-core and with-core valence spaces and corresponding
Hamiltonians.

In contrast to structural overlaps between nuclear states
and cluster channels that are not true observables, in Sec. IV
we present an approach targeting reaction physics, where the
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basis channels and extended RGM type solutions are used
to obtain scattering phase shifts via the harmonic oscillator
representation of scattering equations (HORSE) method. The
method is extended to effectively treat the Coulomb part of
the interactions and its application to 8Be is shown.

A brief summary of our work is given in Sec. V.

II. CLUSTERING STRUCTURE

In this section we describe quantum many-body methods
pertinent to the formulation of the resonating group method
for clustering problems. The methods presented are of a struc-
tural nature and thus are limited to clustering characteristics
of bound states or narrow resonances, namely those where
Fermi’s “golden rule” is applicable. Despite this limitation
the structural form of channels described here represents a
doorway for doing reaction physics with clusters; this topic
is described in Sec. IV.

A. Configuration interaction

As a foundation of our many-body configuration interac-
tion approach we use the single particle harmonic oscillator
(HO) basis

〈r|n�m〉 = φn�m(r, θ, φ) = φn�(r)

r
Y�m(θ, φ), (1)

which are eigenstates of a spherically symmetric HO potential
determined by the frequency parameter ω and mass parameter
m. The characteristic oscillator length is b = √

h̄/mω. The
corresponding energies h̄ω(N + 3/2) depend only on the
frequency ω and on the total number of excitation quanta,

N = 2n + �. (2)

The integer n = 0, 1, . . . above denotes the total number of
nodes in the radial wave functions, � is the orbital angular
momentum, and m is its magnetic projection. The explicit
forms of HO wave functions can be found in a number
of textbooks [49]; details pertaining to this work and our
computer codes can be found in Ref. [50].

Any multinucleon wave function that we use is represented
via a linear combination of Slater determinants that in the
form of second quantization is written as

|�〉 ≡ �†|0〉 =
∑

{1,2,3,...A}
〈1, 2 . . . A|�〉 a†

1a†
2 . . . a†

A|0〉, (3)

where a†
1 is a single-nucleon creation operator in a state

labeled with a cumulative label 1 that combines the HO quan-
tum numbers with a nucleon spin. In Eq. (3) we emphasize
the polymorphism between states and operators by expressing
the same state as a result of many-body creation operator �†

acting on the vacuum state |0〉.
Unlike the traditional shell model which is built on a

predetermined set of Slater determinants, the configuration
interaction (CI) approach uses on-demand configurations.
Thus, within the CI approach building the channel basis and
boosting a small number of states can be done without any
significant computational resources.

Relying on the commutation of operators in second quan-
tization, the configurations in Eq. (3) are always organized
under forward ordering so that 1 < 2 < · · · < A. The un-
derlying operation that forward orders two configurations
plays a key role in products of wave functions assuring Pauli
antisymmetry between all nucleons at all stages,

|A{�α�β}〉 = �†
α�

†
β |0〉. (4)

Another benefit to CI comes from the ability to view con-
figurations as a generalized object, for example the symmetry-
adapted No-Core Shell Model (NCSM) [51] relies on select
symmetry-based configurations. It is often the case that just
a few select symmetry-based configurations play a dominant
role. Combining various types of configurations, although at
the expense of introducing nonorthogonality, is a major com-
ponent of the CI development. In this work, as one specific
type of configuration useful for establishing connection to ear-
lier works [52], we use SU(3) symmetry-based configurations.
Upon final evaluation the SU(3) configurations are converted
to an m-scheme form of Eq. (3) by numerical diagonalization
of the Casimir operators of SU(3) and its subgroups.

B. Center of mass

The many-body HO Hamiltonian that determines our basis
states has a rich symmetry; naturally this is evident from the
large degeneracy of eigenstates where energy is determined
only by the total number of oscillator excitation quanta N
which can be distributed among nucleons in multiple ways.
All states having the same number of quanta form represen-
tations of oscillator symmetry groups. In order to respect all
of these symmetries in our work, similar to no-core shell
model strategies [53], any truncation of configurations is done
by the number of excitation quanta. Along with the already
mentioned SU(3), another symmetry group is O(A) which
reflects an orthogonal transformation of all nucleon coordi-
nates. This symmetry allows for an exact separation of the
center-of-mass (c.m.) coordinate in the restricted space. Thus,
while in a configuration space determined by the maximum
number of oscillator excitation quanta Nmax the total number
of quanta is shared between c.m. and intrinsic degrees of
freedom N = Nc.m. + N ′. Using the c.m. Hamiltonian one
can separate exactly the states with Nc.m. = 0, the so-called
nonspurious states, so that the total wave function of type (3)
has a form

� = φ000(R)� ′. (5)

These states, where the overall c.m. is in the lowest oscil-
lator state, are considered to comprise a physical space of
interest. Naturally, any translationally invariant operator that
does not depend on the c.m. degree of freedom would be
evaluated between these states as if they were evaluated using
translationally invariant intrinsic wave functions � ′. The well-
known computationally efficient procedures for separating
nonspurious states were proposed by Palumbo and Prosperi
and further developed by Gloeckner and Lawson [54,55].

In this work we build a basis for cluster reaction channels
which are many-body wave functions of type (3) and with
overall c.m. as in Eq. (5) but they are comprised of two or
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FIG. 1. Schematic depiction of the boosting process for a α

particle being boosted to higher shells.

more fragments that are in a specific HO oscillator state of
relative motion, with Nrel relative number of quanta. For this
purpose we introduce a c.m. boosting procedure [29,56] which
amounts to construction of wave functions,

�n�m = φn�m(R) � ′. (6)

The boosting procedure for the alpha particle is shown
schematically in Fig. 1.

By satisfying the principles of translational invariance we
maintain the exact factorization of the c.m. degree of freedom
therefore operations on the c.m. coordinate discussed here
have no effect on the intrinsic wave function � ′ and its
quantum numbers. Throughout this work we explicitly show
the c.m. quantum numbers and quantum numbers of relative
motion between c.m.’s of clusters, while the intrinsic quantum
numbers are presumed to be a part of wave functions � ′,
which in every case denotes a particular nucleus or cluster.

The wave functions (6) generalize the nonspurious state in
Eq. (5) since � = �000. These spurious c.m.-excited states
also emerge as unwanted solutions in the NCSM; though
in that case effective N ′

max available for the intrinsic part is
reduced by the number of quanta taken by the c.m. excitation
N ′

max = Nmax − (2n + �). Difficulty in diagonalization and re-
duction in the N ′

max make extraction of c.m.-boosted states
(6) from diagonalization impractical. The strategy described
next only requires a single state � = �000 as input, which is
obtained in a separate NCSM study.

In order to manipulate the c.m. part of the wave function
we introduce c.m. creation and annihilation operators defined
in the usual way:

B†
m = 1√

2Amωh̄
(AmωRm − iPm), (7)

Bm = 1√
2Amωh̄

(AmωRm + iPm), (8)

where m denotes a specific magnetic projection of vectors.
These operators are one-body operators and are related to the
isoscalar mass-density dipole (E1) operator,

Dm =
√

4π

3

√
h̄

2AMω
(B†

m + Bm). (9)

The action of each creation operator increases the number
of c.m. quanta by 1 and at the same time changes the rotational
quantum numbers according to its vector properties. In accor-
dance with the N = 2n + � relation for quantum numbers of

a spherically symmetric HO, the N spin-1 bosons couple to
angular momenta only of the same parity � = N, N − 2, . . .

and only with multiplicity of 1, thus construction is unique
and, similar to expressions of spherical Harmonics through
Cartesian coordinates, can be written analytically. However,
we found it more convenient to implement a simple recursive
strategy as follows. Two raising operators coupled to a rota-
tional scalar, the dot product of two vectors,

B† · B† ≡ (B†
+1B†

−1 + B†
−1B†

+1 − B†
0B†

0

)
, (10)

raise the number of nodes n in the c.m. coordinate by 1 and
correspondingly N by 2,

B† · B†�n�m = 1
4

√
(2n + 2)(2n + 2� + 3) �n+1�m. (11)

The analytically known normalization, see also Ref. [50],
provides an important numerical check. In order to increment
the angular momentum � the easiest strategy is to move along
the chain of aligned states where m = � with sequential action
of B†

+1,

B†
+1�n�� =

√
(� + 1)(2n + 2� + 3)

4(2� + 3)
�n�+1�+1. (12)

The angular momentum operator in this bosonic space is
proportional to the cross product B† × B, the axial vector
that does not change the number of oscillator quanta. Thus,
the m projection can be brought to the desired value by
repeated action of an angular momentum raising and lowering
operators,

L± = ±4
√

2(B†
0B±1 − B†

±1B0), (13)

following well known relations,

L±�n�m =
√

(l ∓ m)(l ± m + 1)�n�m±1. (14)

A related discussion on angular momentum can be found in
Refs. [35,57].

In Appendix A technical details describing the structure of
c.m.-boosted states and connection with the SU(3) algebraic
limit widely used in the literature are presented.

C. Basis for cluster reaction channels

Let us start our discussion here with two-body reaction
channels where two clusters, with A1 and A2 nucleons re-
spectively, are combined to form the A = A1 + A2 system.
We use the term reaction channel following its traditional
definition as an asymptotic state of the A1 + A2 system which
includes states of each individual cluster with stationary wave
functions � (1) and � (2) and the wave function of their relative
motion identified by the partial wave quantum number �.

