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Global microscopic calculations of odd-odd nuclei
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The macroscopic-microscopic finite-range droplet model is combined with a particle-rotor coupling model in
order to systematically describe low-energy spectra of odd-odd nuclei. The odd proton and neutron are allowed
to interact through effective nuclear forces representing the residual neutron-proton interaction. In particular,
ground-state spins and parities are calculated and compared to data, where all 268 axially symmetric nuclei
which have reliable spin and parity assignments in the Nubase 2016 database are considered. Using a residual
neutron-proton interaction composed of both central and tensor terms the agreement with experimental ground-
state spins and parities reaches 41% for spherical nuclei and 31% for deformed nuclei. The model is applied
to study possible α-decay chains in superdeformed odd-odd nuclei, and Qα values are calculated considering
favored decay-paths as compared to ground-state paths.
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I. INTRODUCTION

It is a challenge to find models for nuclear structure prop-
erties all over the periodic system of even-even, odd-even,
and odd-odd nuclei. Such models are reasonably based on a
mean-field description with effective forces and parameters
adjusted to experimental data. Existing efforts in terms of phe-
nomenological macroscopic-microscopic models are indeed
rather successful in the description of several nuclear structure
properties, such as nuclear masses, ground-state spins, fission
barriers, and decay rates, see, e.g., Refs. [1–3]. However, these
models mainly consider even-even and odd-even nuclei; odd-
odd nuclei are usually schematically treated without special
consideration of the proton-neutron coupling mechanism.

A systematic description of the structure of odd-odd nuclei
is indeed challenging, since it involves a detailed description
of the low-energy interaction and also the coupling of the
odd particles to the other nucleons. A proper understanding
of the residual interaction between the neutrons and protons
is indeed of general interest. This interaction plays a most
important role in several theoretical models, e.g., for nuclear
density functional theory based studies of weak processes
such as β decay [4] and neutrino capture [5].

By combining the macroscopic-microscopic finite-range
droplet model (FRDM) [1] with a particle-rotor model and
a proper neutron-proton interaction we here calculate low-
energy properties of odd-odd nuclei. The FRDM gives the
most accurate results for ground-state spins of odd nuclei [2,6]
which is a prerequisite for the extension to the odd-odd cases.
Indeed, in recent calculations of ground-state spin/parity for
odd nuclei the agreement with data is about 90% for spherical
and 40% for deformed nuclei [2].
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In deformed nuclei the coupling between the two odd
particles and the core may be treated in the particle-rotor
model [7–9]. The neutron-proton interaction plays an impor-
tant role in the description of the low-energy structure, and
we consider the δ interaction as well as finite-range Gaussian
interactions with both central and tensor terms. Calculations
with the different interactions are compared to data for the
description of odd-odd spectra in spherical and deformed
nuclei. In particular, we systematically calculate ground-state
spin and parity and compare to available data.

We also discuss the spectrum of low-lying states in spher-
ical and in axially deformed odd-odd nuclei. A particular
challenge of today is the understanding and interpretation of
α and γ decay of superheavy nuclei, in particular for odd-odd
nuclei. When nuclear structure favors the α decay to excited
states, γ decay to the ground state may reveal the detailed
structure of the superheavy nuclei. We apply our model to the
study of Qα values for α-decay chains in odd-odd nuclei and
note possible cases where decay to excited states may occur.

II. MODEL

The macroscopic-microscopic FRDM [1] gives a good
global description of several ground-state properties. In par-
ticular, it gives a quite good reproduction of experimental
spins and parities of the ground states of odd nuclei, as
shown in Sec. II A. Therefore the FRDM is adopted as the
starting point in this study of odd-odd nuclei. In this model the
folded-Yukawa (FY) mean field is used for the microscopic
calculation.

We determine the single-particle wave functions using the
mean-field corresponding to the calculated ground-state shape
in Ref. [1]. The pairing correlations are treated as in Ref. [1]
through the Bardeen-Cooper-Schrieffer (BCS) method em-
ploying the approximate Lipkin-Nogami (LN) corrections. As
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a result we obtain an expansion of the single-particle wave
functions in a cylindrical harmonic-oscillator basis, along
with occupation numbers v2

k and quasiparticle energies Ek for
each state k.

The simplest approach to determine spin and parity of
the ground state of odd-odd nuclei is to couple the two spin
vectors and let empirical rules determine the ground state,
see Sec. IV A 1. below. However, we aim for a microscopic
description of the coupling mechanism and the single-particle
wave functions for protons and neutrons are therefore used in
a two-quasiparticles-plus-rotor calculation where the residual
interaction between the proton and neutron is taken into
account. The two-quasiparticles-plus-rotor model is described
in Sec. II B, and the residual neutron-proton interaction in
Sec. II C. Some details of the calculations, for example, how
spherical nuclei are treated, can be found in Sec. II D.

A. Ground states of odd-A nuclei

Before considering the odd-odd nuclei we revisit nuclei
with odd particle numbers. As mentioned above, previous
studies of ground-state spins I and parities π of odd-A nuclei
lead to about 90% agreement for spherical and 40% agreement
for deformed nuclei [2]. We repeat these calculations but
with a slightly different recipe for determining the ground
state Iπ ; here the lowest-energy quasiparticle excitation of the
odd-numbered species is used to determine the ground state.
For the spherical case, the j-shell quantum number is used
and for the deformed case the Kπ quantum number of the
quasiparticle.

Of the 681 odd-A, Z � 8, N � 8, nuclei with reliable Iπ

assignments in the Nubase 2016 database [10], the 631 nuclei
predicted not to have octupole-deformed ground-state shapes
in Ref. [1] are considered. We ignore possible triaxiality of
the ground-state shape [11] and treat the nuclei as axially
deformed with shapes specified by the calculated [1] shape
parameters ε2, ε4, and ε6. Classifying the nuclei with |ε2| �
0.05 as spherical and nuclei with |ε2| > 0.05 as deformed
gives 158 spherical and 473 deformed nuclei. The agreement
of the ground state Iπ is 84% (132/158) for spherical and 42%
(200/473) for deformed nuclei. The result is shown in Fig. 1.

Combining the agreement for spherical and deformed nu-
clei we obtain an agreement with experiment in a total of 53%
of the cases. Assuming a 53% chance of finding the correct
spin of each particle species one could expect to obtain an
agreement of (53%)2 = 28% for the odd-odd cases. However,
as seen in Fig. 1 the probabilities are not uncorrelated since
we obtain continuous regions in the nuclear chart where
most of the predicted odd-even ground-state spins tend to
agree with experiment. The emergence of such regions will
likely increase the agreement with the data. Thus from the
consideration of the odd-A nuclei one would expect to have a
somewhat larger than 28% agreement in the odd-odd cases.

