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Strutinsky’s method is reviewed through a new understanding. This method depends on two free parameters:
The smoothing parameter and the order of the curvature correction. It turns out that this method is nothing but
a compromise between two fundamental conditions which are the so-called asymptotic limit which comes from
the so-called remainder which imposes a small as possible smoothing parameter and the smoothing condition
which forces that parameter to be, at least, slightly larger than the intershell spacing. In this paper, to find the
best value of the smoothing parameter, a new criterion is proposed instead of the plateau condition. This new
criterion is much more clear and free from ambiguities of the usual plateau condition. It is also found that the
second free parameter, i.e., the order of the curvature correction, plays an accessory role since, it is connected
intimately to the smoothing parameter, when the smoothing is realized. This paper provides a new and definitive
insight into Strutinsky’s method and its relationship with semiclassical methods.
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I. INTRODUCTION

In nuclear structure, the Hartree-Fock-Bogoliubov (HFB)
method is the best choice to solve the mean field approxi-
mation. In the 1980s, because of the limited power of com-
puters, it was difficult to make such calculations. The use
of Strutinsky’s method [1–3] was then a good palliative.
This powerful method was particularly useful in the study of
the binding energy and the fission barrier where it obtained
remarkable results [4]. It was even difficult to compete with
it. Today, although less used than before, it continues to have
followers [5–8].

One of the weak points of this method is undoubtedly its
inherent ambiguities. First, Strutinsky’s method is also called
the macroscopic-microscopic method because it associates
two types of opposite nuclear models and this is a priori
not very coherent from the point of view of a fundamental
theory. However, this “mixture” can be justified from the HFB
theory [9]. Second, this method includes two free parameters:
The width of the smoothing functions and the order of the
curvature correction. It appears that the results of this method
always depend more or less strongly on these two parameters.
In this respect, the plateau condition has been imposed to re-
duce this dependence. However, as we will see, this condition
is not above criticism.

Actually, the most fundamental question is what exactly is
the Strutinsky method? The precise response to this question
has been given in 2006 in Ref. [10] which shows that the
Strutinsky method is only an approximation of the semi-
classical method [11–15]. This approximation contains an
unavoidable remainder, which means that the method cannot
give an exact result, i.e., with the required precision. Once
this has been clarified, the problem of the method accuracy
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and its dependence on the two free mentioned parameters
remains to be solved. In this respect, this study provides
deeper analysis and further clarifications of the one which has
already been addressed in Ref. [10]. First, this paper indicates,
in particular, the way to obtain the optimal value for the
smoothing parameter. That is to say, for which the results are
the closest to those given by the semiclassical method. To this
end, a basic criterion is given (see Sec. X) in order to achieve
this optimal value in a very precise manner. This criterion
is a consequence of the established link. Furthermore, this
criterion which is fundamentally different from the so-called
plateau condition will be justified in this paper. This study
will also explain why the order of the curvature correction
has very little influence on the results when the smoothing
parameter is chosen optimally as long as the order is not too
small. When comparing the Strutinsky method with the semi-
classical method, a number of remarks and questions come
to mind. This study provides the appropriate answers to these
problems. This paper is the result of a very large number of
numerical calculations and checks. Among these calculations,
I have chosen some examples to illustrate the most important
features. The numerical aspect has been intensively processed
using a large number of FORTRAN programs. It is hoped that
reading this paper will provide the necessary elements that
allows a good understanding of this method and the associated
ambiguities and will explain how to handle the Strutinsky
procedure.

II. STRUTINSKY METHOD VS SEMICLASSICAL
METHOD: HIGHLIGHTS

Before going into the details of the subject of this paper, it
is necessary to draw a parallel between the Strutinsky method
and the semiclassical method. This will help us to have an
overview of both methods in order to compare them, to see
what separates them from what brings them together. This
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section is dedicated to the salient features of these methods
(see also Ref. [16] and references quoted therein). In the
microscopic-macroscopic method, the shell correction to the
classical liquid drop model results from the quantum effects of
the atomic nucleus. This shell correction can be mainly calcu-
lated in two ways: (i) The first one uses the Strutinsky method,
which was widely used in the past. (ii) The second uses one
of the semiclassical methods which is generally the one based
on the Wigner-Kirkwood h̄ expansion [11,12] up to the fourth
order (Thomas-Fermi term plus h̄2 and h̄4 corrections). The
second method has been used fairly successfully recently [16].
It has been found in several studies that in most cases, the
results of these two methods are very close [15,17–19], though
they are not exactly the same. This similarity between the
two methods has been found in a large number of papers,
but without establishing a direct link. Both methods use level
density as the basic quantity from which a number of particles
and energy can be deduced. Furthermore, it has been early
stated in Ref. [20] that the “Strutinsky shell correction method
is essentially a semiclassical approximation. It rests on the
fact that the number of particles in the system considered
is large, rather than on the interaction between the particles
being weak.” There are many other arguments in favor of a
link between the two methods (see the rest of this text). Thus,
the fundamental question then is whether these densities are
completely different, whether they are close, or whether there
is a link between them. Before answering this fundamental
question, it is useful to note that the two methods encounter
different difficulties in practice. In the Strutinsky method, the
main difficulty lies in the treatment of the continuum for
finite wells. In effect, this method works with the discrete
eigenvalues (bound states) and continuum. But, the latter is
more difficult to obtain from the Schrodinger equation. The
continuum plays an even more important role as the Fermi
level is closer to it. This can be delicate for nuclei close to
the drip line. Originally, in this case, the discrete levels of
positive energies (the so-called quasibound states resulting
from diagonalization in a finite harmonic oscillator basis)
were artificially used to “simulate” the continuum. But other
methods are possible. To my knowledge the most rigorous
and easy treatment of the continuum is given by the Green
functions method which in practice amounts to diagonalizing
two Hamiltonians [21]. In other words, to apply the Strutinsky
method it is necessary to solve Schrodinger’s equation rigor-
ously. Another difficulty results from the plateau condition,
which is not satisfied in all cases. This remark of the absence
of a clear plateau in Strutinsky’s method has been very often
made in the literature. It turned out that even in the case
where this treatment (continuum) is correctly performed, the
plateau condition is seldom satisfied [18] (this remark is very
important for this paper). An attempt to find an alternative to
the plateau condition was already given in the same paper (see
Sec. X). In the Wigner-Kirkwood method, the problem of the
continuum does not exist since there is no explicit reference to
this continuum. In addition, there is no restriction on whether
the potential must be finite or not. Now, for finite wells
(Wood-Saxon for example), one of the unfair criticisms [18]
of this method is that the h̄2 correction in the semiclassical
Wigner-Kirkwood density diverges in ε = 0 as 1/

√
ε while

for the Strutinsky density there is only a finite peak in ε = 0.
It was then suggested that the Strutinsky method should be
preferred. However, Ref. [22] points out that the level density
must be seen as a distribution in the mathematical sense of
the term and that, for the number of particles as well as for
energy, it appears only under the integral sign. Consequently,
although the level density diverges, these integrals are finite
and therefore perfectly defined and this type of problem does
not need to be addressed. Thus, in this respect, the Wigner-
Kirkwood (WK) method was used to deduce a semiclassical
shell correction (with h̄2 and h̄4 corrections) without any
problems of this type (see Ref. [16] and references quoted
therein). However, from the point of view of the numerical
aspect, the WK method remains a cumbersome procedure
compared to the Strutinsky method. The definitive answer to
the fundamental question posed above, namely, the difference
between the level density of the Strutinsky method and the
semiclassical method (Wigner-Kirkwood), has been given by
Ref. [10]. The latter demonstrates that the Strutinsky density
is only an approximation of the semiclassical method. Thus,
in that paper [10], the so-called remainder explains why the
results in the two methods are very close, but not rigorously
the same. Unfortunately, some points of this demonstration
do not seem to have been well understood. Therefore, I will
take advantage of this paper to clarify as much as possible this
demonstration so that there are no more ambiguities or doubts
about it. First, I will clarify what is meant by the classical
limit.