We assume that the wave functions for both clusters � (1)

and � (2) are available from some previous shell model or
NCSM calculations which makes their c.m.-boosted versions
in Eq. (6) available as well. In our approach, which follows
the standard resonating group method and, equivalent to it,
the generator coordinate method [38,39], we construct the
asymptotic channels as linear combinations of the channel
basis states,


n�m = A{φ000(R)φn�m(ρ)� ′(1)� ′(2)}. (15)
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Here the c.m. coordinate R and relative coordinate ρ are

R = A1R1 + A2R2

A1 + A2
, ρ = R1 − R2. (16)

Importantly, the wave function (15) is still of the CI type
that depends on coordinates of all nucleons and is expressed
through linear superposition of Slater determinants following
the form of second quantization in Eq. (3). Explicitly, this
form is achieved via the recoupling of c.m. wave functions
for two c.m.-boosted fragments into a combined state with an
overall c.m. being in the nonspurious state while relative mo-
tion is in HO state with quantum numbers n�m. The recoupled
channel basis wave function in Eq. (15) is created using the
second quantization rules discussed earlier, see Eq. (4), by the
following operator:



†
nl =

∑
n1�1
n2�2

Mn�00;�
n1�1n2�2

[
�

†
n1�1m1

× �
†
n2�2m2

]
l, (17)

with Mn�00;�
n1�1n2�2

being the oscillator bracket also known as the
Talmi-Moshinsky-Smirnov coefficient [58]. In Eq. (17) we
slightly generalize Eq. (15) and introduce an abbreviated nota-
tion l that denotes all asymptotic channel quantum numbers.
The RGM basis channels do not need to have any specific
symmetry or spin coupling. The situation is similar to the
basis states within a traditional shell model. The fundamental
symmetries are automatically maintained and restored by the
Hamiltonian, as long as all relevant basis channel states are
included. The best choice may be dictated by anything from
theoretical considerations to actual experimental setup. Thus,
in each particular example the set of asymptotic quantum
numbers is different and identified separately. The bulk of
this work deals with spinless α particles, J1 = 0; in this case
the asymptotic state can be identified by the partial wave �,
its magnetic projection m, and angular momentum state of
the second fragment J2 and M2. We also used an equivalent
set of basis channels where J2 and angular momentum � are
coupled to a total channel angular momentum J. Thus, the
square brackets in Eq. (17) denote all the desired spin and
angular momenta couplings.

Discussing multifragment clustering, both l and internal
index n have to be further generalized. In particular, while for
the two-body problem A1 + A2 in Eq. (17) we used n to denote
the number of nodes in the relative HO wave function, which
is equivalent to using the total number of oscillator quanta
in relative motion Nrel = 2n + �. In general, we view n as an
index that labels channel basis states, for example for three
cluster channels a single total number of quanta in relative mo-
tion Nrel is insufficient to label a three-body state. The three-
α channel basis states discussed below are constructed via
sequential coupling, building relative Jacobi coordinates. An
alternative method is to just numerically solve a three-boson
problem in the HO basis with the Hamiltonian containing
Casimir operators of symmetries involved, and thus obtaining
all nonspurious solutions of angular momenta of interest. This
would automatically provide a numerical form of generalized
coefficients M coupling oscillator symmetry and rotational

symmetry simultaneously,



†
nl =

∑
n1�1m1
n2�2m2
n3�3m3

Mnl
n1�1m1n2�2m2n3�3m3

�
†
n1�1m1

�
†
n2�2m2

�
†
n3�2m3

. (18)

The diagonalization method is commonly used as a faster
and more numerically stable alternative for obtaining recoup-
ing coefficients, including oscillator brackets and Clebsch-
Gordan coefficients [52,59,60].

Basis channels provide some simple, although crude,
means for evaluating clustering spectroscopic characteristics;
some of these characteristics, such as traditional spectroscopic
factors or those from orthogonality conditions model (OCM),
are used to compare our method with what has been tradition-
ally used. We review these techniques and their connection
with our work in Appendix B.

The set of basis channels is not an orthonormal basis set.
The lack of orthogonality is naturally caused by the internal
structure of clusters where individual nucleons are subject to
Pauli blocking and antisymmetrization; this topic is reviewed
in Appendix C.

D. Resonating group method

The resonating group method that we discuss next has
a long history of success [61]. In recent years, the RGM
has reemerged [62] as one of the leading methods to tackle
the structure-reaction interface in microscopic many-body
calculations. It amounts to the construction of a channel wave
function,

|� (l,RGM)〉 =
∑

n

χn|
nl〉, (19)

variationally, where the RGM equation for the amplitudes χn

can be written in matrix form for each asymptotic channel l as∑
n′

Hnn′χn′ = E
∑

n′
Nnn′χn′ . (20)

In this expression H and N are referred to as the Hamiltonian
and norm kernel respectively and χ is a vector of variational
amplitudes. The kernels are evaluated in the channel basis

Hnn′ = 〈
nl|H |
n′l〉, Nnn′ = 〈
nl|
n′l〉. (21)

The RGM wave functions obtained in this way are fully
antisymmetrized, nonspurious, and respect all the symmetries
of the Hamiltonian provided. This procedure described above
is not in any way restricted to binary systems; multichannel
reactions and intrinsic excitations can be included as well. For
further discussion and more examples the reader is referred to
Ref. [61].

The RGM channels allow us to further improve the defini-
tion of the spectroscopic factors defining them as

S(RGM)
β,l ≡ ∣∣〈� (A)

∣∣� (l,RGM)
β

〉∣∣2
. (22)

Here β denotes a particular RGM solution of the generalized
eigenvalue problem (20). The net level of clustering is still
characterized by Eq. (C4) since the RGM-defined dynamic
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FIG. 2. Spectroscopic factors for ground state to ground state α

transition A → (A − 4) + α for nuclei in sd valence with equal num-
ber of protons and neutrons. Scattered points show experimental data
from knockout and pickup reactions, Refs. [37,68]. Connected points
show theoretical results obtained using USDB [67] Hamiltonian;
the wave function of α particle is obtained using the NCSM with
JISP16 interaction, h̄ω = 14 MeV, and Nmax as labeled. Traditional
spectroscopic factors (SFs), Eq. (B3), are shown with dashed (black)
line, the OCM [equivalent to RGM, Eq. (23)] SFs Eq. (C4) are in
solid (red), and dotted (blue) for different truncations Nmax of the α

wave function.

channels are formed by an orthogonal transformation of or-
thonormalized states

S(RGM)
l ≡

∑
β

∣∣〈� (A)
∣∣� (l,RGM)

β

〉∣∣2 = S(OCM)
l . (23)

III. EXAMPLES

A. Spectroscopic factors in sd space

Numerous studies of clustering have been done using the
traditional shell model [34,63]. Despite being phenomenolog-
ical in nature, the traditional shell model has been very suc-
cessful in identifying and predicting a plethora of properties
and to this day it remains a powerful tool for bridging fun-
damental theory and observations. Recent systematic studies
and comparisons with experiment have clearly affirmed the
applicability of the approach presented in preceding sections
and moved the discussion to a much more quantitative level.
Studies of 16O in Ref. [52], 10Be [64,65], 18O [15], and a
recent comprehensive examination of 20Ne [66] validate the
approach and raise some common questions which we discuss
next. The studies shown in Fig. 2 use a well established
semiempirical shell model Hamiltonian from Ref. [67] and
show the traditional, Eq. (B3), and OCM, Eq. (C4), spec-
troscopic factors for ground state to ground state transitions.
Below we summarize some key results of this study.

First, the traditional spectroscopic factors, while providing
some relative clustering information for states within a single
nucleus, generally fail to capture the systematics. This is seen
in Fig. 2 where traditional spectroscopic factors, shown with a

dashed (black) line, are too small and do not follow the exper-
imentally observed trend as the mass number increases. The
same findings were reported in several recent publications; for
example see Ref. [52]. The OCM spectroscopic factors, on the
other hand, are consistent with experimental trends.

Second, due to the phenomenological nature of the model,
previous considerations employed an s4 structure of the α

particle which, as discussed in Appendix A, allows for the
algebraic approach based on SU(3) symmetry. The shell
model is defined via matrix elements in the configuration
space, and the best agreement with data for various observ-
ables is generally achieved with oscillator frequency h̄ω =
41A−1/3 MeV. For most nuclei this is not consistent with
the optimal oscillator frequency for the α particle, h̄ω = 20–
30 MeV; see Fig. 12. Thus, considering components of the
transfer operator beyond s4 is important. In Fig. 2 curves
drawn with solid (red) and dotted (blue) lines show the OCM
SF for an α particle wave function obtained within Nmax = 0
and 8 truncations, respectively. The increase in wave function
complexity arising from the extra components leads to an
overall increase of the SF but it is difficult to draw any specific
conclusion.

Third, within a single oscillator shell only one basis chan-
nel contributes which makes OCM and RGM spectroscopic
factors identical and equivalent to the traditional spectroscopic
factor being normalized to unity [52]. Furthermore, beyond
the single shell for Nmax 	= 0, a phenomenological shell model
Hamiltonian typically does not lead to strong mixing between
different particle-hole excitations. Therefore, the OCM and
RGM channel wave functions are close, with oscillator wave
function approximating the relative motion.

Following these comments, and in order to facilitate phe-
nomenological studies in the sd shell, we can envision an
effective four-body operator that in the restricted space would
describe the removal or addition of an α particle. We limit
this discussion to � = 0 which, due to the absence of the
centrifugal barrier, would be the most important channel.
An effective operator for � = 0 with L = S = T = 0 and
appropriate permutational symmetry can be constructed in
four different ways in sd space. It is convenient to expand
the effective operator using SU(3) symmetry then the four
operators possible have (λ,μ) = (8, 0), (4,2), (0,4), or (2,0).
In the algebraic limit expressed by Eq. (A1) only the (8,0)
component is present and only the basis channel with n = 4
nodes contributes; the total norm squared of this component is

given by the cluster coefficient (X η=(sd )4

N=8 )
2 = 1/26 ≈ 0.038 as

listed in Table VII. The results in Table I show changes when
we depart from the algebraic limit and consider a realistic
α computed for the oscillator frequency of h̄ω = 14 MeV
that is better suited for sd-shell nuclei. Basis channels with
different numbers of nodes contribute and components other
than (λμ) = (8, 0) appear. Table I therefore represents a form
of an effective α transfer operator for the sd space. Departure
from the algebraic limit and the presence of small components
are important in studies of numerous unexplained hindered α

transitions such as those discussed in [69] This result is also
a good starting point for phenomenological determination of
parameters in Table I.
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TABLE I. SU(3) decomposition of basis α cluster channels for
different numbers of nodes. The second column lists the total nor-
malization squared of the operator in the sd space, X 2; the remaining
columns labeled with (λμ) show weights of the corresponding SU(3)
components. The α particle structure is computed using oscillator
frequency h̄ω = 14 MeV in an Nmax = 8 space using JISP16 interac-
tion. Channels are identified by the number of nodes in the relative
wave function shown in the first column, only � = 0 partial wave is
discussed.