B. Two quasiparticles plus rotor

We consider the case of axial symmetry and model a proton
and a neutron quasiparticle coupled to a collective core using
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FIG. 1. Ground-state spin and parity for odd-A nuclei determined
from the lowest-energy proton or neutron quasiparticle compared
with data. Nuclei calculated to have an octupole deformed ground
state are excluded from the comparison and marked with crosses.

the Hamilton operator [7–9]

H = Hcol + Hqp + Vpn, (1)

where Hcol describes the collective rotation, Hqp the energies
of the quasiparticles, and Vpn the residual proton-neutron
interaction between the quasiparticles.

A Hamiltonian containing one- and two-body operators
can be represented in terms of products of zero, two, and
four quasiparticle operators [12]. For the collective rotation
Hcol, we include the two- and four-quasiparticle parts of the
operator,

A(
R2

1 + R2
2

)=A[(
I2 − I2

3

) + (
J2 − J2

3

) − (I+J− + I−J+)
]
,

(2)

where Ri = Ii − Ji is the angular momentum of the collective
rotation, with i = 1, 2 denoting projection on one of the
body-fixed axes perpendicular to the symmetry axis. �I =
(I1, I2, I3) is the total angular momentum of the nucleus and
�J = (J1, J2, J3) the total angular momentum in the intrinsic
system.

The moment of inertia parameter

A = 1

2J⊥
, (3)
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is expressed in terms of the moment of inertia perpendicular
to the symmetry axis J⊥. The used model accounts for the
decrease of the moment of inertia due to pairing and is chosen
according to the prescription in Ref. [13].

The zero-quasi-particle part of Eq. (2) corresponds to the
contribution from the vaccum A〈0| �R2|0〉, which would give
a constant shift of all energies. This shift is neglected as it
should already be accounted for in the ground-state binding
energies in the FRDM.

Hqp is given by

Hqp =
∑

k

Ekβ
†
k βk, (4)

where Ek are the LN-BCS quasiparticle energies in the
FRDM.

The residual interaction between the proton and neutron
quasiparticles Vpn is

Vpn = 1

4

∑
abcd

V 22
abcdβ

†
aβ

†
bβdβc, (5)

where V 22
abcd contains antisymmetric matrix elements of the

residual proton-neutron interaction V̂ (defined in the next
subsection) and the BCS occupation numbers u, v for the
quasiparticles a, b, c, d [12]. The zero- and two-quasiparticle
terms originating from V̂ would affect the binding energies of
even-even and odd-A nuclei and are not included since their
contributions are assumed to be effectively incorporated in the
mean field [9].

We employ the strong-coupling basis where the basis states
consist of two-quasiparticle states in the intrinsic system
coupled to the rotor. The states are symmetrized with respect
to rotation around the one-axis. Taking into account the time-
reversal symmetry gives two orthogonal groups of basis states,

|IMKnp〉 = 1√
2

(1 + eiπR1 )|IMK〉|np〉, (6)

with K = 	n + 	p ≡ K>, and

|IMKnp〉 = 1√
2

(1 + eiπR1 )|IMK〉|np〉, (7)

with K = |	n − 	p| ≡ K<. Here |np〉 = β†
nβ†

p|0〉 is a two-
quasiparticle state and

|IMK〉 =
√

2I + 1

8π2
D I∗

MK (ω) (8)

is a normalized Wigner D function. 	n(p) is the total-angular
momentum projection of the neutron (proton) quasiparticle
n(p) on the symmetry axis. n̄( p̄) indicates the time-reverese
conjugate partner of the quasiparticle n(p).

The intrinsic two-quasiparticle states that couple to the
rotor

β
†
kn
β

†
kp

|0〉, (9)

are formed by acting with Bogoliubov quasiparticle creation
operators β

†
k on the BCS vacuum |0〉, where β

†
k creates a

BCS quasiparticle in the FY single-particle orbital k. The
vacuum |0〉 is constrained to have average particle numbers
corresponding to the odd-odd nucleus.

C. Neutron-proton residual interaction

For the residual interaction between the neutron and pro-
ton we investigate three different forms: the δ interaction
(Sec. II C 1) and two parametrizations of the Gaussian inter-
action (Sec. II C 2).

1. δ Interaction

The δ interaction has a simple form that allows fast nu-
merical calculations. A central local interaction takes the
form:

V̂ = (u0 + u1 �σp · �σn)δ(�r), (10)

where �r = �rn − �rp. The interaction can be rewritten in terms
of spin-isospin channels,

V̂ = δ(�r)
[
G0t�

τ
0�

σ
t + G1s�

τ
1�

σ
s

]
, (11)

where �τ
0(1) projects on isospin-singlet (triplet) two-particle

states, and �σ
s(t ) projects on spin-singlet (triplet) states. The

transformation between the different notations can be written
G0t = u0 + u1 and G1s = u0 − 3u1.

This leaves two free parameters in the interaction that
we adjust to the K< 	= 0 bandhead splittings in rare-earth
nuclei given in Table I. These splittings are mainly sensitive
to the difference G0t − G1s and the choice G0t = −900 and
G1s = −300 MeV fm3 lies in a region of values where the rms
deviation from experiment is the smallest. In the following
this interaction will be denoted “δ.”

2. Gaussian interactions

A more realistic interaction is the Gaussian [14],

V̂ = V (r)

[
u0 + u1 �σp · �σn + u2PM + u3PM �σp · �σn + ut

S12

3

+ utmPM
S12

3
+ us

e
�l · �s + us

oPM�l · �s
]
, (12)

where V (r) is a Gaussian,

V (r) = e−r2/μ2
, (13)

PM is the space-exchange operator, and S12 is the tensor
operator,

S12 = 3

r2
(�σ1 · �r)(�σ2 · �r) − �σ1 · �σ2

=
√

4π
√

6[[σ (1), σ (2)]2,Y2(r̂)]0. (14)

�l denotes the relative angular momentum,

�l = �r × �p = (�rn − �rp) × 1
2 ( �pn − �pp), (15)

and �s = �sp + �sn is the total intrinsic spin of the two nucleons.
Expressed in spin-isospin channels this interaction becomes

V̂ = V (r)
[
G1t�

τ
1�

σ
t + G0t�

τ
0�

σ
t + G1s�

τ
1�

σ
s + G0s�

τ
0�

σ
s

+ (
GT

0t�
τ
0�

σ
t + GT

1t�
τ
1�

σ
t

)
S12

+ (
Gls

0t�
τ
0�

σ
t + Gls

1t�
τ
1�

σ
t

)�l · �s
]
, (16)
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TABLE I. Bandhead splittings in rare-earth nuclei, �E = EK>
− EK<

, where EK>
(EK<

) is the excitation energy of the bandhead interpreted
as the two quasiparticles coupled to projection K> = 	n + 	p (K< = |	n − 	p|). The category 1 (well-confirmed levels in low-energy spectra)
data in Table 3 in Ref. [14] is used, denoted as expt. The results from Folded-Yukawa quasiparticles-plus-rotor calculations with different
residual interactions are labeled: δ, contact interaction; 2, Covello Gaussian residual interaction; 3, Alexa Gaussian residual interaction. All
energies in keV.