III. BOHR CORRESPONDENCE PRINCIPLE
AND CLASSICAL LIMIT

The famous correspondence principle of large quantum
numbers, first proposed by Niels Bohr in 1923, states that the
quantum behavior of a system reduces to a classical physics,
when the quantum numbers involved are very large. In a
quantum system such as the atomic nucleus considered as a
set of independent fermions in an average field, the Fermi
energy level determines the energy of the nucleus. The larger
the number of nucleons, the higher the Fermi level. Thus the
classical limit could be defined by the fact that the Fermi
level should be very large (measured from the bottom of the
wells V0) compared to one quantum energy of the system
(or compared to the zero point energy) referred to as h̄ω,
i.e., λ − V0 � h̄ω. For this reason, semiclassical methods are
more applicable to heavy nuclei than to light nuclei. The
ideal case for such systems is given by the (unphysical) limit
λ → ∞, in a such way that level density (or energy) could
be defined by an asymptotic expansion which is somewhat
a behavior in the vicinity of infinity. Such series can be
obtained, for example, by the Wigner-Kirkwood method or
by the Euler Maclaurin formula or other methods. The first
term, i.e., the main contribution of such expansion is the
Thomas-Fermi approximation. For example, in the case of the
three-dimensional harmonic oscillator, the semiclassical level
density is given by [10] gsc(λ) ≈ (1/2h̄ω)[(λ/h̄ω)2 − 1/4]
Thus the limit λ → ∞ becomes in practice λ � h̄ω, here
V0 = 0. In the classical limit, all quantum quantities become
close to their analogs in classical physics. In particular, the
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quantum level density [see in the following Eq. (5)] becomes
close to the one deduced from the semiclassical method.
Schematically, in the general case, we will have (with obvious
notations)

g0(ε) ≈ gsc(ε), (1)

in the classical limit,

λ − V0 � h̄ω. (2)

Within the limit of large quantum numbers, quantum mechan-
ics becomes a classical mechanics. Consequently, in this limit,
quantum effects disappear and shell effects that are quantum
effects also disappear.

IV. REMINDER ON THE PRINCIPLE OF THE
MICROSCOPIC-MACROSCOPIC METHOD

The principle of that method [4] is based on the fact that
the energy of a nucleus can be split into a smooth part which
varies slowly with the number of neutrons and protons and a
rapid fluctuations due to the shell structure of the level density.
The justification for such a separation has been made on the
basis of the Hartree-Fock theorem [9]. The smooth part is
generally deduced from a classical model such as the liquid
drop model and quantum (shell) corrections are derived from a
microscopic model. The present work concerns only the shell
correction, the pairing correction is therefore outside of the
scope of this study. Shell effects are evaluated separately for
neutrons and protons. In the Strutinsky method, the binding
energy is given by

Energy = E liquiddrop + δE shellc
neut + δE shellc

prot , (3)

where each of the shell corrections is defined as

δEM,γ =
N or Z∑
n=0

εn − EM,γ (λ) (4)

in which the first sum (which contains shell effects) is that of
the single-particle energy levels and the second is the smooth
energy (which is free of shell effects) defined through the
Strutinsky procedure. N and Z are the neutron and proton
numbers. The Strutinsky procedure depends on two free pa-
rameters: The order M and the smoothing parameter γ . In this
regard, it is worthwhile to note that the smooth energy gener-
ated by the Strutinsky method has recently been replaced by
the one derived (semiclassically) from the Wigner-Kirkwood
method (up to the order h̄4) which does not contain free
parameters [16], without any problem.

V. STRUTINSKY LEVEL DENSITY AND STRUTINSKY
ENERGY: BASIC FORMULAS

A. Exact or quantum level density

The exact (or sharp or quantum) level density go(ε), which
contains shell effects, for neutrons or protons is defined as a
sum of Dirac functions on the basis of the knowledge of the

set of energy levels {εn},

go(ε) =
∞∑

n=0

δ(ε − εn) =
∞∑

n=0

1

γ
δ

(
ε − εn

γ

)
. (5)

In Eq. (5) the parameter γ is introduced to make the
argument of delta function dimensionless. Subsequently, it
will play the role of the width of the Gaussian smoothing
functions (see below). The energy interval between two suc-
cessive shells constitutes a shell gap. For a spherical nucleus,
each gap is characterized by one of the well-known magic
numbers in the famous shell model of Maria/Haxel [23,24].
But secondary gaps and other magic numbers can appear for
deformed nuclei, the so-called deformed magic numbers [4].
The delta functions (especially for high degeneracy of energy
levels) represent abrupt variations of the level density. Each
delta function is centered at an energy level εn. Within the
expression of Eq. (5) the energy (that contains the shell
effects) is defined by

E =
∫ λ0

−∞
εgo(ε)dε =

N or Z∑
n=0

εn, (6)

where λ0 is the sharp Fermi level. In principle it is derived
from the condition of conservation of the number of particles:

N or Z =
∫ λ0

−∞
go(ε)dε. (7)

Due to the fact that the exact level density is based only on
delta (sharp) functions [given by Eq. (5)], the Fermi level
λ0 cannot be completely determined. Generally, for a sharp
distribution of nuclear matter, it is defined as the highest
occupied level. Nevertheless, here there is no need to know
λ0 because it does not appear explicitly in the sum of Eq. (6).
Note that the exact density defined using delta functions is
not a function in the conventional sense. It rather must be
considered as a distribution. For physical quantities, such as
the number of particles or the energy, this distribution appears
only under the integral sign and these quantities remain finite.

B. Smoothing or averaging functions in the Strutinsky method

In order to smooth out the quantum density [Eq. (5)], i.e., to
remove the shell effects, Strutinsky thought first to replace the
delta functions by pure Gaussian functions with finite width
γ . Thus, the basic idea of Strutinsky is to “spread the delta
functions over an interval of finite length γ . To eliminate the
shell oscillations, the width γ of these Gaussians must be at
least equal to the mean gap between two successive shells
usually denoted by h̄ω (in reference to the typical example of
the harmonic oscillator). It turned out that such replacement
was not so accurate and led Strutinsky to introduce the so-
called curvature correction. This consists of multiplying the
Gaussian by a polynomial of order M. The origin of the
curvature correction is mainly due to the case of the harmonic
oscillator because it provided a remarkable improvement for
this particular case and also helped to improve the plateau
condition (see below) for the other cases. Thus, the smoothing
procedure amounts to replacing delta functions in Eq. (5)
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[and therefore in Eqs. (6) and (7)] by smoothing functions as
follows:

1

γ
δ

(
ε − εn

γ

)
→ PM

(
ε − εn

γ

)
1

γ
√

π
exp

[
−

(
ε − εn

γ

)2
]

(8)

with the important smoothing condition that the parameter γ

must be at least of the order of the intershell spacing,

γ � h̄ω (smoothing condition). (9)

To condense the notation, the smoothing functions will be
denoted as

PM

(
ε − εn

γ

)
1

γ
√

π
exp

[
−

(
ε − εn

γ

)2
]

= 1

γ
FM

(
ε − εn

γ

)
.