n X 2 (8,0) (4,2) (0,4) (2,0)

4 0.02848 1.0 0.0 0.0 0.0
3 0.006 97 0.561 658 0.438 338 0.0 0.0
2 0.001 69 0.549 804 0.045 184 7 0.3363 0.0 636 439
1 0.000 18 0.0 693 304 0.735 878 0.0134 005 0.1 47 418
0 0.000 11 0.0 693 304 0.261 291 0.0 990 471 0.0 384 533

B. Case of 20Ne

Continuing our discussion in the previous subsection, we
consider the distribution of α spectroscopic strength within
a specific nucleus. Distribution of the clustering strength and
going beyond statistical approaches is important in astrophys-
ical studies [70,71]. Here we concentrate on 20Ne, a classic
benchmark in studies of clustering, and a good example of
both successes and limitations of the traditional shell model
[66,72–74]. Under the assumption of s4 structure of the α, the
ground state SF is large (0.76) and consistent with observa-
tions for this and neighboring nuclei (22Ne, 24Mg), indicating
that the high degree of clusterization observed is reproduced
by the shell model calculation. All the members of the ground
state rotational band can be described as an α particle orbiting
the closed 16O core in a specific � state. The α SF to the
ground state of 16O, along with the reduced transition rates
for the deexcitation of each state [B(E2) ↓], are shown in
Table II. The yrast states show both a rotational behavior
and α cluster characteristics. For each state there is only one
channel, therefore RGM and OCM SF are equivalent.

The observed band is a textbook example of quadrupole
collectivity [75]; microscopically the states are members of
(8,0) SU(3) irreducible representation.

The formalism holds up well for negative parity states
generated from one particle-hole (ph) excitations in a p-sd-p f
space. Studies using the PSDPF [76] interaction agree at a

TABLE II. Transition rates (in Weisskopf units) and α spectro-
scopic factors for the 20Ne rotational band members with the USDB
interaction with effective charges 1.35 and 0.35, for protons and
neutrons, respectively. The s4 structure of the α is assumed.

B(E2) ↓ (W.u.) B(E2) ↓ (W.u.)
Jπ USDB Expt. α SF(16O g.s.)

0+ 0.76
2+ 14.4 20.3 0.78
4+ 17.0 22 0.66
6+ 12.7 20 0.58
8+ 8.6 9.0 0.40

TABLE III. Summary of proton and alpha spectroscopic infor-
mation for the lowest T = 0 states. Experimental data [66] are
compared with results from a shell model calculation with the USDB
Hamiltonian [67]. Each state is further decomposed in SU(3) irreps.
The s4 structure of the α is assumed.

Ex SF (p) (8,0) (4,2) (0,4) (2,0)

0+
1 0 0.484 0.755 0.058 0.047 0.000

0+
2 6.698 0.574 0.142 0.550 0.162 0.000

0+
3 11.908 0.013 0.002 0.214 0.549 0.003

0+
5 14.665 0.010 0.025 0.103 0.000 0.020

0+
6 16.268 0.002 0.000 0.005 0.026 0.577

qualitative level with the results seen in a (6Li, d ) reaction
[77,78]. Out of over 60 states in the energy region of up
to 12 MeV in excitation only the strongly clustered, natural
parity, ones are populated. Detailed discussion and cross
sections can be found in Ref. [50].

When it comes to other high-lying states the situation is
much more involved. Let us consider the series of the lowest
0+ states. Table III shows the summary of SF for both alpha
and the proton; see also [66] for lowest 0+ states in different
models and comparison with experimental data. Here we
continue to assume the s4 structure for the α particle making
the SU(3) symmetry a defining characteristic.

The table shows that while for the lowest states dominated
by configurations from a single shell the agreement is nearly
excellent, some higher-lying broad alpha clustering state is
difficult to describe. The same discrepancy for high-lying
strongly clustered resonant states has been seen in other nuclei
such as 18O [15].

In Fig. 3 we move away from the algebraic limit and take
more channels into account. We relax the s4 assumption for
the α particle wave function and show the distribution of
RGM α SF from Eq. (23). We consider the � = 0 partial wave

0 5 10 15 20 25 30 35 40
Ex (MeV)

0.0

0.2

0.4

0.6

0.8

S
F

FIG. 3. Distribution of dynamic spectroscopic factors for
20Ne → 16O (g.s.) + α with the USDB interaction. The dashed lines
correspond to the RGM energies for each decay channel. The spec-
troscopic factors are shown using stacked components reflecting each
individual RGM channel in sum (23).
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and five basis channels with n = 0, 1, 2, 3, 4. These are the
only contributing channels with components in the sd space
with N = 8 oscillator quanta. This leads to five RGM energies
which are shown with dashed vertical lines and the sum over
partial SF in Eq. (23) is shown by a stacked histogram using
corresponding color and style.

In agreement with the previous discussion the ground state
SF is dominated by a single channel which is structurally
close to the n = 2 basis channel (shown in red). Similarly
the SFs for the following two excited states are dominated by
single channels, however fragmentation is rapidly increasing
with excitation. It is remarkable that the clustering strength is
concentrated near the RGM energies. If one loosely associates
RGM solutions as representing thresholds for each new bound
α state in a crude potential model then this result can be
seen as supporting the near-threshold increase in clustering
strength discussed extensively in the literature [6,79,80].

C. 21Ne, weak coupling limit 16O + α + n

Molecular-type dynamics where much-heavier clusters
along with light single nucleons form structures similar to
those of molecules have been discussed for some time [6,9].
Whether such structures can emerge in CI approaches is of
interest. Let us view the nucleus 20Ne as a core + α system
which from the preceding discussion is known to be clustered.
To investigate how the system responds to an extra nucleon,
we take channels created to have a 16O + α structure with
relative angular momentum � = 0, 2, 4, 6 and add a neutron
in the d5/2 orbital, recoupling to all possible angular momenta
in each case. Alternatively, one can consider adding an α

particle with a definite relative motion to the ground state of
17O. We end up with 18 channel basis states (configurations)
versus the 1935 m = 1/2 many-body shell model basis states.
This idea of reducing the size of the problem using cluster
configurations instead of all the many-body states possible
in the space is at the center of interest in the configuration
interaction strategies and in the cluster-nucleon configuration
interaction approach, Ref. [52].

In the smaller subspace of these (nonorthogonal) basis
channels, we apply the resonating group method approach
and solve the generalized eigenvalue problem, with the matrix
elements of the Hamiltonian Kernel calculated with the USDB
interaction. This is equivalent to CI limited to the cluster basis.
The resulting low-lying spectrum is compared with both the
USDB shell model and experimental values in Fig. 4.

The RGM reproduces the excitation spectrum quite well,
but the binding is 3.5 MeV lower than the full USDB calcula-
tion, the latter being close to experiment. The discrepancy is
to be expected from the variational approach. Considering that
only 18 basis wave functions are being used with only a few
for each spin, the quality of agreement is remarkable. Further-
more, from the configuration mixing in cluster channels we
infer that the simple picture of an α particle moving in some
definite partial wave relative to 16O and the extra nucleon
being a spectator is perturbed. For example the ground state
3/2+ is a mixture of � = 2 and � = 4 components. Similarly,
the excited 5/2+ is a nearly equal mixture of � = 0 and � = 4.
This mixing has been probed using experiments with transfer

FIG. 4. Low-lying RGM, full USDB SM, and experimental
spectra of 21Ne. The ground states show total binding energy; the
excitation energies are shown for all of the remaining excited states,
all in units of MeV.

reactions, Ref. [81]. The comparison of α SF is shown in
Table IV, where, following the way the experimental data
were presented in Ref. [81], the SF are normalized to the � =
2 partial wave of the ground state transfer. The experimental
Jπ = 9/2+ values are grouped together with the ones for the
1/2+ state because they are difficult to resolve due to their
small energy difference.

In order to quantify the mixing we provide here the com-
ponents of the generalized eigenvalue problem in the sector
with spin-parity quantum number 5/2+. The basis states can
be labeled with � = 0, 2, 4 (we present them in this order)
so that each Jπ = 5/2+ basis state is obtained from coupling
with a neutron on d5/2 orbit as (� × 5/2)5/2. The norm kernel

N =

⎛⎜⎝ 0.185 −0.03 −0.038

−0.03 0.170 −0.015

−0.038 −0.015 0.219

⎞⎟⎠ (24)

demonstrates that the basis channels are not orthogonal al-
though off-diagonal matrix elements are an order of magni-
tude smaller than those on the diagonal. For the Hamiltonian
kernel, transformed using the norm kernel to represent a

TABLE IV. Comparison between the experimental SF (upper
table) and RGM SF (lower table) for low-lying states in 21Ne.

S (expt.) 3/2+ 5/2+ 7/2+ 9/2+, 1/2+

� = 0 1.04 ± 0.41
� = 2 1.0 ± 0.05 . . . 0.91 ± 0.08 0.9 ± 0.05
� = 4 0.42 ± 0.04 0.32 ± 0.18 0.23± 0.04 0.29 ± 0.03
S (RGM)

� = 0 0.78
� = 2 1.0 0.02 0.9 0.81
� = 4 0.18 0.44 0.14 0.33
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TABLE V. Experimental data and theoretical results for 8Be. All
energies and widths are given in units of MeV except for the widths
marked with ∗; those are presented in units of eV.

� Eex � E (RGM)
ex �(RGM) S (RGM)

0 0.0 5.6∗ 0 8.9∗ 0.69
2 3.0 1.5 4.6 1.4 0.66
4 11.4 3.5 16.0 2.7 0.51

Hermitian eigenvalue problem,

H̃ = N−1/2HN−1/2 =

⎛⎜⎝−42.1 0.20 1.79

0.20 −39.9 −0.15

1.79 −0.15 −40.3

⎞⎟⎠, (25)

we find strong mixing. Here all matrix elements are given in
units of MeV and rows (columns) correspond to intermediate
coupling momentum � in order � = 0, 2, 4. The mixing be-
tween � = 0 and � = 4 lowers the energy of the first excited
state by approximately 1.2 MeV.