Z N A p n spsn K> K< E (expt)
K>

E (expt)
K<

�E (expt) �E (th,δ) �E (th,2) �E (th,3)

65 93 158 [4 1 1]3/2+ [5 2 1]3/2− ↑↑ 3 0 0 110 −110 72 −138 −149
65 95 160 [4 1 1]3/2+ [5 2 1]3/2− ↑↑ 3 0 0 79 −79 85 −128 −137
65 95 160 [4 1 1]3/2+ [5 2 3]5/2− ↑↓ 4 1 258 64 194 111 161 67
65 95 160 [4 1 1]3/2+ [6 4 2]5/2+ ↑↑ 4 1 64 139 −75 −67 −103 −62
67 97 164 [5 2 3]7/2− [4 0 0]1/2+ ↑↑ 4 3 833 925 −92 −61 −95 −45
67 97 164 [5 2 3]7/2− [4 0 2]3/2+ ↑↓ 5 2 733 620 113 84 148 35
67 97 164 [5 2 3]7/2− [5 2 3]5/2− ↑↓ 6 1 191 0 191 267 213 −84
67 99 166 [5 2 3]7/2− [6 3 3]7/2+ ↑↑ 7 0 5 0 5 64 −237 −171
67 99 166 [5 2 3]7/2− [5 2 1]1/2− ↑↓ 4 3 372 191 181 124 128 −0
69 99 168 [4 1 1]1/2+ [6 3 3]7/2+ ↓↑ 4 3 148 0 148 74 114 33
69 99 168 [5 4 1]1/2− [6 3 3]7/2+ ↓↑ 4 3 337 200 137 244 −38 −627
69 101 170 [4 1 1]1/2+ [5 1 2]5/2− ↓↑ 3 2 447 204 243 242 214 118
71 103 174 [4 0 4]7/2+ [5 2 1]1/2− ↓↓ 4 3 365 433 −68 −37 −81 −77
71 103 174 [4 0 4]7/2+ [5 2 1]3/2− ↓↑ 5 2 1312 1185 127 106 77 100
71 103 174 [4 0 4]7/2+ [5 1 2]5/2− ↓↑ 6 1 170 0 170 125 208 100
71 103 174 [5 4 1]1/2− [5 1 2]5/2− ↓↑ 3 2 414 278 136 −53 −78 −67
71 103 174 [5 3 0]1/2− [5 1 2]5/2− ↑↑ 3 2 1262 1293 −31 7 −55 −85
71 105 176 [4 0 4]7/2+ [5 1 0]1/2− ↓↑ 4 3 791 662 129 64 163 83
71 105 176 [4 0 4]7/2+ [5 1 4]7/2− ↓↓ 7 0 0 241 −241 113 −281 −305
71 105 176 [4 0 4]7/2+ [6 2 4]9/2+ ↓↑ 8 1 404 198 206 186 207 15
73 109 182 [4 0 4]7/2+ [5 1 0]1/2− ↓↑ 4 3 114 0 114 73 137 89
73 109 182 [4 0 4]7/2+ [5 1 2]3/2− ↓↓ 5 2 173 270 −97 −50 −123 −105
73 109 182 [4 0 4]7/2+ [5 0 3]7/2− ↓↑ 7 0 777 584 193 241 292 21
73 109 182 [5 1 4]9/2− [5 1 0]1/2− ↑↑ 5 4 16 150 −134 −89 −144 −28
75 111 186 [4 0 2]5/2+ [5 1 0]1/2− ↑↑ 3 2 99 211 −112 −64 −102 −5
75 111 186 [4 0 2]5/2+ [5 1 2]3/2− ↑↓ 4 1 174 0 174 208 217 17
75 111 186 [4 0 2]5/2+ [5 0 3]7/2− ↑↑ 6 1 186 316 −130 −209 −232 −344
75 113 188 [4 0 2]5/2+ [5 1 0]1/2− ↑↑ 3 2 169 257 −88 −55 −92 −31
75 113 188 [4 0 2]5/2+ [5 1 2]3/2− ↑↓ 4 1 183 0 183 157 169 19
75 113 188 [4 0 2]5/2+ [5 0 3]7/2− ↑↑ 6 1 172 291 −119 −204 −218 −338

where the transformation between the different notations is
shown in Table II. This interaction is thus a general nucleon-
nucleon pn interaction consisting of a central part, noncentral
tensor part, and a spin-orbit part.

For the Gaussian form of the interaction we consider
two different parametrizations. In Ref. [15] a Gaussian np

TABLE II. Transformation expressing the interaction
in spin-isospin channels.

G0s=u0 − 3u1 − u2 + 3u3

G0t=u0 + u1 + u2 + u3

G1s=u0 − 3u1 + u2 − 3u3

G1t=u0 + u1 − u2 − u3

GT
0t=(ut + utm )/3

GT
1t=(ut − utm )/3

Gls
0t=us

e + us
o

Gls
1t=us

e − us
o

interaction was fitted to spherical states in 210Bi. In the
following this parametrization will be denoted “Alexa.” As
an alternative we also employ the effective interaction of
Ref. [16] that was fitted to bandhead splittings in rare-earth
nuclei [14]. In the following this parametrization will be
denoted “Covello.” The parameters of the residual interactions
are summarized in Table III.

D. Details of the calculations

Nuclei with ground-state quadrupole deformations larger
than |ε2| > 0.05 are treated as deformed. For well-deformed
nuclei we expect that the residual interaction does not intro-
duce significant mixing between rotational bands. We thus
only include the diagonal matrix elements of Vpn in the strong-
coupling basis. This leads to considerably fewer two-body
matrix elements that need to be computed. The particles-plus-
rotor calculations are performed in the basis obtained from all
unique combinations of a neutron and a proton quasi particle,

034301-4



GLOBAL MICROSCOPIC CALCULATIONS OF ODD-ODD … PHYSICAL REVIEW C 100, 034301 (2019)

TABLE III. Parameters of the effective interactions employed; μ

is in fm, the strengths for the δ interaction in MeV fm3, and the rest
in MeV.