(10)

Making the replacement given by Eq. (8), the exact density of
Eq. (5) will become a convenient regular continuous function
[as soon as Eq. (9) is fulfilled] and will be defined as the
Strutinsky (i.e., smooth or average) level density, which is free
of shell effects:

gM, γ (ε) =
∞∑

n=0

1

γ
FM

(
ε − εn

γ

)
. (11)

In realistic calculations the mean intershell spacing is usually
taken of the order of

h̄ω ≈ 41A−1/3, (12)

where A is the mass number. Note the similarity between
Eqs. (5) and (11). The polynomial PM in the smoothing
functions is defined by means of Hermite polynomials:

PM (un) =
M∑

m=0

AmHm(un), un = ε − εn

γ
, (13)

Am = (−1)m/2

[2m(m/2)!]
if m is even,

Am = 0 if m is odd. (14)

Here, the definition of the smoothing function differs slightly
from that of Ref. [10], the factor (1/γ ) being here external.
Using the Darboux-Christoffel formula (see Appendix of
Ref. [10]), another form of this polynomial can be writen as

PM (un) = HM (0)

2M+1M!

HM+1(un)

un
. (15)

Here, M is even and HM (0) is given by

HM (0) = (−1)M/2 M!

(M/2)!
. (16)

By means of the Strutinsky density, in a similar way to
Eq. (6), the Strutinsky (or average or smooth) energy will be
given by

EM,γ (λ) =
∫ λ

−∞
εgM,γ (ε)dε. (17)

The shell correction of the Strutinsky method is then given by

δEM,γ = E − EM,γ (λ), (18)

where E is defined by Eq. (6). The Fermi level λ is determined
by the conservation of the particle number:

N or Z =
∫ λ

−∞
gM,γ (ε)dε.

The detailed formulas of gM,γ and EM,γ are given in Ref. [25].
There is no need to give these formulas which are only used
for FORTRAN programming.

VI. MAIN DEFECT OF THE STRUTINSKY METHOD

The main problem of Strutinsky’s method is that, since the
shell correction is a physical quantity, it should not depend on
the two free mathematical parameters which are the Gaussian
width, represented by the smoothing parameter γ and the
order M of the curvature correction. The same remarks holds
for the Strutinsky density of states gM,γ or the Strutinsky
energy EM,γ . This led to imposing the so-called plateau
condition ensuring at least “locally” the independence of the
shell correction with respect to these two parameters:[

∂δEM,γ (λ)

∂γ

]
γ�h̄ω

≈ 0, (19)

[
∂δEM,γ (λ)

∂M

]
γ�h̄ω

≈ 0. (20)

Usually, the plateau condition is searched for a fixed order
M and the second condition is in most cases not taken into
account. In practice, it is often difficult to locate accurately
the plateau because in many cases it does not appear very
clearly. Consequently, in this method, the uncertainties and
ambiguities are always present In fact, all the ambiguities of
Strutinsky’s method are related to this type of problem. I will
discuss this issue in more detail later in this paper.

VII. ACTUAL WIDTH OF THE SMOOTHING FUNCTIONS
DEPENDS NOT ONLY ON γ BUT ALSO ON M

Thus, the smoothing procedure of the Strutinsky method
amounts to performing the replacement given by Eq. (8). In
this procedure, each Dirac function in the sum of Eq. (5) is
“mimed” by a continuous function [see Eq. (10)] with a finite
width. Unlike a sum of delta functions, the sum of modified
exponential gives as a result a continuous level density with
oscillations. The larger the width of these functions, the
smaller the oscillations (fluctuations). The most important
point concerns the real width of the smoothing functions FM .
In the absence of the curvature correction the width of the
curve is the one of a pure Gaussian, i.e., represented by the
sole parameter γ . But the curvature correction, i.e., PM in
Eq. (10), must be taken into account. In effect, in that formula,
we have a product of a polynomial PM of order M by a
Gaussian. Therefore, it is easy to see that the polynomial of
the curvature correction influences the width of the resulting
curve. Consequently, the width of the smoothing functions,
Eq. (8), will not be represented only by the parameter γ

as is often claimed. More precisely, the polynomial has M
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FIG. 1. Smoothing functions Eq. (10) for three values of the
order M and their width. The double arrow indicates, roughly, the
width of the smoothing function, for each of the three cases (M = 0,
6, 30).

roots and vanishes M times. Therefore, the first root defines
practically the true width of that curve. Thus, the real width
of the smoothing function depends not only on the parameter
γ but also on the order M. For this reason, when the order
M of the curvature correction increases, it is necessary to
increase at the same time the value of γ so that the smoothing
is actually achieved. Strictly speaking, the smoothing value
must be indexed by M. A more correct way of writing the
smoothing condition would be

γM � h̄ω, (21)

which means that the smoothing value of the parameter γ de-
pends actually on the order M. I illustrate in Fig. 1 how the or-
der M modifies the smoothing functions, that is (1/γ )FM (x) =
PM (x)e−x2

/(π1/2γ ) with x = (ε − εn)/γ , when γ is kept
constant. One can compare the width of the pure Gaussian
(M = 0) with two other curves, corresponding to M = 6 and
M = 30. From that figure, it is clear that the real width of the
smoothing function depends also on the order M and dimin-
ishes as M increases. Thus for a fixed γ the width decreases as
M increases. It amounts to the same thing to increase M or to
diminish γ . This explains why the smoothing functions reduce
to a delta function for γ = 0 or M = ∞ and therefore why the
Strutinsky level density given by Eq. (11) reduces to the exact
level density in these two distinct limit cases. Now, it seems
obvious that M and γ are closely dependent in the smoothing
procedure. This is why the plateau (or extremum) is moved to
the right as M increases. In this respect, it has already been
noticed in Ref. [18] that, where the plateau condition was
approximately satisfied, a strong correlation is found between
the values of γ and M. This will be even clearer in Sec. XI
in Tables I–III where we can clearly see that the γ value that
smoothes Strutinsky’s density increases with the order M.

TABLE I. Comparison between the Strutinsky energy and the
semiclassical energy for different order M of the curvature correction
in the neutrons’ case of neodymium 120. The value of the smoothing
parameter is given in column 2.

120Nd (N = 60, Z = 60)

γsmooth Estrut Esc

M (MeV) (MeV) (MeV)

0 4.88 −1606.22 −1583.25
2 6.21 −1583.32 −1583.25
4 7.1 −1583.57 −1583.25
6 7.86 −1583.36 −1583.25
8 8.64 −1583.37 −1583.25
10 9.31 −1583.44 −1583.25
12 9.81 −1583.51 −1583.25
14 10.42 −1583.55 −1583.25
16 10.91 −1583.57 −1583.25
18 11.38 −1583.57 −1583.25
20 11.86 −1583.57 −1583.25
22 12.32 −1583.58 −1583.25
24 12.76 −1583.58 −1583.25
26 13.18 −1583.57 −1583.25
28 13.59 −1583.57 −1583.25
30 13.98 −1583.56 −1583.25

VIII. CONNECTION BETWEEN SEMICLASSICAL LEVEL
DENSITY AND STRUTINSKY LEVEL DENSITY:

CLARIFICATIONS

In 2006, Ref. [10] proved analytically that the shell correc-
tion evaluated from the Strutinsky method is only an approxi-
mation of the one deduced from the semiclassical method. The
demonstration of the fundamental formula (24) of Ref. [10]
contains too many details, and could be difficult to understand
at first sight. So, it seems useful to clarify its main steps.