D. 8Be in no-core CI approach

The 8Be nucleus and its structure as 8Be → α + α is a
classic benchmarking case in studies of nuclear clustering
[41,44,79,82–84]. In Table V we list experimental energies
and widths, and our results, discussed later, for the sequence
of 0+, 2+, and 4+ clustered resonances in 8Be. These states
form a clustering rotational band where two alphas are in
the state of motion with the relative angular momentum
� = 0, � = 2, and � = 4, respectively. The sequence with
the ground state being nearly bound (with a decay width of
5.6 eV) and the 4+ excited state being a broad resonance is a
perfect arena for the structure-reaction transitional physics to
be explored.

Following our strategy described in Sec. II D for each
partial wave � we construct a set of basis channels labeled
by n which is the number of nodes in the relative α + α wave
function. Under an assumption of trivial s4 configuration for
each of the α particles (equivalently, Nmax = 0 in the NCSM)
the norm kernel is diagonal; see Eq. (C2). For example, in the
spin-parity subspace 0+ and considering only three channels
with n = 2, 3, and 4 the normalized Hamiltonian kernel for
the JISP16 interaction with h̄ω = 25 MeV is

H̃ =

⎛⎜⎝−15.12 19.68 −0.629

19.68 16.74 32.77

−0.629 32.77 47.72

⎞⎟⎠. (26)

Here the minimal number of nodes is determined by the
minimal total number of quanta N = 2n + � = 4, which en-
forces Pauli blocking. With increasing number of quanta in
relative motion the normalized kinetic energy should reach the
asymptotic value corresponding to the relative kinetic energy

T̃NN = (N + 3/2)
h̄ω

2
+ 2T (α), (27)

where T (α) is the intrinsic relative kinetic energy of each α

particle; T (α) = 9h̄ω/4 for the s4 configuration. The kinetic
energy operator in the HO basis is tridiagonal, which explains
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FIG. 5. RGM spectra showing rotational band of 8Be for various
values of h̄ω with the JISP16 interaction. All energies are shown in
units of MeV.

the magnitude of the matrix elements in Eq. (26), the asymp-
totic form of Hamiltonian and norm kernel is further discussed
in Sec. IV. The RGM excitation spectrum that follows from
the JISP16 interaction with optimal h̄ω = 25 MeV is included
in Table V. We use the JISP16 interaction, allowing for up to
12 quanta in each � channel.

Let us emphasize the emergence of the cluster rotational
band in the RGM solution. In Table V the ratio of exci-
tation energies of 4+ to 2+ is R42 ≈ 3.5 which is close to
the 3.3 value expected for a rotational band where Eex ∝
�(� + 1). The h̄ω dependence of the approach is studied in
Refs. [21,50,85]; here we summarize the results using Fig. 5.
The presence of the rotational band is robust and the s4

approximation for alpha particles favors a specific frequency
h̄ω ≈ 25 MeV where energies are minimized due to the vari-
ational nature of the approach.

As mentioned earlier, the Nmax = 0 treatment of the alpha
particles, and in general so called “s clusters” that carry
no oscillator quanta (N = 0), allow for a relatively simple
algebraic treatment which is widely used by many authors
in Refs. [34,35,52,86,87]. In this limit our results have been
verified to be identical. However, the d-wave component of
the alpha particle and the preference for a different oscil-
lator parameters for describing relative motion or structure
of parent and/or daughter systems in cases of alpha decay,
see Sec. III A, point to a potential benefit in going away
from this simple limit. The advantage of our approach is
that apart from increasing computational difficulty it remains
unchanged for any type of clustering. In order to find an
optimal strategy we study the RGM spectrum as a function
of Nmax(α) and Nmax(rel) which are the maximum number of
quanta in the wave function of each alpha particle and the
maximum number of quanta in relative motion, respectively.
We will not address here computational strategies, but we
assume that the total computational difficulty roughly scales
as Nmax = 2Nmax(α) + Nmax(rel) for the α + α case. In Fig. 6,
we show the RGM spectra for a fixed h̄ω = 20 grouped
by Nmax(α) and Nmax(rel), as labeled. All of the spectra
show a well-formed rotational band, however the ground state
energy is different and considering Nmax(α) and Nmax(rel) as
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FIG. 6. RGM calculations of the rotational band of 8Be for h̄ω =
20 MeV with the JISP16 interaction and with the α particle wave
function taken from a NCSM calculation with the corresponding
value of Nmax. The value N in the plot reflects the total number of
HO quanta available to the relative motion between the two clusters.

parameters of the variational treatment we find that the com-
bination h̄ω = 20 MeV and Nmax(α) = 2 seems to be optimal.
While the question about optimal Nmax truncation and optimal
HO frequency has to be investigated further, our studies
suggest using Nmax(α) = 2.

In Fig. 7 we show the form of the radial s-wave wave
function for the relative α + α motion defined using the radial
parts of HO wave functions φn�(ρ) in Eq. (1) and the RGM
solution in Eq. (20),

u�(ρ) =
∑

n

χnφn�(ρ). (28)

The � = 0 channel is shown where we select different values
of h̄ω to highlight the sensitivity of the results to the HO
parameter.

0 1 2 3 4 5 6 7
ρ (fm)

−0.4

−0.2

0.0

0.2

0.4
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0.8

1.0

u
(ρ

)

h̄ω = 17.5 MeV

h̄ω = 20 MeV

h̄ω = 22.5 MeV

h̄ω = 25 MeV

FIG. 7. Relative α + α wave function for the 0+ RGM channel
in 8Be calculated with the JISP16 interaction. Different curves cor-
respond to different oscillator parameter h̄ω as labeled.
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FIG. 8. Dependence of the width of each resonance in 8Be with
varying channel radius. The vertical line corresponds to the chosen
ρc = 3.6 fm value. The width for the 0+ resonance is magnified by a
factor of 105 in order to be visible.

Our structural treatment should be appropriate for the
extremely narrow ground state; at the same time one should
keep in mind that projection of a many-body problem onto
the dynamics of two alphas is observed experimentally only
via scattering observables. Additionally one should be wary
of a common issue related to binding energies and thresh-
olds; certainly microscopic approaches utilizing fundamental
nucleon-nucleon interactions provide remarkable precision
but it is unrealistic to expect these models to work at the level
of kilovolt precision necessary to describe the 91.8-keV alpha
decay Q value of 8Be. This is not a problem, however, because
the structure of the wave function does not change signifi-
cantly within a reasonable energy interval near threshold [88].
Formally, in this limit structure and reaction questions are
separated, and coupling to the continuum can be treated within
the lowest order of perturbation theory [89]. We used this
approach for determining the decay widths in Table V; here
the standard R-matrix equation was used [90,91],

�� = h̄2k

μ

ρ2
c u2

� (ρc)

F 2
� (η, kρc) + G2

� (η, kρc)
, (29)

where the channel radius was selected at ρc = 3.6 fm. With
this choice, the width as a function of radius reaches its max-
imum, maximizing the outgoing flux into the decay channel,
and in the vicinity of the extremum there is minimal sensitivity
to the channel radius; see Fig. 8. It is remarkable that nearly
the same channel radius is appropriate for all members of the
rotational 0+, 2+, and 4+ members of the band, suggesting
a rigid nature of the rotating system. For narrow resonances
this is known to be a good approximate method [89,92] and it
works well for 8Be; see Table V.

Studies of 8Be have been conducted using other no-core
interactions including obtained with similarity renormaliza-
tion group (SRG); see [50]. While there are some differences,
especially in binding energies, the channel structure, spectro-
scopic factors, and even effective moment of inertia for the
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TABLE VI. Excitation energies (in MeV) for rotational band
members in 12C, experiment, NCSM, and RGM both with h̄ω =
25 MeV, followed by spectroscopic factor for triple alpha decay.
The last column shows the number of basis channels included in the
calculation.

Jπ E (expt.)
ex E (NCSM)

ex E (RGM)
ex S (RGM)

� Channels

0+ 0 0 0 0.42 8
2+ 4.4 6.06 3.61 0.49 16
4+ 14.1 19.8 13.6 0.6 16

0+, 2+, 4+ band remain nearly unchanged. All of this supports
the experimentally observed picture of these states being
resonant scattering states of two alphas.

E. Triple α clustering in 12C

Alpha clustering plays an important role in structure and
reactions involving 12C. Different geometrical configurations
of alphas have been discussed in Refs. [43,93,94] and signa-
tures of the alpha condensate have been searched for [46,48].
In addition, the coupling of the first excited 0+ state, named
after F. Hoyle, to a triple-alpha open decay channel is of
paramount importance for formation of elements in the uni-
verse. We concentrate on the structure of the triple-alpha
decay channel and comment on the clustering structure of
the lowest excited 0+ state. The Hoyle state is unbound by
285 keV and thus the process 12C → α + α + α can proceed
via an intermediate 8Be resonance, which as discussed earlier
is only 93 keV above the threshold. The decay via an inter-
mediate 8Be is, in fact, what happens nearly 100% of time
[25–28]. Certainly such an overwhelming probability comes
mainly from three-body Coulomb final state dynamics which
favors tunneling of a single alpha first. Here we discuss struc-
tural questions that determine transition amplitudes between
initial states and final channels.

The basis channels involving three clusters of the form (18)
are built using a sequential pair-wise coupling procedure for
two internal Jacobi coordinates. We allow up to Nmax(rel) =
12 oscillator quanta of relative motion to be shared amongst
the two relative coordinates. We employ the RGM procedure
with three identical α particles, each in an s4 configuration
using the JISP16 interaction with h̄ω = 25 MeV. The mini-
mum allowed by the exclusion principle is Nrel = 8; this basis
channel with Jπ = 0+ represents a configuration with a filled
0s shell and eight nucleons in the 0p shell; normalization
can be found in Table IX. For each of the following Nrel the
number of basis channels is shown in Table VI.

