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The large values of the singlet and triplet scattering lengths locate the two-nucleon system close to the unitary
limit, the limit in which these two values diverge. As a consequence, the system shows a continuous scale
invariance, which strongly constrains the values of the observables, a well-known fact already noticed a long
time ago. For example, the triton binding energy is correlated with other observables such as the doublet nucleon-
deuteron scattering length or the α-particle binding energy. Moreover, the low-energy dynamics of these systems
is universal; it does not depend on the details of the nuclear interaction. Instead, it depends on a few control
parameters such as the (large) values of the scattering lengths and the triton binding energy. Using a potential
model in order to vary the values of the scattering lengths, we study the spectrum of A = 2, 3, 4, 6 nuclei in the
region between the unitary limit and the point where the scattering lengths get their physical values. In particular,
we analyze how the binding energies emerge from the unitary limit forming the observed levels.
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I. INTRODUCTION

In a nonrelativistic theory where one allows for a tunable
potential (or other parameters like the mass m of the particles),
we refer to the unitary window as to the range of those pa-
rameters for which the scattering(s) length(s) a attains a value
close to infinity (the unitary limit). This is a relevant limit
because the physics becomes universal [1] and a common
description can be used for totally different systems, ranging
from nuclear physics up to atomic physics or down in scale
to hadronic systems. For instance, in the two-body sector,
there is the appearance of a shallow (real or virtual) bound
state whose energy is governed by the scattering length, E2 =
−h̄2/ma2. This state is shallow if compared with the energy
related to the typical interaction length �, defined as −h̄2/m�2,
and in the limit a/� → ∞, where it becomes resonant. This
limit can be understood either as the scattering length going
to infinity or as the range of the interaction going to zero; in
the last case one talks of zero-range limit or scaling limit.

In the scaling limit, the two-body sector displays continu-
ous scale invariance due to the fact that the only dimensionful
parameter is the scattering length. As soon as we change
the number of particles, the above symmetry is dynamically
broken to a discrete scale invariance (DSI); for example, for
three equal bosons at the unitary limit, an infinite tower of
bound states appears—the Efimov effect [2,3]—related by a
discrete scale transformation r → exp(π/s0) r ≈ 22.7 r, with
the scaling factor s0 = 1.0062 . . . a universal transcendental
number that does not depend on the actual physical system.
The anomalous breaking of the symmetry gives rise to an
emergent scale at the three-body level, which is usually re-
ferred to as the three-body parameter κ∗, giving the binding
energy h̄2κ2

∗/m of a reference state of the above tower of
states. For finite values of the scattering length, the number
of states becomes finite and of the order ∼s0 log(|a|/�) [4].

The fine tuning of the parameters that brings systems inside
the unitary window can be realized either artificially as it
has been the case in the field of cold atoms with Feshbach
resonances [5], or can be provided by nature, as in the case of
atomic 4He, where the 4He2 molecule has a binding energy of
several orders smaller than the typical interaction energy [6].
Nuclear physics is another example of a tuned-by-nature sys-
tem; the binding energy of the deuteron, Bd = 2.22456 MeV
is much smaller than the typical-nuclear energy h̄2/m�2 ≈
20 MeV, considering that the interaction length is given by
the inverse of the pion mass mπ , � ∼ 1/mπ ≈ 1.4 fm. The
fact that nuclear physics resides inside such a window has
been used in the pioneering works of the 1930s where the
binding energies of light nuclei have been calculated using
either boundary conditions [7,8] or pseudopotentials [9].