δ Covello Alexa

μ — 1.4 1.4
G0s — 60.3 −1.80
G0t −900 −16.7 −75.6
G1s −300 9.7 −62.8
G1t — −33.3 −10.6
GT

0t — −41.0 −60.333

GT
1t — 4.33 11.667

Gls
0t — 0 24

Gls
1t — 0 −46

chosen from the 10 lowest energy neutron and proton qps, and
their time-revered states.

When the predicted ground-state quadrupole deformation
is small, |ε2| � 0.05, the nucleus is classified as spherical. For
these cases the single-particle calculation is performed with a
spherical mean field. To obtain the multiplets in the spherical
system, the particles + rotor calculations are performed with
a very small moment of inertia J⊥, giving a large moment of
inertia parameter Asph. The term Asph(R2

1 + R2
2) in Eq. (2) then

acts as a quadratic constraint, pushing states with significant
collective rotation 〈 �R2〉 high up in energy. Due to the limited
basis, the lowest eigenstates will have small nonzero expec-
tation values of the collective-rotation angular momentum
〈 �R2〉. States with 〈Hcol〉/Asph < 0.1 are used as approximate
eigenstates of the spherical system, with energies E ′,

E ′ = E − 〈Hcol〉. (17)

In the calculations Asph = 500 MeV is used. The sensitivity
to the choice of Asph is tested for the case 208Bi with the
δ interaction: Doubling Asph gives the same E ′ spectra to
within 0.02 MeV. The spherical calculations are performed
using the basis obtained by including the seven lowest-energy
quasiparticle states for both protons and neutrons. All matrix
elements of the residual interaction in this basis are taken into
account.

For deformed as well as spherical nuclei, all matrix ele-
ments of the collective rotation Hcol are taken into account.
The two-body operator �R2 = (�I − �J )2 is treated exact using
analytic properties of the cylindrical oscillator basis [17].

III. ODD-ODD SPECTRA

In this section we test the model by investigating
low-energy spectra of odd-odd nuclei. Not only the ground
state but also the ordering and excitation energies of low-lying
states depend on the residual proton-neutron interaction.
Bandhead energy splitting in deformed nuclei, and the
structure of multiplets in spherical nuclei, are two observables
that are particularly sensitive to the residual interaction.
These two properties are investigated in Sec. III A and in
Sec. III B, respectively. The description of rotational bands

and low-energy spectra in deformed odd-odd nuclei is studied
in more detail in Sec. III C.

A. Bandhead splittings

In deformed axially symmetric odd-odd nuclei two band-
heads emerge with the angular momentum of the two coupled
odd particles, namely K> = Kn + Kp and K< = |Kn − Kp|,
where Kp(Kn) denotes the projection of the odd proton (neu-
tron) angular momentum on the symmetry axis. The energy
splitting �E = EK>

− EK<
between the two states is sensitive

to the pn interaction, as well as to the rotational R2 terms in
Eq. (1). To test the different interactions we compare with
experimental data for bandhead splittings in the rare-earth
region [14] and actinide region [18]. Of the data set listed
in Table 3 of Ref. [14] we select the well-confirmed levels
in low-energy spectra. These are listed in Table I. For the
actinides, we select the bandheads where both K> and K<

configurations are identified with asymptotic Nilsson quantum
numbers in Ref. [18], giving the data in Table IV.

The rotational contribution to �E is to first order A(K> −
K<), with typical values for the moment of inertia param-
eter A ∼ 10 keV for the nuclei considered. In some earlier
studies, e.g., Ref. [14], procedures to remove the rotational
contribution from the experimental data and isolate the matrix
elements of the residual interaction are employed. We choose
not to adopt this approach, as it introduces some model
dependence in the data, but rather compare calculated values
directly with the experimental observable �E .

The bandhead splittings obtained using the three different
residual interactions are shown in the rightmost columns of
Tables I and IV. The root-mean-square (rms) deviations from
experiment are summarized in Table V.

The δ interaction, which is adjusted to the K< 	= 0 data for
the rare-earth nuclei, gives the smallest rms for the K< 	= 0
splittings for both rare-earth and actinide data. On the other
hand, it gives a poor description of the K< = 0 data.

The interaction between the odd proton and the odd neu-
tron gives rise to an additional diagonal term in the strong-
coupling basis for K = 0 states, called the Newby term [19].
Several studies [16] show that the δ interaction cannot re-
produce the required Newby matrix elements, while simul-
taneously producing reasonable matrix elements for K< 	= 0
splittings.

Of the two Gaussian interactions, we find that the Covello
interaction gives the best description of the bandhead split-
tings. The description of the K< = 0 bandhead splittings is
significantly improved compared to the δ interaction, while
the remaining data are described with a similar rms as with the
δ, giving the overall best agreement. The Covello parametriza-
tion of the Gaussian interaction gives the correct bandhead
lowest in energy for all cases except for three cases: the lowest
lying bandhead in 166

67 Ho99, the first excited in 168
69 Tm99, and the

first excited in 174
71 Lu103. In these three cases data give K< as

the lowest-lying bandhead, while the Covello interaction gives
the K> bandhead as lowest. Excluding these three cases from
all 45 cases considered in Tables I and IV decreases the rms
for the Covello interaction from 66 to 44 keV.
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TABLE IV. Similar to Table I but for bandheads in actinide nuclei. The experimental data are taken from Ref. [18].