Table VI shows that the NCSM predicts the lowest 0+, 2+,
and 4+ to be strongly clustered. While it is hard to rely on
the NCSM for the structure of the Hoyle state here the SF
S (RGM)(0+

2 ) = 0.257 which, coincidentally, is a reasonable
value. The overlaps squared between the triple-alpha chan-
nel with quantum numbers 0+ and a two-fragment channel
constructed from the ground state of 8Be (Nmax = 4) and an
α in relative motion with n = 2 and � = 0 is 0.51. This high
overlap emphasizes that the decay process going through an
intermediate 8Be state is most probable; apart from the overlap

the binary channel is strongly favored by the kinematics of the
three-body Coulomb problem.

IV. REACTIONS WITH CLUSTERS

In the preceding presentation we established clustering
channels and demonstrated how these channels can be used
to obtain spectroscopic factors and other structural character-
istics of clustering that are relevant for bound states and in
the limit of weak continuum coupling [95]. The channels also
provide a formal path for dealing with cluster reactions, which
is our next subject. Here we discuss two-body reaction pro-
cesses. Formally, the same techniques can be applied to more
complicated reactions however, the difficulty, both theoretical
and experimental, in building and studying multifragment
asymptotic states puts the more complicated reactions outside
the scope of this presentation. On the other hand, two-body
scattering, especially the case involving a spinless particle, is
a standard textbook example of partial wave analysis [88]. The
starting point for the following will be the radial problem in
the space of radial wave functions describing the separation of
two clusters for a given fixed partial wave �. The asymptotic
(r → ∞) form of the effective Hamiltonian operator in this
case includes a centrifugal term in addition to the usual long-
range Coulomb,

H0 = − h̄2

2μ

d2

dr2
+ Z1Z2e2

r
+ h̄2�(� + 1)

2μr2
. (30)

The asymptotic solution at a given energy E can be written as
a linear superposition of a regular F�(η, kr) and an irregular
function G�(η, kr),

ψ�(r) � αF�(η, kr) + βG�(η, kr). (31)

Here, k = √
2μE/h̄, η = Z1Z2e2μ/h̄2k, and tan δ� = β/α is

the phase shift. The functions F� and G� are known as the
regular and irregular Coulomb functions, respectively; they
are known analytically and discussed extensively in the lit-
erature [96]. For the scattering of neutral particles η = 0,
and the Coulomb functions become F�(0, x) = x j�(x) and
G�(0, x) = −xn�(x), with j� and n� being the spherical Bessel
and Neumann functions.

In the context of our previous discussion it is natural to
proceed in HO basis and continue to rely on the expansion of
the radial motion in HO functions in Eq. (28).

Unlike the case of deeply bound states, for weakly bound
and scattering states the HO expansion appears to be a poor
choice, but knowledge of the analytic form of basis functions
remediates this issue. The J-matrix method, Ref. [97], also
known as harmonic oscillator representation of scattering
equations (HORSE) [40,98] has been broadly discussed in the
literature [97]. In its traditional form the method is limited to
H0 being the kinetic energy operator; our approach, discussed
in what follows, is different in allowing for a Coulomb inter-
action to be a part of H0, as defined in Eq. (30). The Coulomb
problem represents a significant difficulty for the standard
J-matrix/HORSE methods; another strategy for dealing with
Coulomb interaction is discussed in Refs. [40,98].

The integer n in Eq. (28), used to enumerate the basis
states, coincides with the number of nodes in the radial part
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of the wave function. The method relies on the asymptotic
limit of r → ∞ in coordinate space being equivalent to the
configuration space limit of n → ∞. Thus scattering phase
shifts and related observables can be defined for n → ∞.

Indeed, a classical particle spends most time near a turning
point defined by the energy mω2r2

0 = h̄ω(2n + � + 3/2), or

r0 =
√

h̄

mω
(2n + � + 3/2). (32)

Thus for large n the wave function is represented by a peak at
r0, and the resulting form

|φn�(r)|2 ∝ 1√
r2

0 − r2
(33)

is sufficient to assure equivalence of the n → ∞ limit to the
asymptotic scattering limit.

We now transfer the problem into a discrete configuration
space. The RGM solution (19) expressed in radial form (28)
now needs to be matched with the asymptotic solution for the
free-space Hamiltonian (30) so that similarly to Eq. (31) the
asymptotic behavior is

χn � αFn� + βGn�, (34)

with Fn�, Gn� representing regular and irregular solutions for
the free-space Hamiltonian expanded in the HO basis; see
Ref. [99]. The regular Coulomb function can be readily ex-
panded,

Fn� =
∫ ∞

0
F�(η, kr)φ∗

n�(r)dr, (35)

and inversely

F�(η, kr) =
∞∑

n=0

Fn�φn�(r). (36)

The coefficients Fn� satisfy the infinite matrix equation
∞∑

n=0

(
H0

mn − Eδmn
)
Fn� = 0, (37)

which reduces to a three term recursion in the case of the
Laguerre basis or in the case of the HO basis for neutral
particles.

The irregular function G�(η, kr) cannot be expanded in a
similar fashion because the HO basis contains only regular
functions. However, since we are interested in reproducing the
asymptotic behavior, we can replace a true Coulomb function
with any other function G̃�(η, kr) regular at the origin, as long
as asymptotically it coincides with G�(η, kr), thus

G̃�(η, kr) = G�(η, kr) for r → ∞,

G̃�(η, kr) ∝ F�(η, kr) for r → 0. (38)

In order to minimally modify the irregular function near the
origin the simplest strategy is to add a source term thus
modifying Eq. (37) with an inhomogeneous term for n = 0,

∞∑
n′=0

(
H0

nn′ − Eδnn′
)
Gn′� = gδn0. (39)

Following this change in the coordinate space the modified
function

G̃�(η, kr) =
∞∑

n=0

Gn�φn�(r) (40)

satisfies the following equation:(
− d2

dr2
+ 2ηk

r
+ �(� + 1)

r2
− k2

)
G̃�(η, kr) = 2μg

h̄2 φ0�(r).

(41)

An explicit form for G̃�(r) can now be obtained via a standard
Green’s function, which is known analytically; see for exam-
ple [95]. Taking into account the asymptotic limits (38), we
arrive at the following full expression:

G̃�(η, kr) = 2μg

h̄2k

[
F�(η, kr)

∫ ∞

r
G�(η, kr′)φ0�(r′)dr′

+ G�(η, kr)
∫ r

0
F�(η, kr′)φ0�(r′)dr′

]
, (42)

and by matching at r → ∞,

g = h̄2k

2μF0�

. (43)

This strategy provides a formal definition for coefficients Gn�

in expansion (34),

Gn� =
∫ ∞

0
φ∗

n�(r)G̃�(r)dr. (44)

The expansion coefficients Fn� and Gn� are known analytically
for the limit of neutral particles (η = 0) [40,57,98]. In the
absence of Coulomb interaction, H0 contains only a kinetic
energy term which leads to a tridiagonal matrix Hnn′ , as the
kinetic energy operator can at most increase the number of
oscillator quanta by 2 and matrix equations (37) and (39)
represent recurrence relations.

The truncation of the basis at some value n0 gives rise to
an internal and an external space, labeled here as P and Q
respectively. The space P is of dimension n0 + 1 containing
all basis functions with 0 � n � n0. On the other hand, the
space Q, dubbed the external space, contains matrix elements
of the free Hamiltonian. Thus, we apply here an approxima-
tion that amounts to an assumption that our Hamiltonian and
Norm kernels in Eq. (21) are a range limited in configuration
space to n � n0. Outside, in the Q space, for n > n0, the wave
function has an asymptotic form (34).

The P space components can be obtained using a propaga-
tor

GPP = 1

ENPP − HPP
, (45)

as

χP = GPPH0
PQχQ, (46)

where components in the Q space have the asymptotic form
defined in Eq. (34). The propagator in the relatively small
space P is easily calculated numerically. The matching be-
tween internal and external space is set at n = n0 by making
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FIG. 9. s1/2 and d3/2 phase shifts for the Woods-Saxon potential
(see text for parameters) compared to the ones obtained with the
Numerov method.

the assumption that

χn0 = αFn0� + βGn0�. (47)

Equation (46) and matching assumption (47) lead to a stan-
dard HORSE method, where if H0 contains only kinetic
energy then there is only one off-diagonal matrix element H0

PQ
that connects the spaces, namely H0

n0n0+1. Therefore

αFn0� + βGn0� = Gn0n0 H0
n0n0+1

(
αFn0+1� + βGn0+1�

)
, (48)

which allows us to determine the β/α ratio and the phase shift.
The Coulomb component in the free-space Hamiltonian

H0 does not allow for a simple form of Eq. (48); the H0
PQ

is no longer given by a single matrix element, instead all
states in the external space become coupled. Carrying out the
summations becomes impractical, thus we suggest a different
strategy. Using free space solutions (37) and (39) we rewrite

H0
PQχQ = EχP − H0

PPχP + gβδn0, (49)

where we include a source term of Eq. (39). The phase shift
tan δ� = β/α is then obtained using the finite sums and quan-
tities evaluated completely within the P space; the explicit
equation is as follows:

β

α
= −Fn0� + ∑n0

n=0 Gn0n
(
EFn� − ∑n0

n′=0 H0
nn′Fn′�

)
Gn0� − ∑n0

n=0 Gn0n
(
EGn� + gδn0 − ∑n0

n′=0 H0
nn′Gn′�

) .

(50)

In summary, the expression of Eq. (50) is the main result
here. It allows for a study of reactions with cluster channels
involving Coulomb interactions avoiding exterior space sum-
mations that could be unstable or/and poorly convergent.