TABLE II. Same as Table I for neodymium 130.

130Nd (N = 70, Z = 60)

γsmooth Estrut Esc

M (MeV) (MeV) (MeV)

0 4.58 −1626.89 −1603.20
2 5.85 −1603.60 −1603.20
4 6.70 −1604.18 −1603.20
6 7.39 −1603.95 −1603.20
8 8.11 −1603.84 −1603.20
10 8.74 −1603.85 −1603.20
12 9.30 −1603.91 −1603.20
14 9.81 −1603.99 −1603.20
16 10.29 −1604.06 −1603.20
18 10.74 −1604.11 −1603.20
20 11.17 −1604.15 −1603.20
22 12.32 −1604.18 −1603.20
24 11.59 −1604.20 −1603.20
26 12.00 −1604.21 −1603.20
28 12.78 −1604.22 −1603.20
30 13.15 −1604.23 −1603.20
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TABLE III. Same as Table I for neodymium 140.

140Nd (N = 80, Z = 60)

γsmooth Estrut Esc

M (MeV) (MeV) (MeV)

0 4.32 −1622.56 −1598.14
2 5.53 −1598.46 −1598.14
4 6.33 −1599.47 −1598.14
6 7.00 −1599.23 −1598.14
8 7.65 −1598.97 −1598.14
10 8.25 −1598.82 −1598.14
12 8.78 −1598.77 −1598.14
14 9.28 −1598.75 −1598.14
16 9.75 −1598.74 −1598.14
18 10.19 −1598.75 −1598.14
20 10.61 −1598.75 −1598.14
22 11.02 −1598.74 −1598.14
24 11.42 −1598.73 −1598.14
26 11.80 −1598.72 −1598.14
28 12.18 −1598.70 −1598.14
30 12.54 −1598.68 −1598.14

A. Principle of the demonstration of this formula

The Strutinsky level density can be obtained by means of
the well-known usual folding procedure of the quantum level
density [10],

g
M ,γ (λ) =

∫ ∞

−∞
go(ε)

1

γ
FM

(
ε − λ

γ

)
dε, (22)

with the smoothing condition (9). Here, the quantum level
g0 density is given by Eq. (5), FM is the smoothing function
defined by Eq. (10), and λ is the Fermi level. It should be
noted that the expression (5) is, in principle, valid only for
infinite wells, even if for finite wells, the positive energies
(quasibound states) are sometimes used to simulate the con-
tinuum for finite wells (see Sec. II). Strictly speaking, for a
finite well, the expression (5) should be

g0(ε) =
∑

n

δ(ε − εn) + gc(ε), (23)

where gc(ε) stands for the expression of the continuum. It is
assumed that the resolution of the Schrodinger equation has
been made and that the entire spectrum (discrete and contin-
uous parts) is known. In this case, g0(ε) is also completely
known. The way in which the spectrum of eigenvalues has
been resolved is of little importance in the demonstration since
the quantum density only intervenes in a purely formal way in
Eq. (22). Consequently, the demonstration of the fundamental
relationship between the two types of level density is valid for
both infinite and finite wells. Now, the most important point is
based on the condition of the classical limit. Therefore, if we
impose the classical limit given by Eq. (2) in Eq. (22), then
the exact density (or quantum density) becomes close to the
classical density, i.e., becomes the semiclassical density [see
Eq. (1)], which is free of shell effects. We obtain thus the basis

of the demonstration:

g
M ,γ (λ) ≈

∫ ∞

−∞
gsc(ε)

1

γ
FM

(
ε − λ

γ

)
dε, (24)

where gsc(ε) is the semiclassical level density, with the condi-
tion of the semiclassical limit, λ − V0 � h̄ω, and the smooth-
ing condition, γ � h̄ω. Now, making X = ε−λ

γ
, we obtain

g
M ,γ (λ) ≈

∫ ∞

−∞
gsc(λ + γ X )FM (X )dX, (25)

M being even.
The next step is to perform a Taylor expansion of the semi-

classical density around λ, up to the order (M + 2), neglecting
all the other terms. This means that the semiclassical density
is approximated by the Taylor polynomial of degree (M + 2),

gsc(λ + γ X ) ≈ gsc(λ) +
M+2∑
m=1

(γ X )m

m!

dmgsc(λ)

dλm
. (26)

The first term, i.e., gsc(λ), is a constant in the integral so that
the orthogonality property of Hermite polynomials shows that
only the constant term m = 0 in the first form of PM (x) [in
Eq. (13)] has a contribution (equal to the unity) so that the
integral gives back to, i.e., gsc(λ). In the sum, the terms m =
1, 2, . . . (M + 1) have zero contribution to the integral (25).
This is easily seen, if we use the form given by Eq. (15) for
PM (x) employing the fact that the Hermite polynomial HM (x)
is orthogonal to any polynomial of a lower degree. It is the last
term (M + 2) of this polynomial which leads to the so-called
remainder. The latter is the cause of the uncertainty of Struti-
nsky’s method. The last term gives an order of magnitude of
the rest which is called here RM+2,γ instead of RM,γ as in
Ref. [10]. In the mathematical demonstration, the remainder
is obtained by integrating Eq. (25) (see details in the original
Ref. [10]). The result is

g
M ,γ (λ) ≈ gsc(λ)(1 + Remainder) (27)

which shows that connection between the two level densities.
The order of magnitude of this remainder being given

by [10] (an exact expression will be given just below) is

Remainder = RM+2,γ (λ) ≈ CM+2γ
M+2

gsc(λ)

(
dM+2gsc(λ)

dλM+2

)
(28)

in which

CM+2 = (−1)M/2 1.3.5 . . . (M + 1)

2(M+2)/2(M + 1)!

= (−1)M/2

2(M+1)(M/2)!(M + 2)
. (29)

Here the definition of the coefficient CM+2 differs (slightly)
from that of Ref. [10] by the quantity (M + 2)!. Since the
Taylor series is truncated beyond the (M + 2)th term, all
higher order terms are ignored. Consequently, taking them
into account, the exact rest is obtained by summation of all
the remaining elements. The actual remainder, that is, the
complete form of the remainder, can be written as an infinite
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sum:

RM+2,γ (λ) =
∞∑

k=M

Ck+2
γ k+2

gsc(λ)

(
dk+2gsc(λ)

dλk+2

)
(30)

with k = M, M + 2, M + 4, . . . ∞, M being even. In this sum
the coefficient Ck+2 is defined by

Ck+2 = (−1)M/2

(M/2)!