Z N A p n spsn K> K< E (exp)
K>

E (exp)
K<

�E (exp) �E (th,δ) �E (th,2) �E (th,3)

91 143 234 [5 3 0]1/2− [7 4 3]7/2− ↑↑ 4 3 0 74 −74 −54 −78 −25
91 143 234 [5 3 0]1/2− [6 3 1]1/2+ ↑↓ 1 0 162 70 92 199 154 −12
91 145 236 [5 3 0]1/2− [6 3 1]1/2+ ↑↓ 1 0 111 2 109 211 158 −11
93 143 236 [6 4 2]5/2+ [7 4 3]7/2− ↑↑ 6 1 0 60 −60 −141 −93 −159
93 145 238 [6 4 2]5/2+ [6 3 1]1/2+ ↑↓ 3 2 87 0 87 49 85 26
93 145 238 [5 2 3]5/2− [6 3 1]1/2+ ↓↓ 3 2 136 183 −47 −33 −80 −59
93 145 238 [5 3 0]1/2− [6 3 1]1/2+ ↑↓ 1 0 374 218 156 216 162 −1
95 145 240 [5 2 3]5/2− [6 3 1]1/2+ ↓↓ 3 2 0 53 −53 −35 −82 −59
95 145 240 [5 2 3]5/2− [5 0 1]1/2− ↓↓ 3 2 973 1016 −43 −25 −60 −40
95 147 242 [5 2 3]5/2− [6 2 2]5/2+ ↓↑ 5 0 49 44 5 132 64 −92
95 147 242 [5 2 3]5/2− [6 3 1]1/2+ ↓↓ 3 2 244 293 −48 −36 −84 −61
95 147 242 [5 2 3]5/2− [6 2 0]1/2+ ↓↑ 3 2 902 874 28 122 121 −15
95 147 242 [5 2 3]5/2− [5 0 1]1/2- ↓↓ 3 2 975 1011 −36 −26 −60 −40
95 147 242 [6 4 2]5/2+ [6 3 1]1/2+ ↑↓ 3 2 388 356 32 51 83 27
95 149 244 [5 2 3]5/2− [6 2 4]7/2+ ↓↓ 6 1 0 176 −176 −191 −128 −289
95 149 244 [5 2 3]5/2− [6 2 2]5/2+ ↓↑ 5 0 365 336 29 136 71 −86
95 149 244 [5 2 3]5/2− [6 3 1]1/2+ ↓↓ 3 2 421 485 −64 −36 −85 −61
95 149 244 [5 2 3]5/2− [6 2 0]1/2+ ↓↑ 3 2 807 786 21 82 83 27
97 153 250 [6 3 3]7/2+ [6 1 3]7/2+ ↑↑ 7 0 86 216 −130 −71 −63 −42
97 153 250 [5 2 1]3/2− [6 2 0]1/2+ ↑↑ 2 1 0 104 −104 −96 −130 −58
97 153 250 [6 3 3]7/2+ [6 2 0]1/2+ ↑↑ 4 3 36 115 −80 −37 −77 −41
97 153 250 [5 2 1]3/2− [6 1 3]7/2+ ↑↑ 5 2 97 146 −49 −31 −92 −95
97 153 250 [6 3 3]7/2+ [6 2 2]3/2+ ↑↓ 5 2 316 212 105 60 100 31
97 153 250 [6 3 3]7/2+ [7 6 1]1/2− ↑↓ 4 3 566 526 40 73 99 −19

In general, the Alexa interaction, which is fitted to spheri-
cal multiplet energies in 210Bi [15], performs the worst of the
three tested interactions.

B. Multiplets in spherical nuclei

The results for spherical mutiplets in 210,208Bi, 90Y, and
50Sc using the three different residual interactions are com-

TABLE V. The rms deviation of theoretical bandhead splittings
�E (th) and the corresponding experimental values �E (exp) in Tables I
and IV. The first column describes the subset of data points consid-
ered, n is the number of data in the subset, and the remaining three
columns contain the rms deviation in keV.

rms (keV)

Set n δ Covello Alexa

All 54 84 66 149
K< = 0 11 150 90 117
K< 	= 0 43 56 58 156

Rare earth 30 99 79 189
K< = 0 5 196 121 118
K< 	= 0 25 65 68 201

Actinide 24 60 43 72
K< = 0 6 97 52 116
K< 	= 0 18 40 40 50

pared with experimental data in Fig. 2. The δ interaction
provides a good description of multiplet splittings, especially
in the Bi isotopes, except for the Iπ = 0− state in 210Bi. For
the two lighter nuclei 90Y and 50Sc the δ interaction gives good
results. The correct ground-state spin is predicted correctly in
all cases except for 210Bi.

The Alexa Gaussian interaction gives a good description
of 210,208Bi and a fair description for the multiplets in lighter
90Y and 50Sc nuclei. This interaction was fitted to multiplets in
210Bi, giving excellent agreement with data in Ref. [15]. In the
present calculations with FY quasiparticles the energy of the
Iπ = 0− state in 210Bi is overestimated. Performing the cal-
culations with pure oscillator single-particle wave functions,
as used in the original fit of the interaction, give energies
more similar to the experimental data. In all cases the Alexa
interaction predicts the correct ground-state spin.

The Covello Gaussian interaction captures the overall I
dependence of the energies in the multiplets for all four nuclei
but does not produce the correct I staggering. However, with
the overall trends correct the ground state comes out right in
all cases.

We also compare our result for 210Bi and 50Sc to a more
sophisticated microscopic calculation where multiplets are
calculated based on the pn-QRPA approach starting from a
Skyrme force with addition of a separable Gaussian interac-
tion (denoted Carlsson in Fig. 2) [20]. As seen for the I = 0−
state in 210Bi the finite-range Gaussian pushes the state up in
energy compared to the δ interaction but not enough to obtain
the correct ground state.
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FIG. 2. Low-lying multiplets in the spherical nuclei 210,208Bi,
90Y, and 50Sc using different residual interactions Vpn. E∗ denotes
the excitation energy relative to the experimental ground-state con-
figuration, and I is the spin.

The Iπ = 0− state in 210Bi is a spin triplet configuration,
and the strong G0t term of the δ interaction sets this state low-
est in energy. The tensor terms included in the two Gaussian
interactions are needed to push this state up in energy to obtain
the correct Iπ = 1− ground state. Of the four forces tested, it is
only the forces with more complicated tensor components that
are able to obtain the correct ordering between the Iπ = 1−
and Iπ = 0− states.

The present many-body treatment takes into account the
angular-momentum coupling and the interaction between the
odd proton and the odd neutron. Taking the description a
step further could include treating the coupling of the odd
particles to vibrational modes of the remaining core in a
particle-vibration coupling approach (PVC). As always, the
effective interaction employed is intimately linked to the
many-body treatment and a more refined PVC description
could result in modifications of the effective interaction in
particular concerning the tensor part [21,22].

C. Rotational bands in deformed nuclei

In Fig. 3 results from calculations with the Covello
proton-neutron interaction are compared to 11 different
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FIG. 3. Low-lying rotational bands in 182
73 Ta109. In panels (a) and

(c), experimental data from [23]. In panels (b) and (d), corresponding
states resulting from calculations with the Covello residual proton-
neutron interaction.

experimentally observed rotational bands in 182Ta. In general,
the theoretical spectra for the observed bands agree quite well
with experiment, although it is slightly more compressed. The
calculations give the correct ground-state band based on the
Nilsson states π [404]7/2 and ν[510]1/2 coupled to Kπ = 3−,
which is favored by the Gallagher-Moszkowski (GM) [24]
rule.