In Fig. 9 we show a proof-of-principle calculation us-
ing a Woods-Saxon potential. Since for neutral particles the
HORSE method, tested in Ref. [98], is recovered exactly, we
limit our testing to proton resonances in the potential. The
parameters used here follow parametrization [100] for the cen-
tral potential V0 = −48.25 MeV, R0 = 3.239 81 fm; for the
spin-orbit potential Vls = 22.8386 MeV, Rls = 3.084 25 fm;
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FIG. 10. n + α and p + α phase shifts in the p3/2 channel. Ex-
perimental points are taken from [102] (blue squares) and [103]
(red triangles) for n + α, and from [104] (green circles) for p + α

scattering.

and for both potentials the diffuseness α0 = αls = 0.644 174
fm; the Coulomb potential is described by that of a hard
uniformly charged sphere of radius RC = 3.239 81. This
choice of parameters, along with the reduced mass μ =
882.671 MeV/c2, approximates proton resonances in 17F that
carry the single-particle quantum numbers s1/2, d3/2, and d5/2.
We choose two representative cases to show that the d3/2

resonance with energy 4.48 MeV and width 0.82 MeV is
relatively broad, while the s1/2 at energy 0.55 MeV and width
of 25 keV is narrow. In Fig. 9 the convergence pattern of the
phase shifts with increasing size of the P space is shown.
The basis used is the HO basis with h̄ω = 25 MeV, and
therefore the characteristic oscillator length is about 1.76 fm.
Following Eq. (32) we can associate n = 3, 10, and 20 with
r0 = 4.8, 8.2, and 11.4 fm, respectively. Comparison of r0

with the radius and diffuseness, quoted earlier, explains the
quality of the agreement in Fig. 9 between this method and the
exact result obtained using the standard numerical integration
technique (Numerov method).

Next we consider both neutrons and protons scattering off
an α particle. The p + α and n + α channels are constructed
with the α particle described by a s4 configuration. Similar
to the discussion in Sec. III D, the basis channels describe a
nucleon-α system in a relative state with HO wave function
enumerated by the number of nodes. The norm of the chan-
nels, similar to Eq. (C2), follows a simple analytic expression
Nnn′ = [1 − (−1/4)2n+�]δnn′ . Due to the s4 approximation,
each channel has a different total number of HO quanta mak-
ing the channels orthogonal. We use the JISP16 interaction
[101] and truncate the basis at N = 2n + � = 6. This value of
h̄ω = 25 MeV corresponds to r0 = 3.5 fm for this truncation
of the basis channels which is expected to be sufficient to
describe an alpha-nucleon potential. The results, shown in
Fig. 10, show a good agreement with the experimentally
observed ones provided that the reaction kinematics is prop-
erly satisfied. Here the interior wave function from the RGM
solution is matched to exterior asymptotic states of proper,
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FIG. 11. The α + α phase shifts in the � = 2 channel. Experi-
mental data are taken from [105]. The solid line shows the result of
the calculation including up to N = 12 quanta in the relative motion
wave function, while the dashed shows a truncated space with a
single channel.

experimentally known, energy. This is a standard procedure
since it is unrealistic to expect the current microscopic models
based on fundamental nucleon-nucleon interactions to provide
energies with a kilovolt level of precision required to properly
describe sensitive reaction processes such as tunneling over
the Coulomb barrier.

As a final application, we evaluate phase shifts for α + α

scattering with the α particles approximated as s4. This ap-
plication combines our structural study in Sec. III D with the
scattering approach formulated in Sec. IV, and goes beyond a
trivial bound-state-type matching discussed in Table V. Here,
again the experimental threshold energies have been used. The
� = 2 phase shifts are shown in Fig. 11. In order to make a
comparison with older calculations more transparent the same
Hamiltonian and Norm kernel matrix elements as in Ref. [29]
are used. The agreement with experiment, once the threshold
is set to the experimental value, is very good.

V. CONCLUSIONS

Nuclear clustering and emergence of clustering degrees of
freedom in atomic nuclei is an important topic of modern nu-
clear physics. In this work we continue developments reported
in Ref. [29] and put forward a new configuration-interaction-
based method that aims to further unify different strategies
and techniques, as well as structure and reactions aiming
at questions of clustering in atomic nuclei. We provide an
extensive discussion with multiple examples showing features
and advantages of the approach.

The method is built upon extensive experience within the
traditional shell model and its algebraic limits, thus approxi-
mations such as limiting valence space or assuming a trivial
structure for an α particle reduce our approach to well-studied
limits. This reduction not only provides for a good test and
alternative methods for numerical calculation of algebraic
cluster coefficients, but it also assesses the quality and limits
of validity of the previously used simplified strategies.

The method easily bridges between the traditional and
more modern microscopic nuclear many-body techniques
based on HO Slater determinant basis expansions, thus al-
lowing us to connect broad phenomenological experience of
the traditional nuclear shell model with yet poorly understood
questions of clustering. Being built on a powerful center-of-
mass boosting procedure, utilizing cluster configurations and
modern programming techniques, our approach represents
an advancement in many-body methods and configuration
interaction approaches. We extensively explore the boosting
method introduced in Ref. [29] both in the traditional shell
model phenomenological regime and within the NCSM.

We demonstrate the new approach using sd shell nuclei,
where previous theoretical studies and availability of ex-
perimental data allow for quantitative comparisons. Special
attention is devoted to 20Ne due to its pronounced cluster
structure. Detailed experimental information on alpha clus-
tering in excited states provides valuable data allowing us to
discuss in detail the form of the effective α-cluster channel.

Similarly, in 21Ne an extra nucleon distorts the 16O + α

motion and leads to orbital angular momentum mixing which
offers a strategy for testing molecularlike cluster motion and
the ability of our model to describe it. Our results are in
good agreement with the existing experimental data and we
provide comprehensive information on channel mixing matrix
elements in RGM equations that can be tested in future
experiments.

As has been experimentally observed and discussed by
numerous authors, clustering appears to be a near-threshold
phenomenon where many-body structure and reactions are
inevitably entangled. This work builds yet another bridge
between reaction dynamics and many-body structure. While
maintaining full antisymmetry between nucleons and trans-
lational invariance, we build cluster channels and study their
static structural properties. The same channels are then used
to study reactions and reaction observables. A method for
dealing with the Coulomb problem within the harmonic os-
cillator representation of scattering equations has been further
developed for this purpose. Within this extension we expect to
further probe the role of continuum degrees of freedom in the
emergence of clustering.

We have performed an extensive study of 8Be, which is a
standard benchmark in clustering methods. In our work we
use the 8Be example to show the full structure-reaction path
which includes obtaining a shell model solution and spectrum,
constructing the cluster channels, structural spectroscopic fac-
tors, obtaining decay widths in the perturbative limit, and
finally a study of 8Be as α + α resonances. All of these studies
utilize the same nuclear Hamiltonian and emerge within the
same overall framework.

One interesting indirect finding of this work is that cluster-
ing appears to be adequately described within relatively small
configuration spaces; this result raises immediate questions
that should be explored in the future.
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APPENDIX A: STRUCTURE OF c.m.-BOOSTED STATES

In this Appendix we comment on the structure of the c.m.-
boosted states and connection to the SU(3) based models that
have been widely used in the literature [34,35,52,82]. To make
the connection, we limit this discussion to c.m.-boosted wave
functions of α particles. As shown in Fig. 12, the ground state
of an α particle is predominately a state of four nucleons fully
occupying the lowest oscillator shell; we refer to this arrange-
ment as an s4 configuration. The weight of this component is
over 90% for a rather broad range, approximately between 20
and 30 MeV, of oscillator frequencies h̄ω.

By making an approximation, the quality of which thus
depends on h̄ω, that the α particle has a simplified s4 structure
or equivalently it is computed with an Nmax = 0 truncation
of the basis, we arrive at the algebraic limit [34,35,82]. For
clusters that have no intrinsic oscillator excitation quanta
N ′=0 the wave function �n�m has all quanta exclusively in the
c.m. part; the spatial part remains fully symmetric with respect
to permutations, moreover it is clear that with respect to SU(3)
symmetry related to spatial directions only (λ,μ) = (N, 0)
irreducible representations contribute. Thus, in the algebraic

TABLE VII. Select configuration content of NCSM wave func-
tions for 4He with h̄ω = 20 MeV boosted to a c.m. boosted state with
n = 4 and � = 0.

Configuration Nmax = 0 Nmax = 4

(sd )4 0.038 0.035
(p)(sd )2(p f ) 0.308 0.282
(p)2(p f )2 0.103 0.094
(p)2(sd )(sdg) 0.154 0.141
(p)(sd )(sdg)(p f h) 0.000 0.005
(p)(sd )(p f )(sdg) 0.000 0.009

limit, we can expand

�n�m =
∑

η

X η
N 


η

(N,0):�m. (A1)

over all partitions η where A nucleons are partitioned over
oscillator shells A = ∑

i αi in such a way that the combined
number of quanta is N = 2n + � = ∑

i αiNi. The coefficients
in expansion (A1), commonly known as cluster coefficients
[35,52,82], are known analytically,

X η
N =

√
1

4N

N!∏
i(Ni!)αi

4!∏
i αi!

. (A2)

The wave function 

η

(N,0):�m is the wave function of the (N, 0)
SU(3) symmetry and full permutational symmetry for this
partition, which is unique. Most shell model studies of α

clustering in nuclei [34,35,52,106] rely on expansion (A1). In
our work we built wave function (6) via sequential c.m.-boost
operations resulting in a much simpler procedure that works
for any cluster of any structure. In Table VII we illustrate
weights of select configurations for a boosted state �400 for
α particle. For the left column, the α particle is approximated
by an s4 closed shell wave function, while for the right
column � = �000 is taken from a realistic NCSM calcula-
tion with Nmax = 4. The data in the left column reproduce
the cluster coefficients squared (A2); in this algebraic limit
only configurations with N = 8 quanta are allowed and thus
configurations such as (p)(sd )(p f )(sdg) that has N = 10 only
become possible when a more realistic α particle structure is
used.