1

[(k − M )/2]! 2k+1(k + 2)
. (31)

The first element (i.e., k = M) of this sum (30) matches the
one of Eq. (28) and the coefficient given by Eq. (31) reduces
to the one of Eq. (29). It should be emphasized that Eq. (27)
was obtained using the smoothing condition (9) and the clas-
sical limit (2), namely by γ � h̄ω and λ − V0 � h̄ω. Thus,
Eq. (27) shows that the Strutinsky level density is only an
approximation of the semiclassical one. Thus, the true value in
such calculations is the one given by the semiclassical method.
Consequently, the only question that arises is what accuracy
can be obtained from the Strutinsky method? In this respect,
it seems better to deduce the “true” shell correction in a direct
way, i.e., straightforwardly by semiclassical methods. Indeed,
it is always possible, at the cost of extremely complicated cal-
culations, to use straight semiclassical formulas. Nevertheless,
the advantage of the Strutinsky method lies in avoiding these
complications. In this respect, in the Strutinsky method, we
only need the knowledge of the level density deduced from
the set of the single particle energy levels and continuum.
The semiclassical approximation is implicitly contained in
this quantity. As previously stated, the only problem is how
to deal with the Strutinsky method in order to obtain the best
possible accuracy, i.e., to make the Strutinsky density as close
as possible to the semiclassical density. To this end, first of all,
one has to minimize the remainder (see discussion in the next
subsection below).

B. Essential condition for precision: Asymptotic limit

The remainder appears in Eq. (27). In order to make
Strutinsky’s density as close as possible to the semiclassical
density, that is, to obtain a good accuracy, we must have
Remainder �1.

The order of magnitude of the remainder is given by
Eq. (28). Consequently, to obtain a good accuracy, we must
impose

γ M+2

gsc(λ)/g(M+2)
sc (λ)

� 1

CM+2
(32)

However, since (1/CM+2) > 1, Eq. (32) will be realized a
fortiori, if

γ M+2

gsc(λ)/g(M+2)
sc (λ)

� 1. (33)

Furthermore, we will also assume that the denominator of the
above equation is an increasing function of λ. Therefore, a
necessary condition for the left member of Eq. (33) to tend
towards zero is that

γ

λ
� 1. (34)

Before going further, to get a good idea, let us apply the
formula given by Eq. (32) to the case of the cubic box with
perfect reflecting walls seen in Ref. [10]. Taking into account
only the dominant term (Thomas-Fermi approximation) in the
semiclassical level density, in this case, we will have

gsc(λ) = Constant ×
√

λ. (35)

Choosing for example M = 4, we obtain(
γ

λ

)4

� 512

15
, (36)

which means that we will obtain a good accuracy for (γ /λ) �
2.4 and which is a less restrictive condition than the general
case of the right-hand side of Eq. (33). It is worthwhile to note
that, in formula (34), the Fermi level for finite wells must be
measured from the bottom of the well V0, so

λ − V0 � γ . (37)

Equation (37) is called the “asymptotic limit” and is the
necessary condition of the accuracy of the Strutinsky method.
This formula is very similar to the one of the classical limit
given by Eq. (2): λ − V0 � h̄ω. Because the first energy level
ε0 of the spectrum is close to the bottom of the wells V0, the
latter can be replaced by ε0 as in Ref. [10].

The basic assumption of the Strutinsky method is given
by the smoothing condition of Eq. (9). This condition means
that the parameter γ must be slightly larger than the intershell
spacing. However, if we are only looking for smoothing, any
value larger than the mean intershell spacing (including the
very large γ values) will achieve this smoothing. Therefore, a
priori, from the point of view of smoothing only, in principle,
we must require a less restrictive condition:

γ � h̄ω. (38)

The larger the γ , the stronger the smoothing. This means that
the usual condition (9), i.e., γ � h̄ω, contains “by chance”
more information than smoothing alone. But, the reason why
the smoothing parameter would be as small as possible is
imposed by Eq. (37). In effect, in the latter, the only free
parameter is γ , so that it is necessary to take the smallest
γ value compatible with the smoothing condition (38). In
practice, γ value must be slightly larger than h̄ω. Usually, the
standard choice is about

γ ≈ (1.0 ∼ 2.0)h̄ω. (39)

It is therefore the relationship between Strutinsky’s method
and the semiclassical method that legitimizes taking the con-
dition of smoothing such as

γ � h̄ω. (40)

The latter is rewritten for the sake of clarity.
The asymptotic limit (37) and the smoothing condition (40)

can be summarized by a double equation:

λ − V0 � γ � h̄ω. (41)

It should be noted that the semiclassical limit (2) is also
contained in this double inequality. The latter plays an essen-
tial role in the fundamental formula (27). Once again, it is
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worthwhile to repeat that in the double condition, the only free
parameter is γ and it must be chosen as small as possible from
the “point of view” of the asymptotic limit. But its minimal
value is limited by the smoothing condition. Therefore, it
is not possible to “play” with its value as we want. In fact
the accuracy of the Strutinsky method is first limited by the
semiclassical limit: λ − V0 � h̄ω which for light nuclei, is not
fully fulfilled. This explains why this method is better for large
nuclei, that is for which the Fermi level is large.

C. Strutinsky energy

I point out that similar formulas to those of the level density
can be obtained for the energy. A connection between the
energy of the Strutinsky method and the semiclassical energy
is then

EM, γ (λ) ≈ Esc(λ){1 + ρM+2,γ (λ)} (42)

with

Esc(λ) =
∫ λ

−∞
εgsc(ε)dε, (43)

where the remainder of the energy is

ρM+2,γ (λ) =
∞∑

k=M

Ck+2γ
k+2

Esc(λ)

∫ λ

−∞
ε

(
dk+2gsc(ε)

dεk+2

)
dε, (44)

where the coefficient Ck+2 is defined by Eq. (31), with the
double condition (41).

D. Singular case of the harmonic oscillator

We saw in Sec. III that the semiclassical level density
of the harmonic oscillator was a polynomial of degree 2.
Considering the shape of the rest in Eq. (44), it is obvious
that for M � 2, all the derivatives contained in that sum cancel
simultaneously. Therefore, the remainder (44) also cancels out
and gives a perfect result for this example, provided that the
smoothing condition is met. In this case, a perfect plateau
is obtained and the Strutinsky energy becomes equal to the
semiclassical energy, for any value of the γ parameter. But
this case is very particular and there is no other case for which
all the derivatives of the semiclassical density in the remainder
cancel simultaneously. This is the reason why it is impossible
to find a plateau as clear as that of the harmonic oscillator. It
is then necessary to try to minimize the rest by a procedure
other than the plateau condition.

IX. LIMIT OF THE REMAINDER WHEN THE ORDER M
TENDS TOWARD LARGE VALUES

As we have seen from Eq. (41), it is not possible to
improve the precision of the method by using a value of the
parameter γ as small as one would like because it is limited
by the smoothing condition of Eq. (40). Nevertheless, in the
expression of the main term of the remainder Eq. (29) or the
complete form of the remainder Eq. (30), we have products of
the form CM+2γ

M+2. As it can easily be seen from Eq. (29),
the coefficient CM+2 tends toward zero as M increases to
infinity. Therefore, for a fixed value of the parameter γ , this

product also tends to zero as M increases to infinity. It is then
tempting to simply take large values of M to increase this
accuracy. But actually, things are no so simple as they appear.
Indeed, it has been already noticed in Sec. VII that if M is
increased, the real width of the smoothing functions decreases
so that it is necessary to enlarge again the parameter γ in order
to fulfill the fundamental relation of the smoothing condition
in Eq. (40).