The partner (π [404]7/2, ν[510]1/2); Kπ = 4− bandhead
has excitation energy E∗ = 137 keV, compared to the ex-
perimental value of 114 keV. The excitation energies of the
bandheads slightly deviate compared to data with differences
up to ∼200 keV. One major source of discrepancy can be
attributed to the quasiparticle energies, which are obtained
from the FY mean field. This can further lead to a large
Coriolis mixing if two bandhead configurations differing by
�K = 1 come close in energy. The large number of states
within 1 MeV excitation energy is the main difficulty in mak-
ing predictions for the low-energy structure of odd-odd nuclei.
A displacement of a bandhead by ∼100 keV can significantly
change the predicted ground-state spin and parity. Another
systematic discrepancy between theory and data is that the
slope of calculated rotational bands is smaller than measured.
This suggests that a too-large moment of inertia is used for the
rotor.

Figure 4 shows low-lying K = 0 bands in rare-earth nuclei.
The odd-even I staggering observed in K = 0 bands is to
first order due to the Newby term in the diagonal matrix
elements, that can be classified as central type for spin-
singlet bandheads, or of tensor type for spin triplet bandheads
[14]. The (π [404]7/2, ν[503]7/2); Kπ = 0− band in 182Ta
[Fig. 4(a)] and the (π [404]7/2, ν[633]7/2); Kπ = 0+ band
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in 174Lu [Fig. 4(b)] have bandheads dominated by spin-triplet
configurations. The tensor and spin-orbit terms of the resid-
ual interaction thus contribute significantly to the diagonal
matrix elements. Calculations with both the Gaussian Alexa
and Covello interactions reproduce the correct phase of the
staggering for these bands, although the staggering obtained
with the Covello interaction for the Lu band [Fig. 4(b)] is
of too-small magnitude. The δ interaction, which only has
central components, on the other hand, produces staggering
of opposite phase compared to experiment.

Figures 4(c) and 4(d) show the (π [514]9/2, ν[624]9/2)
and (π [404]7/2, ν[514]7/2); Kπ = 0− bands in 180Ta and
176Lu, respectively. The bandheads are dominated by spin-
singlet configurations and are thus affected by Newby
terms of central type. The experimental data for the
(π [514]9/2, ν[624]9/2) band in Fig. 4(c) show no clear stag-
gering, while the data for the (π [404]7/2, ν[514]7/2) band in
Fig. 4(d) has a clear staggering with odd I lowered compared
to the general trend. The δ interaction gives a large odd-
even staggering inconsistent with experiment, with odd spins
pushed up in energy in both cases. The Alexa interaction gives
similar staggering but with smaller magnitude. The Covello
interaction gives rise to a staggering with the odd spins low-
ered, but with a magnitude that is slightly larger than experi-

ment for the K = 0 band in Fig. 4(d). As expected, the results
employing the Covello interaction are similar to the previous
results for K = 0 bands in Refs. [16,25], where the same in-
teraction is used. The quantitative agreement with experiment
is not as satisfactory as in those studies, partly due to that the
quasiparticle energies are not locally optimized to neighboring
odd-A nuclei in the current calculations.

IV. RESULTS FOR GROUND STATES

A. Ground-state spins of odd-odd nuclei

In our comparison to data we consider only odd-odd nu-
clei with clear ground-state spin and parity assignments in
Ref. [10]. From these cases we exclude nuclei with calculated
octupole ground-state deformation ε3 	= 0 in the theoretical
mass table [1]. The nuclei are classified as spherical when the
ground-state ε2 deformation in the mass table is small, |ε2| �
0.05, and deformed if |ε2| > 0.05. This selection of data gives
268 nuclei, of which 222 are considered deformed and 46
spherical. The ground-state spins for deformed nuclei are cal-
culated using the particle-rotor model detailed in Sec. II. For
the spherical nuclei, the prescription in Sec. II D is employed.
The results are compared with the ground-state spins obtained
using simple empirical rules as described below.

1. Empirical rules for the ground-state spin

The empirical Nordheim [26] and GM [24] rules refer
to the energy order of coupled spin states in spherical and
deformed odd-odd nuclei, respectively. As a simple method to
determine the ground-state spin we consider the application of
these rules using the lowest-energy quasiparticle states from
the folded-Yukawa mean field. The parity is then determined
by the parity of the proton and neutron quasiparticles.

In the spherical case, the ground state can be described as
belonging to a two-quasiparticle multiplet,[

β
†
jp
, β

†
jn

]
IM |0〉, (18)

where β
†
jp(n)

creates a proton (neutron) quasiparticle in a
spherical j shell with spin jp(n), and the brackets denote the
coupling of the spins to total angular momentum I , with
projection M. The Nordheim rule states that the state where
the intrinsic spins of the proton and neutron are parallel
is favored (such as in the deuteron). The ground-state spin
estimated with this rule is thus,

I =
{

jp + jn, if jp − lp = jn − ln
| jp − jn|, otherwise

, (19)

where lp(n) is the orbital angular-momentum quantum number
for the proton (neutron) quasiparticle.

For the axially deformed case, the two particles can cou-
ple as β†

nβ†
p|0〉, with K = 	n + 	p, and β†

nβ
†
p̄|0〉, with K =

|	n − 	p|. Here n(p) labels the neutron (proton) quasiparticle
with the smallest quasiparticle energy En(p). Neglecting the
collective rotation and the residual proton-neutron interaction
implies that these two bandheads are degenerate and the
lowest in energy. This degeneracy will be broken both by
the residual neutron-proton interaction and by the collective
rotation. The empirical GM rule states that the bandhead with
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TABLE VI. Percentage of calculated ground-state spin and par-
ity, Iπ , that agree with experimental data. The columns show agree-
ment for different categories of nuclei: Def. (Sph.) refer to nuclei
with calculated ground-state ε2 deformations larger (smaller) than
0.05; n � 3 indicates the further restriction that three or more odd-A
neighbors have correct ground states in the calculations presented in
Fig. 1. The numbers in parenthesis are the total number of nuclei in
each category.