Another perspective on the c.m.-boosted state is provided
by Fig. 13 where nucleon occupancy of various HO shells
is shown for different boosted α-particle states where c.m.
component of the wave function has different number of
nodes n. This figure gives a microscopic illustration of cluster
separation both in configuration and in coordinate space;
we will return to this point in Sec. IV [see Eq. (32) in
particular], and highlights the limitations of restricted valence
spaces commonly encountered in the traditional shell model
valence spaces, and could potentially explain disagreements
with experiment observed in Refs. [15,66].
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APPENDIX B: STRUCTURAL SPECTROSCOPIC
CHARACTERISTICS

The basis channels are naturally mixed. The interac-
tion Hamiltonian through the RGM procedure discussed in
Sec. II D determines the asymptotic reaction channels and
reaction properties. However, it is instructive to discuss and
illustrate the properties of the basis cluster channels which is
done in this part of the Appendix. In a number of traditional
shell model studies the valence space is restricted to a single
oscillator shell. Many clustering studies have been done in
the p shell [63,107] and sd shell [34,52] where configuration
space allows only for a single basis channel to contribute and
hence any kind of mixing is not possible, therefore the basis
channel is approximately equated to a reaction channel. Let us
remind and connect our discussion to some well-established
aspects of clustering using a trivial example discussed in
Table VIII where the ground state of 16O is taken to cluster
into the ground state of 12C and an α particle. The ground
states for 16O and an α particle are taken to be closed
core; we show results for three choices of wave functions
that approximate the ground state of 12C: closed subshell,
(p3/2)8 configuration, and an algebraic SU(3) (λ,μ) = (0, 4)
configuration. The table illustrates workings of Eq. (17) by

TABLE VIII. Example showing channel construction for 12C + α.

{n1, �1} {n2, �2} M2000;0
n1�1n2�2

(0p3/2)8 SU(3)

0,0 2,0 9
16 ≈ 0.563 0.0761

√
3/32

0,1 1,1 − 3
√

3
8 ≈ −0.650 −0.0878 −1/

√
8

0,2 0,2
√

3
32 ≈ 0.306 0.0414 1/

√
32

1,0 1,0
√

15
128 ≈ 0.342 0.0463

√
5/12

1,1 0,1 −
√

3
8 ≈ −0.217 −0.0293 −1/

√
72

2,0 0,0 1
16 ≈ 0.063 0.0085 1/

√
864

showing an overlap with the parent 16O,

〈� (16O)|
200〉
=

∑
n1�1 n2�2

M2000;0
n1�1n2�2

〈� (16O)|[� (12C)†
n1�1m1

× �
(α)†
n2�2m2

]
00|0〉. (B1)

The only possible channel in the p shell is with Nrel = 4;
all nuclear states carry no spin making any angular momen-
tum recouping trivial. The only contributing 12C + α relative
angular momentum � = 0 sets the number of nodes in the
relative wave function to n = 2. A restriction of this type is
commonly known as Wildermuth condition [108,109], and it
is based on the number of quanta and Pauli exclusion princi-
ple. In Table VIII for each set of possible n1, �1, n2, �2 where
the index 1 denotes c.m.-boosted 12C and the index 2 stands
for α we show oscillator bracket M followed by the overlap
〈� (16O)|[� (12C)†

n1�1m1
�

(α)†
n2�2m2

]
00

|0〉. Thus, the last two columns la-
beled (0p3/2)8 and SU(3) correspond to this overlap assuming
12C wave function � (12C) being filled, 0p3/2 subshell, and
(λ,μ) = (0, 4) SU(3) configuration, respectively. The SU(3)
limit is known analytically and provides a valuable numerical
test for our method. With 12C being heavier than an α the
c.m. effect of recoil is visible; the largest oscillator bracket
comes when α is boosted to n2 = n = 2 and �2 = � = 0. This
oscillator bracket in the first row would be equal to unity if
12C were infinitely heavier than an α.

Until recently, the absolute values squared of overlaps
such as (B1) were interpreted as spectroscopic factors (SFs)
[35,52,82,110–113],

Sn,l ≡ |〈� (A)|
nl〉|2. (B2)

In cases with multiple contributing basis channels n the total
SF is assumed to be a simple sum,

Sl =
∑

n

Sn,l. (B3)

The SFs are translationally invariant since both sides of the
overlap (B2) contain an overall c.m. wave function in its
ground state (nonspurious state). In fact, given that the parent
state � (A) is nonspurious this state projects out the nonspuri-
ous c.m. component in an overlap. With orthogonality of the
recouping brackets we can invert a product∣∣�n1�1�n2�2

〉
=

∑
ncm�cm

n�

Mn�ncm�cm
n1�1n2�2

∣∣φncm�cm (R)φn�(ρ)� ′(1)� ′(2)
〉
, (B4)

where both sides of the equation are assumed to be coupled
to proper channel quantum numbers which we suppress and
therefore magnetic quantum numbers are not shown. An
overlap of (B4) with a nonspurious state gives

Mn�00;�
n1�1n2�2

〈� (A)|
nl〉 = 〈
� (A)

∣∣[�†
n1�1m1

�
†
n2�2m2

]
l

〉
. (B5)

From here it follows that the amplitude for the tradi-
tional spectroscopic factor could be found from any row of
Table VIII; the overlaps in either of the last two columns
divided by the Talmi-Moshinsky-Smirnov coefficient in the
fifth column is always the same, giving the spectroscopic
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amplitude. Therefore, it is convenient to take the row with the
largest oscillator bracket, which as discussed earlier amounts
to taking the heavier fragment with nonspurious c.m. motion,
as it comes directly from the SM, and only boosting the lighter
fragment,

〈� (A)|
nl〉 = R 〈� (A)|[�† × �
†
n�m

]
l|0〉. (B6)

The recoil coefficient here is

R ≡ (Mn�00;�
00n�

)−1 = (−1)Nrel

(
A

A1

)Nrel/2

, (B7)

where A/A1 represents the mass ratio and Nrel = 2n + �.

The traditional spectroscopic factors discussed here for
clusters can be seen as generalizing the single-particle spec-
troscopic factors used in nearly all shell model studies; see
for example Ref. [114]. The c.m.-boosting procedure applied
for a single nucleon is equivalent to placing the nucleon being
emitted on the HO orbit with the correct quantum number of
the channel. Spin, parity, and limitations of the valance space
in most practical cases lead to just a single choice for the
single-particle state from which a nucleon can be removed,
i.e., radial quantum number n. Due to small nucleon mass
the recoil is commonly ignored, setting R ≈ 1, however more
exact recoil-corrected reaction studies have been done [115].

It is possible to obtain translationally invariant matrix
elements of operators, assuming those are translationally in-
variant as well; see also [62]. Keeping the heavier system 2
in nonspurious state n2 = 0 and �2 = 0 we can make a list of
nontranslationally invariant products with quantum numbers
identical to those of the channels. Using Eq. (B4) we obtain a
set of equations〈

�
(1)
n1�1

�
(2)
00

∣∣O∣∣� (1)
n′

1�
′
1
�

(2)
00

〉
=

∑
ncm�cm

n1�1n′�′

Mn�ncm�cm
n1�100 Mn′�′ncm�cm

n′
1�

′
100 〈
n�|O|
n′�′ 〉, (B8)

which can be solved to obtain translationally invariant ma-
trix elements 〈
n�|O|
n′�′ 〉 of any translationally invariant
operator O for all basis channels 
n�. The approach can be
generalized to include nonelastic channels.

The spectroscopic factors provide valuable structural infor-
mation and are very useful in experimental studies, however,
one should keep in mind that their applicability is limited to
weak continuum coupling. For reaction studies full channel
wave functions such as those in Eqs. (17) and (18) are
necessary; and similar to shell model studies that involve
single-particle continuum [18,116,117] the reaction channels
introduce structural changes into decaying states.

APPENDIX C: CHANNEL ORTHOGONALITY
AND NORMALIZATION

In this Appendix we discuss nonorthogonality of the basis
channels and the norm kernel. In Table IX, see also [29], we
provide some examples that show spectroscopic amplitudes
and channel normalizations for select cases. The first two lines
summarize the n = 2, � = 0 channel basis state discussed

TABLE IX. Absolute values of spectroscopic amplitudes and
channel norms for various types of parent states and basis channels;
see also Ref. [29]. All channels here have � = 0 and the number of
quanta in relative motion of the two fragments is denoted by Nrel =
2n + �. For each nucleus square brackets indicate the structure used
for the corresponding fragment which could include spectroscopic
notation, a pair of SU(3) quantum numbers, or Nmax as a single
integer. For the latter cases NCSM calculations with JISP16 were
used with h̄ω = 20 MeV.

Parent Channel Nrel |〈�|
nl〉| 〈
nl|
nl〉
16O[0] 12C[(0, 4)] + α[0] 4

√
8/27 8/27

16O[0] 12C[p8
3/2] + α[0] 4 0.135 0.018

16O[0] 12C[p8
3/2] + α[4] 4 0.130 0.017

8Be[(4, 0)] α[0] + α[0] 4
√

3/2 3/2
8Be[0] α[0] + α[0] 4 1.160 3/2
8Be[4] α[0] + α[0] 4 0.984 3/2
8Be[4] α[0] + α[0] 6 0.644 15/8
8Be[4] α[2] + α[2] 4 0.981 1.492
12C[p8

3/2] α[0] + α[0] + α[0] 8 1/4 81/80
16O[0] (α[0])4 12

√
3/10 3/10

in Table VIII. Other examples include basis channels for
8Be which are necessary for RGM study in Sec. III D and
for α + α scattering discussed in Sec. IV, as well as select
multi-α cluster basis channels with minimal number of quanta
in relative motion for 12C and 16O. Because of the simple
structure, most of the results presented in Table VIII are
known analytically; we emphasize this by retaining those
exact expressions.

For the basis set of channel wave functions 
nl labeled by
generalized index n we introduce the norm kernel

N (l)
nn′ = 〈
nl|
n′l〉. (C1)

The last column in Table IX shows examples of diagonal
matrix elements of the norm kernel. The norm kernel is
exclusively a structural characteristic reflecting properties of
cluster configurations. Only indirectly, through the structure
of clusters, it is tied to the underlying microscopic nucleon-
nucleon interaction. In the cases where specific HO structure
can be assumed, such as closed shell nuclei, the norm kernel
is universal. For clusters whose structure is described within
a single oscillator shell (Nmax = 0 approximation) the total
number of oscillator quanta within each basis channel is fixed
which enforces an additional orthogonality. For example for
α[0] + α[0] the norm kernel is diagonal and known analyti-
cally [118],

N (�)
nn′ = δnn′2(1 − 22−2n−�), (C2)

where to satisfy Pauli exclusion principle 2n + � = Nrel � 4,

and bosonlike permutational symmetry of two α’s requires
� to be even. If any of these conditions is not fulfilled, then
N (�)

nn′ = 0. These rules are fully reproduced in our numerical
studies. Asymptotically for n → ∞ the N (�)

nn � 2 as it would
be expected for a state of two identical bosons constructed
following Eq. (17).
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Unlike for electromagnetic or single-particle channels
[116], where it is straightforward to normalize reaction chan-
nels and thus establish the corresponding sum rules, the situa-
tion with composite objects such as clusters is more difficult.