Thus, as M increases, CM+2 decreases but the smoothing
conditions imply that γ has to be increased at the same
time. Therefore, as M increases, the limit of the product
CM+2γ

M+2 remains unclear. Finally, we cannot conclude by
saying that taking large values of M improves the accuracy
of the Strutinsky method. This will be shown in the following
section.

X. CRITERION OF THE MONOTONIC BEHAVIOR
OF THE STRUTINSKY LEVEL DENSITY

In Ref. [17], it has already been pointed out that the
plateau condition cannot be achieved if the “average density
contained in the quantum density” is not a polynomial and
this point is perfectly explained in this paper (see Sec. VIII D).
In this case, it has been suggested in Ref. [17] to replace the
plateau condition by the stationariness condition which is an
infinitesimal plateau (maximum or minimum), i.e., the points
for which ∂E/∂γ = 0. But the latter is marred by the fact
that there are quite often several points of stationarity leading
to ambiguity [17]. Another problem in the old conception of
the Strutinsky method comes from the fact that it has been
found that even if the continuum is perfectly treated, the
plateau is rarely encountered [18]. The latter suggests that
an alternative recipe for defining shell correction for finite
potentials, not based on the plateau condition but rather on
the property of “quasilinearity” of the smooth level density in
the “intermediate” region (see, for example, Fig. 4). In this
respect, a new criterion based on the level density (instead the
plateau condition) has already been proposed in that reference.
It turns out that the old conception of Strutinsky’s method
is unable to explain the origin of all these problems. In this
paper, the relationship between Strutinsky’s density and that
of the semiclassical method explains that perfectly. Because
of the remainder (see above), the smoothing parameter γ must
be “small enough” and because of the smoothing condition, it
must “be sufficient” large. It is in the compromise between
these two conditions that the optimization of Strutinsky’s
method must be carried out. Thus, the Strutinsky method is
no more than a problem of optimization. In any case, even
in perfect optimization, the precision of Strutinsky’s method
remains conditioned by Eq. (2). The latter is not well realized
for light nuclei. Once again, this paper explains why this
method should be avoided for very light nuclei. It is within
the natural framework of the relationship of the Strutinsky
method with the semiclassical method that I propose a new
criterion instead of the plateau condition. The most obvious
thing we know is that the rest given by Eq. (30) must be
as small as possible. In this remainder, the only two free
parameters are the smoothing parameter and the order of
the curvature correction. From the previous section, we also
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know that it is not sure to improve the accuracy of this
remainder by increasing the order M because increasing M
implies to increase γ . It therefore remains “to play” with the
only parameter γ . According to the double condition (41),
this parameter must not be too large (because of its presence
in the rest) or too small (because the smoothing might not
be achieved). In practice, the mean shell spacing h̄ω is not
accurately known a priori. One only knows that it is of the
order of h̄ω ≈ 41A−1/3. In fact, the question is what is the
minimal value of that parameter? In other words, when can
we pretend that the smoothing is actually realized? What is
exactly the practical criterion for answering this question?
Without beating about the bush, let’s immediately answer this
question (before justifying it later): In the following, we will
see that smoothing is achieved when the Strutinsky density
becomes monotonously increasing.

To demonstrate that, it is necessary to show how the Struti-
nsky level density changes when the parameter γ is increased
from zero to larger values, for a given order M (arbitrarily
fixed). As a function of the Fermi energy and for small values
of γ , the Strutinsky level density given by Eq. (11) is char-
acterized by an important oscillatory behavior around a mean
curve. This is due to the smoothing functions [Eq. (10)] which
are close to δ functions when their width is small. As the
parameter γ continues to increase, these oscillations decrease
in amplitude and the curve becomes more and more regular
approaching thus this mean value for which the oscillations
disappear. In this respect, one can guess that the disappearance
of these oscillations marks the beginning of the smoothing
and fixes the optimal value of γ . Because by construction the
smoothing is realized for the smallest value of the parameter
γ , i.e., for which the asymptotic limit (37) is best achieved,
one deduces that the Strutinsky level density will necessarily
be the closest to the semiclassical density. If we continue to
increase this parameter we deviate from the condition (37)
and therefore we lose accuracy. In practice, if we continue
to increase the parameter γ , the curve remains regular, but
begins to collapse more and more, starting from the top. One
will then move further and further away from this optimal
value. A practical example is given in Fig. 2. I have drawn the
Strutinsky level density for a fixed value of the order (M = 6),
and three values of the parameter γ . For the smallest value
γ = 1 Mev, one can see strong oscillations. These oscillations
decrease in amplitude for γ = 3 MeV and disappear when the
value of γ reaches 7.23 MeV which is the optimal value, i.e.,
for which the curve becomes monotonous. These calculations
are deduced from the neutron case of 134

60 Nd74. To obtain the
set of energy levels I have solved a realistic Schrodinger
equation based on the Woods-Saxon potential following the
method given in Ref. [26]. Thus, the optimal value of the γ

parameter is the smallest that makes the curve monotonous,
without oscillations. In this respect, it is worth recalling that
semiclassical density is a strictly increasing function. So,
since the Strutinsky density is only an approximation of that
one of the semiclassical method, it is natural to impose the
same property to the one calculated by the Strutinsky method.
Thus, the oscillatory behavior of the Strutinsky level density
ceases when this function becomes monotonically increas-
ing. In practice, it is then enough to gradually increase the
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FIG. 2. Strutinsky level density as function of the Fermi level for
three values of the smoothing parameter. Note the oscillations (fluc-
tuations) around the mean curve numbered 3 between parentheses.

parameter γ and to verify from which value of this parameter
the curve representing the Strutinsky level density becomes
monotonically increasing, without oscillations. One must not
go beyond this optimal value.