Nuclear physics is the low-energy aspect of the strong
interaction, namely quantum chromodynamics (QCD); in this
limit, QCD is a strongly interacting quantum field theory
and only nonperturbative approaches can be used to describe
the spectrum of nuclear physics. Such nonperturbative ap-
proaches start to appear, one example being lattice QCD
(LQCD); however, a complete calculation of nuclear proper-
ties seems at present not yet feasible using these techniques.
Historically, the description of light nuclear systems was
based on potential models constructed to reproduce a selected
number of observables; the first attempts were based on the
expansion of the potential on the most general operator basis
compatible with the symmetries observed in the spectrum.
Lately, it has been realized that a potential could be con-
structed starting from the symmetries of QCD in an effective
field theory (EFT) approach. One important symmetry of
QCD in the limit of zero-mass light quarks is the chiral
symmetry; this symmetry is indeed spontaneously broken and
its Goldstone boson is the π meson. The mass of the pion mπ

2469-9985/2019/100(3)/034004(11) 034004-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.100.034004&domain=pdf&date_stamp=2019-09-30
https://doi.org/10.1103/PhysRevC.100.034004


M. GATTOBIGIO, A. KIEVSKY, AND M. VIVIANI PHYSICAL REVIEW C 100, 034004 (2019)

is not really zero because of the soft breaking term introduced
by the explicit mass of the quarks up and down, but still
is much lower than the typical hadronic masses. The chiral
limit is not the only interesting limit in QCD; it has been
hypothesized that the actual mass of the pion is probably close
to a value for which the nucleon-nucleon scattering lengths
diverge [10]; in fact, one can study the variation of the 1S0

(singlet) a0 and 3S1 (triplet) a1 scattering lengths as a function
of the masses of the up and down quarks, or equivalently of
mπ , which is related to the quark mass by the Gell-Mann-
Oakes-Renner relation. It has been shown that it is possible
for mπ ≈ 200 MeV that both scattering lengths go to infinity
[11,12]. At the physical point, mπ ≈ 138 MeV, the values
of the two scattering lengths, a0 ≈ −23.7 fm and a1 ≈ 5.4
fm, are still (much) larger than the typical interaction length
� ≈ 1.4 fm; this is a further indication that nuclear physics is
close to the unitary limit and well inside the universal window.

A model-independent description of the physics inside
the unitary window is given by an EFT based on the clear
separation of scales between the typical momenta Q ∼ 1/a
of the system and the underling high momentum scale ∼1/�

[13–15]; in nuclear physics, where � ∼ 1/mπ , this approach
is known as pionless EFT [13,16,17]. Using EFT, if the
power counting is correct [18], one can systematically im-
prove the prediction on observables. For instance, in the
two-body sector, the usual effective range expansion (ERE)
can be reproduced by such an expansion [13]; the leading
order (LO), which is just a two-body contact interaction,
captures all the information encoded in the scattering length a,
while the next-to-leading-order term (NLO), which contains
derivatives, captures the information encoded in the effective
range re. Starting from the three-body sector, a LO three-
body interaction is necessary [14,15,19], which introduces the
emergent three-body scale.

It is possible to investigate the universal window by using
potential models; this approach allows to follow the behavior
of two- and three-particle binding energies inside the window
of universality. In addition, a higher number of particles can
be considered as in Refs. [20–22] where it has been shown that
the use of a simple Gaussian potential gives a good description
of bosonic systems such as helium droplets in this regime.

In this paper, we want to explore the window of univer-
sality for nucleons, which means for fermions with 1/2 spin
and isospin degrees of freedom; the idea is to follow, as a
function of the interaction range, the states that represent light
nuclei in the region of universality and to observe which part
of the nuclear spectrum is in fact governed by universality.
The major difference with respect to the bosonic case is the
presence of two scattering lengths. There have been previous
studies of the Efimov physics with two scattering lengths
[12,23–28], and there are different ways to explore the space
of parameters; one possible choice is to keep constant the
ratio between the scattering lengths a0/a1, selecting some
cuts in that space. Accordingly, we explore the nuclear cut,
which means a0/a1 ≈ −4.3, moving from the unitary point,
a0, a1 → ∞, to the physical point; at a more fundamental
level, this is equivalent to change the mass of the pion mπ

(or the sum of up and quark masses in QCD), as it was shown

in Refs. [11,29]. Interestingly, we observe that, at the unitary
point, in addition to the A = 5 gap we observe a A = 6 gap.