The true channels have to be properly normalized asymp-
totically, which is done within the RGM approach. However,
within the traditional shell model with the valence space
where only very few basis channels are possible, Fliessbach
and others have argued in Refs. [119–121] for the orthog-
onality conditions model (OCM). The OCM spectroscopic
factors which have been widely used recently have shown
to be a significant improvement over the traditional SF in
Eq. (B3); see Ref. [52]. In the modified approach the set of
basis reaction channels is orthonormalized using the norm
kernel leading to a set of channel vectors labeled with index ν,∣∣� (l,OCM)

ν

〉 =
∑

n

(
1√
N (l)

)
νn

|
nl〉. (C3)

Here (1/
√
N (l) )νn is a matrix element of the norm kernel

matrix raised to the power of −1/2 which is typically
achieved via diagonalization. The index ν by itself does not
have any particular physical meaning but the part of the full
parent state wave function spanned by the orthonormalized
set of vectors ν defines the spectroscopic factor:

S(OCM)
l ≡

∑
ν

∣∣〈� (A)
∣∣� (l,OCM)

ν

〉∣∣2
. (C4)

The OCM SFs (S(OCM)
l ) are normalized so that the sum of

all reduced transition probabilities from all initial states into
a particular asymptotic channel equals the dimensionality of
the space ν, equivalently to the number of basis channels
n; this does not include different magnetic substates of the
asymptotic channel [52].
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H. E. Gove, and J. Tōke, Phys. Rev. Lett. 35, 1131 (1975).

034321-18

https://science.osti.gov/-/media/np/nsac/pdf/2015LRP/2015_LRPNS_091815.pdf
https://doi.org/10.1098/rspa.1930.0032
https://doi.org/10.1098/rspa.1930.0032
https://doi.org/10.1098/rspa.1930.0032
https://doi.org/10.1098/rspa.1930.0032
https://doi.org/10.1103/PhysRev.54.681
https://doi.org/10.1103/PhysRev.54.681
https://doi.org/10.1103/PhysRev.54.681
https://doi.org/10.1103/PhysRev.54.681
https://doi.org/10.1088/0034-4885/70/12/R03
https://doi.org/10.1088/0034-4885/70/12/R03
https://doi.org/10.1088/0034-4885/70/12/R03
https://doi.org/10.1088/0034-4885/70/12/R03
https://doi.org/10.1093/ptep/pts001
https://doi.org/10.1093/ptep/pts001
https://doi.org/10.1093/ptep/pts001
https://doi.org/10.1093/ptep/pts001
https://doi.org/10.1238/Physica.Topical.088a00083
https://doi.org/10.1238/Physica.Topical.088a00083
https://doi.org/10.1238/Physica.Topical.088a00083
https://doi.org/10.1238/Physica.Topical.088a00083
https://doi.org/10.1016/j.physrep.2006.07.001
https://doi.org/10.1016/j.physrep.2006.07.001
https://doi.org/10.1016/j.physrep.2006.07.001
https://doi.org/10.1016/j.physrep.2006.07.001
https://doi.org/10.1103/PhysRevC.61.067305
https://doi.org/10.1103/PhysRevC.61.067305
https://doi.org/10.1103/PhysRevC.61.067305
https://doi.org/10.1103/PhysRevC.61.067305
https://doi.org/10.1103/PhysRevLett.112.152501
https://doi.org/10.1103/PhysRevLett.112.152501
https://doi.org/10.1103/PhysRevLett.112.152501
https://doi.org/10.1103/PhysRevLett.112.152501
https://doi.org/10.1103/PhysRevC.51.1554
https://doi.org/10.1103/PhysRevC.51.1554
https://doi.org/10.1103/PhysRevC.51.1554
https://doi.org/10.1103/PhysRevC.51.1554
https://doi.org/10.1103/PhysRevC.53.1804
https://doi.org/10.1103/PhysRevC.53.1804
https://doi.org/10.1103/PhysRevC.53.1804
https://doi.org/10.1103/PhysRevC.53.1804
https://doi.org/10.1143/PTPS.E68.464
https://doi.org/10.1143/PTPS.E68.464
https://doi.org/10.1143/PTPS.E68.464
https://doi.org/10.1143/PTPS.E68.464
https://doi.org/10.1103/PhysRevC.90.024327
https://doi.org/10.1103/PhysRevC.90.024327
https://doi.org/10.1103/PhysRevC.90.024327
https://doi.org/10.1103/PhysRevC.90.024327
https://doi.org/10.1103/PhysRevC.84.054615
https://doi.org/10.1103/PhysRevC.84.054615
https://doi.org/10.1103/PhysRevC.84.054615
https://doi.org/10.1103/PhysRevC.84.054615
http://purl.flvc.org/fsu/fd/FSU_migr_etd-8585
https://doi.org/10.1016/S0370-1573(02)00366-6
https://doi.org/10.1016/S0370-1573(02)00366-6
https://doi.org/10.1016/S0370-1573(02)00366-6
https://doi.org/10.1016/S0370-1573(02)00366-6
https://doi.org/10.1088/0034-4885/74/10/106301
https://doi.org/10.1088/0034-4885/74/10/106301
https://doi.org/10.1088/0034-4885/74/10/106301
https://doi.org/10.1088/0034-4885/74/10/106301
https://doi.org/10.1134/S1063778814070163
https://doi.org/10.1134/S1063778814070163
https://doi.org/10.1134/S1063778814070163
https://doi.org/10.1134/S1063778814070163
https://doi.org/10.1103/PhysRev.92.649
https://doi.org/10.1103/PhysRev.92.649
https://doi.org/10.1103/PhysRev.92.649
https://doi.org/10.1103/PhysRev.92.649
https://doi.org/10.1086/190005
https://doi.org/10.1086/190005
https://doi.org/10.1086/190005
https://doi.org/10.1086/190005
https://doi.org/10.1103/PhysRevC.49.R1751
https://doi.org/10.1103/PhysRevC.49.R1751
https://doi.org/10.1103/PhysRevC.49.R1751
https://doi.org/10.1103/PhysRevC.49.R1751
https://doi.org/10.1016/j.physletb.2011.10.008
https://doi.org/10.1016/j.physletb.2011.10.008
https://doi.org/10.1016/j.physletb.2011.10.008
https://doi.org/10.1016/j.physletb.2011.10.008
https://doi.org/10.1103/PhysRevLett.113.102501
https://doi.org/10.1103/PhysRevLett.113.102501
https://doi.org/10.1103/PhysRevLett.113.102501
https://doi.org/10.1103/PhysRevLett.113.102501
https://doi.org/10.1103/PhysRevLett.119.132502
https://doi.org/10.1103/PhysRevLett.119.132502
https://doi.org/10.1103/PhysRevLett.119.132502
https://doi.org/10.1103/PhysRevLett.119.132502
https://doi.org/10.1103/PhysRevLett.119.132501
https://doi.org/10.1103/PhysRevLett.119.132501
https://doi.org/10.1103/PhysRevLett.119.132501
https://doi.org/10.1103/PhysRevLett.119.132501
https://doi.org/10.1103/PhysRevLett.119.062501
https://doi.org/10.1103/PhysRevLett.119.062501
https://doi.org/10.1103/PhysRevLett.119.062501
https://doi.org/10.1103/PhysRevLett.119.062501
https://doi.org/10.1016/0370-2693(71)90434-5
https://doi.org/10.1016/0370-2693(71)90434-5
https://doi.org/10.1016/0370-2693(71)90434-5
https://doi.org/10.1016/0370-2693(71)90434-5
https://doi.org/10.1103/PhysRevC.14.491
https://doi.org/10.1103/PhysRevC.14.491
https://doi.org/10.1103/PhysRevC.14.491
https://doi.org/10.1103/PhysRevC.14.491
https://doi.org/10.1103/PhysRevC.14.475
https://doi.org/10.1103/PhysRevC.14.475
https://doi.org/10.1103/PhysRevC.14.475
https://doi.org/10.1103/PhysRevC.14.475
https://doi.org/10.1016/0375-9474(75)90470-4
https://doi.org/10.1016/0375-9474(75)90470-4
https://doi.org/10.1016/0375-9474(75)90470-4
https://doi.org/10.1016/0375-9474(75)90470-4
https://doi.org/10.1103/PhysRevC.15.84
https://doi.org/10.1103/PhysRevC.15.84
https://doi.org/10.1103/PhysRevC.15.84
https://doi.org/10.1103/PhysRevC.15.84
https://doi.org/10.1016/0370-2693(78)90387-8
https://doi.org/10.1016/0370-2693(78)90387-8
https://doi.org/10.1016/0370-2693(78)90387-8
https://doi.org/10.1016/0370-2693(78)90387-8
https://doi.org/10.1103/PhysRevLett.35.1131
https://doi.org/10.1103/PhysRevLett.35.1131
https://doi.org/10.1103/PhysRevLett.35.1131
https://doi.org/10.1103/PhysRevLett.35.1131


CLUSTERING IN STRUCTURE AND REACTIONS USING … PHYSICAL REVIEW C 100, 034321 (2019)

[38] J. A. Wheeler, Phys. Rev. 52, 1107 (1937).
[39] K. Wildermuth and E. J. Kanellopoulos, Rep. Prog. Phys. 42,

1719 (1979).
[40] J. Bang, A. Mazur, A. Shirokov, Y. Smirnov, and S. Zaytsev,

Ann. Phys. 280, 299 (2000).
[41] R. B. Wiringa, S. C. Pieper, J. Carlson, and V. R.

Pandharipande, Phys. Rev. C 62, 014001 (2000).
[42] J.-P. Ebran, E. Khan, T. Nikšić, and D. Vretenar, Nature
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