Def. Sph. Def. n � 3 Sph. n � 3
Model (222) (46) (56) (28)

Empirical rules 29% 39% 54% 50%
δ 28% 37% 43% 46%
Covello 31% 41% 55% 54%
Alexa 22% 35% 45% 43%

K = Kfav, where the intrinsic spin projections of the proton
and neutron are parallel is lowest in energy. This allows for a
simple recipe to obtain the ground-state spin I as

I = Kfav. (20)

The GM rule is formulated in terms of the asymptotic
Nilsson quantum numbers. To avoid ambiguities when the
folded-Yukawa potential mixes different Nilsson orbitals,
we implement the rule using the product of the expecta-
tion values of the proton and neutron intrinsic spin projec-
tions, f = 〈n|s3|n〉〈p|s3|p〉, selecting the bandhead with a
positive f .

2. Agreement with ground-state spins and parities

The ground-state spins of the selected 268 odd-odd nuclei
are calculated in four different ways: either using empirical
rules or one of the three interactions. The results are sum-
marized in Table VI. Applying the empirical rules, 29% of
the deformed and 39% of the spherical odd-odd nuclei are
predicted to have spin and parities that agree with experiment.
The only nucleon-nucleon interaction that performs better
than the empirical rules is the one of Covello.

In total the Covello interaction gives rise to to 33% cor-
rectly predicted ground-state spins and parities. For compar-
ison the HFB-24 mass model [27,28] based on the Skyrme
interaction gives 25% correct ground-state spins and parities
for the odd-odd nuclei. However, the tabulated values from
this model [28] is for a different data set of 480 odd-odd
nuclei, which may affect the comparison.

The results are sensitive to the predicted quasiparticle spec-
trum and the agreement with data should improve if neigh-
boring odd nuclei have correct ground-state spin assignments.
To study this we consider the subset of nuclei where three
or four (of the four) odd-A neighbors are predicted correctly.
The agreement with data for the Covello interaction then
increases from 31% to 55% for deformed, and from 41% to
54% for spherical nuclei, that is, a larger improvement for
deformed nuclei. Thus, even when the neighboring nuclei are
correctly assigned, implying proper quasiparticle spectra, it
is still difficult to predict the level that comes lowest for the
odd-odd nucleus.
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FIG. 5. Distribution of ground-state spins for the odd-odd nuclei
in the data set. The data from Nubase 2016 [10] (solid bars) are
compared with results from the calculations with the Covello residual
interaction (striped bars) and results from using the empirical rules
(horizontally striped bars).

The distribution of ground-state spins obtained with the
Covello interaction is shown in Fig. 5. The distribution ob-
tained with the microscopic treatment is substantially better
than the one obtained from the empirical rules. For example,
a large part of the experimental states (35%) have I = 1
and such ground states are predicted more often with the
microscopic treatment. As seen in the figure both theoretical
approaches tend to predict too many states with I � 5 and too
few with I = 1. Presumably, a smaller moment of inertia in
the rotor calculation would push up higher spins and favor
lower spins and consequently increase the number of I = 1
ground states and decrease the number of I = 5 states.

The predicted ground-state spins compared to experiment
are shown in Fig. 6. As seen from the figure there is a tendency
for high ground-state spins to be found just above or below
magic numbers that correlates with the presence of intruder
shells. Interestingly, the ground-state spins for several nuclei
on the N = Z line tend to be I = 0 while in the model the
interaction favors parallel coupling when the two odd particles
are in the same shell.

B. Proton-neutron interaction energy for spherical nuclei

In the FRDM an additional term is added to the binding
energy of odd-odd nuclei that represents the average neutron-
proton interaction energy [1,29]. This average interaction
energy is modeled as inversely proportional to the nuclear
surface,

E (mac)
pn = − h

BsA2/3
, (21)

where Bs is ratio of the surface area of the nuclear shape to that
of a sphere of the same volume. The constant h is empirically
determined from mass differences to be 6.6 MeV.

The present microscopic treatment of the neutron-proton
interaction energy gives fluctuations of masses of odd-odd
nuclei that are not captured by traditional FRDM calculations
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FIG. 6. Ground-state spins in odd-odd nuclei from Nubase 2016
[10] (a) compared to results with the Covello residual interaction (b).

[1]. In order to investigate if the microscopic treatment here
performed leads to improvements we define a total binding
energy for odd-odd nuclei as:

E (Z, N ) = EFRDM − [
En + Ep + E (mac)

pn

] + Egs. (22)

That is, we remove the contribution in the FRDM calculation
[1] resulting from the quasiparticle energies En(p) and their
average interaction energy E (mac)

pn , taken from Eq. (21). Instead
we add the here-calculated ground-state energy Egs from the
Hamiltonian (1), that includes terms for the two-quasiparticles
plus rotor model with the neutron-proton interaction. For
spherical nuclei Egs is taken as the corrected energy E ′
[Eq. (17)].

In the formalism employed here the addition of an odd
proton and odd neutron gives rise to both an energy contri-
bution due to the angular-momentum coupling of the particles
with the remaining core and an interaction energy between
the two particles. To focus on the interaction part we consider
spherical systems where our results are independent of the
moment of inertia of the core.

It is interesting to investigate if the neutron-proton inter-
actions used can give a correction to the binding energies that
captures trends that the simple function, Eq. (21), does not. To
enhance the contribution from the neutron-proton interaction
energy we employ the nine-point mass difference formula of
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FIG. 7. Nine-point binding-energy difference δnp for odd-odd
spherical nuclei with known ground state Iπ . The experimental data
are compared with the corresponding δnp obtained from the theoreti-
cal mass table and with results obtained using the microscopic model,
Eq. (22).

Ref. [29] that considers all eight neighboring nuclei (four
even-even and four odd-even) and the odd-odd nucleus with
N, Z ,

δnp(Z, N ) = 1

2

∑
N ′,Z ′∈odd-A

E (N ′, Z ′)

− 1

4

∑
N ′,Z ′∈even

E (N ′, Z ′) − E (N, Z ).

We compare the binding energy differences obtained from
experiment and theory for odd-odd spherical nuclei with
known ground state Iπ . The theoretical masses are taken from
Ref. [1] where the odd-odd mass has been adjusted according
to Eq. (22) in the present microscopic calculations. The result
is shown in Fig. 7. As seen in this figure the macroscopic
approximation used in the FRDM captures the average trend
in δpn. The microscopic results obtained with the Covello
interaction gives values that are a bit too low for the lighter
nuclei but otherwise describes the data with a similar accu-
racy.

V. Qα VALUES OF ODD-ODD SUPERHEAVY NUCLEI

The extension of the FRDM as discussed in the previous
sections gives predictions not only for ground-state spins
but also for the low-energy spectra. Indeed, the low-energy
spectra is important in order to determine the α-decay paths.
In this section we apply the model for the prediction of how
odd-odd superheavy element (SHE) may decay via α decay to
ground states or to excited states.