XI. ACCORDING TO THE NEW CRITERION,
DO THE RESULTS DEPEND ON THE ORDER M?

In fact, in the previous section, the criterion of the mono-
tonic behavior is based only on the smoothing parameter γ .
This criterion does not specify the value of the order M.
It only says that its value must be first arbitrarily fixed. In
fact, we know from Sec. VII that the smoothing value of the
parameter γ depends on the order M. Thus, the optimization
is done when M is fixed. The question which arises to the
mind is if we choose different values for the order M, can
we obtain the same value for the Strutinsky level density (and
therefore for the Strutinsky energy and shell correction)? In
fact, we also know that the remainder depends on M and that
M varies by two units (
M = 2). It is to be expected that the
relative variation of the remainder is smaller for the very large
values of M, because in this case M can be considered as a
continuous variable. Consequently, for a question of stability
of results, it is advisable to take the largest possible values
of M. Unfortunately, in this case rounding errors can become
important and a compromise must be found. This stability of
the results is confirmed in the following numerical tests. In
Tables I–III I compare the Strutinsky calculations of energy
with the ones of the semiclassical method for three isotopes
of neodymium. In these calculations, the Strutinsky energy
has been evaluated for different values of the order M using
the present criterion of the monotonic behavior to determine
the smoothing value of the parameter γ . The semiclassical
energy is calculated by using the method given in Ref. [27].
As already mentioned before, the Strutinsky calculations are
realized following my FORTRAN program given in Ref. [28]. I
use the Woods-Saxon potential with the universal parameters
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of Ref. [29]. So, in these three cases, we can see that the value
γsmooth (of the parameter γ ) which initiates the smoothing
(of the Strutinsky level density) increases with the order M
but the Strutinsky energy remains practically the same, close
to the semiclassical energy. The bad value of the energy for
M = 0 is due to the absence of the curvature correction. Thus,
apart from the value M = 0, the Strutinsky (smooth) energy is
found to be very close to the one deduced from the semiclassi-
cal method. The relative error is about 0.0005 MeV when one
considers that the numerical value of the semiclassical method
is exact. In fact, the latter is also deduced numerically and
also involves uncertainty. From the tables, it is very clear that
where the smoothing is realized, the Strutinsky energy varies
very little with M. Thus apart from M = 0, the maximum
deviation (Min-Max difference for M going from M = 2 to
M = 30) are of about 0.3, 0.6, 1.0 MeV respectively for
N = 60, 70, 80 (the three isotopes of Nd). From M = 16 to
M = 30, the values of the Strutinsky energy are practically
constant to five significant digits in theses examples. Thus,
with these examples, one can expect stable results as soon
as we use medium values of M (�16). For the lowest values
of M (M = 2–10), the variations of the Strutinsky energy are
somewhat larger. So, even among these values, there are some
which are very close to the semiclassical value. Obviously,
the use of the Strutinsky method assumes that semiclassical
energy is not known, otherwise it is of no interest. For this
reason, it is however difficult to choose a priori between
them. Due to the “unavoidable remainder,” there is always a
(small) uncertainty in this method. This uncertainty is specific
in each case since the level density changes for each nucleus.
Therefore a very perfect result would only be due to chance.
I can conclude this section by saying that as soon as the order
M is fixed and the smoothing is realized for that value of M,
the Strutinsky energy becomes close to the semiclassical level
density and insensitive to the value of M, provided that M is
large enough (about M � 12).

XII. CRITICISM OF THE PLATEAU CONDITION:
ITS TRUE MEANING

Let us examine the problem of the plateau condition.
The results of the Strutinsky method strongly depend on the
smoothing parameter γ if the latter is chosen arbitrarily. In
the old justification, it was argued that there is a range of
γ values for which the shell correction no longer depends
on these values [2,3]. It is the well-known plateau condition.
In fact, apart from the case of the harmonic oscillator, there
is no perfect plateau (see Sec. VIII D). Consequently, it is
actually difficult to define exactly what a plateau is. A plateau
is characterized by a perfect horizontal line. In practice, in
the case of the harmonic oscillator, the length of the plateau
depends on the size of the base as well as on the order M
of the curvature correction. In general, in real cases, we have
curves with more or less pronounced slopes. The length of the
plateau is also an ambiguous question since there are mini-
or microplateaus that practically reduce to points. Sometimes
the curve shows “steps” and we no longer know which is the
“good” plateau. Thus, apart from the harmonic oscillator case,

FIG. 3. Plateau condition for different orders of the curvature
correction. Dashed horizontal line gives the value of the semiclas-
sical energy.

the plateau is an intuitive notion that is in itself tainted with
ambiguities.

The plateau condition is very rarely met [18], and in a
number of cases it is even nonexistent. In order to remedy
these situations, it has been proposed to replace that cri-
terion by the stationariness condition [17] which, in fact,
is an infinitesimal plateau (that reduces to a single point).
Another criterion of optimization on the level density has
been proposed in Ref. [21]. In the light of the relation of
the Strutinsky method with the semiclassical method, I will
explain the plateau condition by arguments other than those
which are usually given. My analysis will be illustrated by
Fig. 3. This figure shows the behavior of Strutinsky’s energy
as a function of the parameter γ . The horizontal line gives the
value of the semiclassical density for the case in question. We
can note the following points:

(i) It can be seen that the four curves, corresponding
to four different values of M, start from the same
value. This is easily explained since for γ = 0, the
Strutinsky density reduces to the quantum density
and the Strutinsky energy becomes the sum of single
particle states.

(ii) We can also see that for each curve there are sev-
eral extrema and the difficulty is to choose the right
extremum. The usual recipe is to choose the values
in the range between h̄ω and 2h̄ω with the standard
value given by Eq. (12). In addition, the extrema of
the four curves in the vicinity of the horizontal line
(semiclassical value) do not have strictly the same
value.

(iii) We also see that the extrema are shifted to the right as
the value of M increases. This has been well explained
in Sec. VII. This remark makes the recipe of choosing
extrema in the interval [h̄ω, 2h̄ω] true only for the
usual values of M (M less than 12). For the very large
values of M, it is difficult to find this interval a priori.
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(iv) For the curve with M = 30, we see a plateau that
is quite obvious. This is due to the fact that the
semiclassical density is rather well approached by a
polynomial of degree 30. Thus, It seems that some-
times the point found from an optimization turns into
a miniplateau when we take large values of the param-
eter M. But this does not change our way of seeing.
We obtain a “range” of values that gives the same
energy. Indeed, despite obtaining a plateau at M = 30,
there is a difference between the energy value for this
plateau and the exact semiclassical value. This is in
line with what has been stated in this paper, namely
that there is always a residual uncertainty due to the
remainder. So, although there may be a plateau, this
does not mean that its value is the true value. This
only means that an optimal value could be found.
Basically, this remains an optimization problem. The
thesis developed in this paper does not deny “the
plateau” but explains its ambiguities and its limits.

(v) Because the same example has been “treated” by my
criterion in Table III and by the stationariness condi-
tion in Fig. 3, it is possible to compare between both
methods through this illustration. Contrarily to the
difficulties encountered by the stationarity condition,
one can see that the criterion of the monotonic be-
havior gives the same value for the Strutinsky energy,
with a deviation of about 0.1 MeV, as soon as soon as
M exceeds the value 10, without ambiguities. To con-
clude, it must be said that the plateau condition (or the
stationary condition) is ambiguous since we generally
obtain several different extrema. We can also say that
the “chances” of obtaining a semblance of a plateau
increase with the order M. However, in this case,
contrary to the usual values, they cannot be given
by the standard equation (39). It becomes difficult to
make calculations over a large range of M values. On
the other hand, taking large values M involves too
much calculation with possible large roundoff errors.
Moreover, for obvious practical reasons, it is difficult
to go beyond M = 30, in systematic calculations. For
all these reasons, the criterion proposed here seems
clearer to us.

XIII. DIFFERENCES BETWEEN THE TWO TYPES
OF DENSITY AND THEIR EXPLANATIONS

This paper deals with the relationship of Strutinsky’s
method with the semiclassical method. It has therefore been
established that Strutinsky’s density is ultimately only an
approximation of the semiclassical density. This may not seem
obvious, since the two densities may appear very different on
some points which are easily explained in this paper.