The α decay is one of the primary decay modes of the
currently known SHE. A probable scenario in experiments
with odd-odd SHE nuclei is that the mother nucleus reaches
its ground state before it α decays. This α decay can give
a daughter nucleus in its ground state, giving the largest
possible Qα value, or leave the daughter in an excited state,
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yielding a smaller Qα . If a decay to an excited state occurs,
the daughter nucleus can then γ decay. When measured in
an α-γ -spectroscopy experiment, such decay events can pro-
vide valuable nuclear-structure information. In this section,
we present results for Qα values of odd-odd SHE obtained
in calculations performed as in Sec. III. The Qα values of
decays connecting ground states, and the Qα value of the
favored decays connecting the mother-nucleus ground state
to a structurally similar excited state in the daughter are
considered. A favored Qα smaller than the ground-state to
ground-state value, but not significantly reduced, indicates a
possible candidate for an α-γ event.

The branching ratio between different competing α decay
paths depends on both the Qα value and the overlap of
nuclear wave functions, quantified using a hindrance factor.
To fully describe the competition between different decay
paths requires a microscopic calculation of the α-decay rates
[30,31]. Here we consider a simple prescription to estimate
the favored α-decay channel for odd-odd nuclei. The decay
most favored by the nuclear structure is likely to be the case
where the quasiparticle structure of the mother and daughter
states are most similar. The favored decay channel is therefore
selected based on the calculated mother and daughter wave
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FIG. 8. Qα values for odd-odd superheavy nuclei. The solid
(dashed) lines show ground-state to ground-state (ground-state to
favored) Qα obtained in the calculations with the Covello residual
interaction. The solid symbols show experimental Qα values. Squares
are used for measured values [10] and circles for values deduced
from systematics [10]. In the case of several measured α-decay
branches, the open symbols denote the Qα values for the branch with
smallest hindrance factor [23]. Theory shifted up 0.4 MeV.

TABLE VII. Predicted ground-state spins of superheavy nuclei
compared to experiment. Experimental data from Ref. [23].

Nucleus Covello Experiment

248
99 Es149 2− (2−, 0+)
250
99 Es151 6+ (6+)
252
99 Es153 5− (5−)
254
99 Es155 5− (7+)
256
99 Es157 2− (1+, 0−)
256
101Md155 1− (1−)

functions. We characterize the mother nucleus gs using Iπ and
the dominant 2-qp configuration. The favored decay channel
is approximated as the transition to the daughter state with the
same Iπ quantum numbers that has the same dominant 2-qp
configuration.

Figure 8 shows the predicted ground-state to ground-state
and ground-state to favored Qα values for odd-odd SHE with
Z = 99–121 compared to available experimental data. As seen
in this figure many of the trends in the experimental data
are captured by the theoretical calculations. For the isotope
sequences with Z = 99, 101, 103, 105, 109, 111, and 115
one has observed several α-decay branches. The figure also
show the branches with the smallest hindrance factors [32,33].
Branches with small hindrance factors are likely to correspond
to situations where the mother and daughter are structurally
similar. The calculations suggest that such decays are possible
for several of the heavier nuclei.

The theoretical results in Fig. 8 have been shifted up in
energy by 0.4 MeV in order to better illustrate the agreement
for the kinks in the Qα values. The agreement for the kinks
indicate that the shellstructure is predicted correctly while the
improved agreement obtained when the values are slightly
shifted could be an indication of a missing trend in the macro-
scopic part of the FRDM. In particular one should note that
the Coulomb redistribution energy is treated only to first order
in the FRDM. Since this contribution is particularly large for
the nuclei considered here, which have the highest Z2/A1/3

of all known nuclei, higher-order or exact treatments may be
required. The favorable effect on nuclear masses of already
including the first-order treatment is discussed in Ref. [34].

The predicted kinks in Qα values occurs for all chains
around neutron numbers 152 and 162 and are in agreement
with experiments. For the Z = 103–109 chains there is a
predicted kink also around neutron number 174. The kinks
are indicative of shell gaps and a more detailed comparison
between different models can be found in Ref. [35].

Table VII shows a comparison between the predicted Iπ

values for some of the nuclei in the superheavy region that
have tentative Iπ assignments [23]. Of the six values for the
Z = 99 and Z = 101 chains, theory and experiment agree in
four cases.

VI. CONCLUSIONS

We investigated how well global low-energy properties
of odd-odd nuclei can be described in the FRDM combined
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with the particles-plus-rotor-model. The rotor model accounts
for the spin coupling and the neutron-proton interaction be-
tween the two odd particles. Different forms and parametriza-
tions of the neutron-proton interaction were investigated,
where the Gaussian interaction with central and noncentral
tensor parts was found superior in the parametrization given
by Covello et al. [16].

Bandhead energy splitting was studied in deformed nuclei
between the two bandheads that emerge as the angular mo-
mentum of the odd neutron and odd proton couple to K> =
Kn + Kp and K< = |Kn − Kp|. Best rms deviation between
data and calculation for all 54 measured cases was found to
be 66 keV for the Covello interaction.

The structure of neutron-proton jn jp multiplets in spherical
nuclei could be fairly well described by the model. The
noncentral tensor component of the interaction result in more
correct multiplet splittings by pushing the K = 0 states higher
in energy.

We also studied how well the model performs in the calcu-
lations of rotational bands in deformed nuclei, formed by one
proton and one neutron in specified Nilsson configurations.
Several low-energy bands appear, and errors up to 200 keV in
the predictions (in the example of 182Ta) may imply difficul-
ties in the prediction of correct ground-state configuration.

A global study was performed of observed ground-state
spins in odd-odd nuclei, where 268 observed nuclei with
experimentally reliable spin and parity assignments were

compared to calculations. The conclusion is that empirical
rules result in 29% correct ground-state parities and spins
for spherical nuclei and 38% for deformed nuclei, while
the corresponding numbers for the interaction from Cov-
ello are 31% and 41%, respectively. The microscopic cal-
culations only implies a quite modest improvement in the
prediction of ground-state spin and parity of odd-odd nu-
clei. However, the treatment with a residual interaction also
gives bandhead splittings and more detailed spectroscopic
predictions.

We finally applied the model for the description of low-
energy spectra for odd-odd superheavy nuclei. From the cal-
culated structure of the states in the mother nucleus and the
daughter nucleus we could provide predictions of Qα values
for decay to both favored states and to ground states. We
believe these results can be used as a reference in future
experiments on superheavy nuclei.
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