(1) It is well known that Strutinsky and semiclassical
densities often give fairly similar results [15]. However, this
is not systematic [see also the special case of point (5) below].
Indeed, as shown in Eq. (27), the Strutinsky density and the
semiclassical density are equal with an uncertainty due to
the remainder. The latter comes from the Taylor expansion
of the semiclassical density [see Eq. (26)] and contains all

FIG. 4. Differences between the semiclassical and three Strutin-
sky densities at the top of the finite well for three distinct values of the
order M. Note that in the vicinity of the singularity λ = 0 (vertical
line), among the three curves, it is the one corresponding to M = 30
that best approaches the semiclassical curve, more particularly the
upper part of this curve (from Ref. [10]).

the Taylor’s terms indexed by m such as m > M where M
represents the order of the curvature correction. When the
semiclassical density is a polynomial, Taylor’s result is ex-
act because the rest of the Taylor expansion vanishes. This
explains why in this case both methods give rigorously the
same result. In the case where the semiclassical density is
not a polynomial, there are two effects that are cumulated
in the error of the Strutinsky method. The first is naturally
the nonzero remainder of Taylor’s expansion (up to the Mth
term) of the semiclassical level density. The second type of
error (inevitable) comes from the fact that the smoothing
parameter γ is the cause of another error that is added to the
previous since it is contained in this rest [we must distinguish
the rest of the Taylor expansion, Eq. (26), from the rest of
Strutinsky’s method, Eq. (27), which is its integral]. This
means that this parameter must be as small as possible in
order to make the remainder also as small as possible, so
that the densities become as close as possible. However,
this is not always achieved because, usually, this is not well
understood.

(2) Another well established fact is that Strutinsky’s
method is all the more difficult to apply as the nuclei are
lighter. But, this is easily explained. For light nuclei semi-
classical limit condition (2), i.e., λ − V0 � h̄ω, is less true
because the Fermi level is small or too small. Since Strutinsky
density is only an approximation of semiclassical density, both
methods are less suitable for these nuclei.

(3) In addition to the above point, it has been noticed in
Ref. [18] that the two densities differ for small λ (see Fig. 4).
In fact, for small λ values, the asymptotic limit (37), i.e., λ −
V0 � γ , is poorly verified. Remembering that the accuracy of
the Strutinsky method is conditioned by the asymptotic limit,
it is not surprising to note slight differences for the lowest λ

values.
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(4) In the Strutinsky method, there are two free parameters:
The smoothing parameter and the order of the curvature
correction. The first is determined by the smoothing con-
dition. However, the order M corresponds to the degree of
Taylor polynomial which approximates the semiclassical level
density. Since a function is always better approached by a
polynomial of a higher degree, there is a definite advantage
in taking high M values. The problem (see in particular
Sec. VII) is that in Strutinsky’s method, there is always a
residual uncertainty (the remainder) that makes it impossible
to obtain the desired (infinite) accuracy. For the Woods-Saxon
potential, with the new criterion, stable numerical results (to
five significant digits) seem to be assured for the range M =
16–30 (see Tables I–III).

(5) Let’s compare the two densities for finite wells. Since
Strutinsky’s density is only an approximation of the semi-
classical density, no differences between these two densities
should be observed. A minor difference is observed at the
bottom of the well and this has already been explained just
above. In fact, the main difference appears at the top of the
well. At this location, the semiclassical density has a singu-
larity (λ = 0) for neutrons (or near the barrier for protons),
while the Strutinsky density has only a peak (see Fig. 4). First
of all, let’s say that although the semiclassical density has a
singularity, the value of the energy remains finite because it
appears only under the integral symbol [see Eq. (43)]. The
density must not be considered as a function, but rather as a
distribution [16]. Moreover, it should also be noted that the
demonstration which led to the fundamental result (27) does
not allude to how to treat the continuum. It is only assumed
that the discrete spectrum of eigenvalues and the continuum
have been (correctly) resolved. From then on, the two densi-
ties must be the same. Thus, Strutinsky’s density should also
tend towards infinity as we approach the threshold (λ = 0).
So how do we explain these differences, especially when the
energy is close to the threshold (λ = 0)? From Fig. 4, it is clear
that it is for the value M = 30 (the largest) that the Strutinsky
density best matches the semiclassical density at the top of the
well, near the singularity λ = 0. Since the order M is no more
than the degree of the Taylor polynomial which approximates
the semiclassical density, it is not surprising to obtain such
results. In effect, because of the singularity, the polynomial
approximation is more difficult to achieve when one is close
to this singularity (near λ = 0). This means that the degree
of the Taylor polynomial must be large enough as the Fermi
level approaches the threshold energy. Thus, the difference
between the Strutinsky density and the semiclassical density
near the threshold energy can be corrected by taking large
values for order M (in order to improve the Taylor remainder
and thereby the remainder of the Strutinsky method). Thus,
for nuclei close to drip lines, it is necessary to take fairly
large values of M. It is possible to accept calculations with
M = 10–14 for standard situations (Fermi level far from the
singularity), but for nuclei near the threshold energy, i.e., near
the drip lines, the previous values will not be sufficient. This
error has nothing to do with the continuum (assuming that it
has been properly processed) as it is often claimed.

(6) Because Strutinsky’s density is only an approxima-
tion of that of the semiclassical method, it is initially more

logical to work with semiclassical density. But in this method,
the calculations are numerically much more cumbersome.
Furthermore, in most cases, the Strutinsky method applies
after numerical resolution of the Schrodinger equation. In
this situation, it would be tedious to redo separately the
resolution of the semiclassical part. Although Strutinsky’s
method is only an approximation, the numerical aspect is
much simpler with a lower risk of numerical error. In most
cases the two methods give very similar results and the
uncertainty due to the rest is generally very small. Finally, it
can be said that Strutinsky’s method remains competitive up to
now.

XIV. CONCLUSION

This paper is an extension of the previous one [10]. It
allowed me to review the Strutinsky method from a com-
pletely new angle. In this respect, a new criterion is proposed
instead of the one of the plateau condition. This criterion
is more reliable and free from difficulties and ambiguities.
In addition, this study also explains in particular why the
Strutinsky method and the semiclassical approach lead in
some situations to very similar results while in others, they
give rise to disagreements (see the previous section). Despite
the large number of remarks and details given in this paper,
for the sake of clarity, the main results established in this
study can be briefly summarized below in five points. The first
three recall the essential elements necessary to understand the
Strutinsky method. The next two explain how to smooth the
level density and how to put it into practice by applying the
new criterion. These points are as follows:

(1) The Strutinsky method is only an approximation of the
semiclassical method and results from the compromise
between two antagonistic conditions which are the
smoothing condition and the asymptotic limit.

(2) By construction, the Strutinsky level density is a func-
tion that presents oscillations. These oscillations occur
around an average curve. It turns out that the average
curve is an approximation of the semiclassical level
density. The difference between them constitutes the
remainder. The latter remains small but cannot be
canceled.

(3) The Strutinsky method consists of adjusting the
smoothing parameters γ to smooth that level density,
that is to say, to obtain the average curve cited above.
Smoothing means making the oscillations disappear in
order to obtain that average curve.

(4) The “competition” between the condition of the
asymptotic limit and the smoothing condition shows
that the best choice is to take the smallest value of the
parameter γ that smoothes the Strutinsky level density.
For this purpose, the criterion of the monotonic behav-
ior of the Strutinsky level density has been adopted.
It gives the optimal value of the parameter γ , without
any ambiguity. In practice, it is necessary to increase
γ little by little and to see from which value the curve
becomes strictly increasing, without oscillations. In
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this way, the average curve is reached. One must not
go beyond this value because higher γ values cause
loss of accuracy (the consequence is that the curve
collapses).

(5) For each value of the order M, one can find an optimal
value of the parameter γ . Once this has been made, the
Strutinsky energy depends very little on the order M,
provided that the value of M is not too small.
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