The paper is organized as follows. In Sec. II we will show
how the spectrum of A = 2, 3, 4, 6 nucleons representing light
nuclei depend on the scattering lengths when we change them
from the unitary limit to their real value, and we discuss
what are the aspects of the universality of Efimov physics
that still remain. In Sec. III we concentrate our study at
the physical point, where a three-body force, as well as the
Coulomb interaction, are introduced. In Sec. IV we investigate
the possible role of p waves in the binding of A = 6 nuclei.
Finally, in Sec. V we give our conclusions.

II. 1/2 SPIN-ISOSPIN ENERGY LEVELS CLOSE
TO UNITARY

In this section, we describe the discrete spectrum of spin-
1/2 isospin-1/2 particles from the unitary limit to the point
where nuclear physics is located, the physical point, defined
as the point in which the scattering lengths take their observed
values. To this end, we construct the Efimov plot, a plot in
the plane (1/a, K ), where the momentum K of the bound
state with energy h̄2K2/m is plotted as a function of the
inverse of the two-body scattering length a. In the case of
two nucleons, there are two different scattering lengths, a0 and
a1, in spin-isospin channels with S, T = 0, 1 and S, T = 1, 0,
respectively. Following Refs. [24,25], we use the triplet scat-
tering length for the Efimov plot (1/a1, K ), taking care that for
each value of a1 the scattering length a0 is varied accordingly,
in order to keep the ratio a0/a1 constant. In Refs. [24,25],
the main characteristic of the Efimov plot for three 1/2 spin-
isospin particles has been studied. In particular, it has been
shown that for the ratio a0/a1 ≈ −4.3, corresponding to the
nuclear physics case, the infinite tower of states at unitary
disappears very fast as a1 decreases and, for a1 < 20 fm, only
one state survives. This simple analysis explains the existence
of only one bound state for 3H and 3He. Conversely, in the
case of three identical bosons, calculations using finite-range
potentials have shown that the first excited state survives
throughout the unitary window.

A. Potential model

In order to explore the unitary window through the Efimov
plot, we calculate the binding energies of A nucleons for
different values of the two-body scattering lengths. In the
case of a zero-range interaction the A = 2 energy of the real
(virtual) state for a > 0 (a < 0) is simply E2 = −h̄2/ma2.
For three particles, and using a zero-range interaction, the
binding energies can be obtained by solving the Faddeev zero-
range equations encoded in the Skorniakov-Tern-Martirosian
equations (see Ref. [1] and references therein for details). It
is well known that the contact interaction can be represented
by different functional forms introducing finite-range effects.
In particular, as it has been shown in Refs. [30,31], inside the
unitary window a Gaussian potential captures the main char-
acteristics of the dynamics, confirming the universal behavior
of the system in this particular region. Considering that, for
two nucleons, there are four different spin-isospin channels
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TABLE I. Calculations belonging to the nuclear cut, a0/a1 = −4.3066 for selected values of the strengths V01 and V10. The ground-state
energy EA and, if it exists, the excited-state energy E∗

A of the A-particle system is reported. In the A = 6 case we distinguish between the total
isospin T = 1 and total spin S = 0 case, 6He, and the T = 0, S = 1 case, 6Li. The Coulomb interaction is not taken into account.

V10(MeV) V01(MeV) a1(fm) E2(MeV) E3(MeV) E∗
3 (MeV) E4(MeV) E∗

4 (MeV) 6He(MeV) 6Li(MeV)

−60.575 −37.9 5.4802 −2.2255 −10.2455 – −39.843 −11.19 −41.60 −46.74
−60.0 −37.95859 5.5980 −2.1098 −10.0056 – −39.221 −10.93 −40.87 −45.82
−58.0 −38.17114 6.0683 −1.7270 −9.1903 – −37.093 −10.01 −38.36 −42.71
−56.0 −38.39861 6.6607 −1.3762 −8.4054 – −35.017 −9.14 −35.95 −39.67
−54.0 −38.64295 7.4310 −1.0593 −7.6526 – −32.997 −8.31 −33.58 −36.77
−52.0 −38.90658 8.4756 −0.77842 −6.9333 – −31.035 −7.52 −31.31 −33.95
−50.0 −39.19224 9.9750 −0.53599 −6.2493 – −29.135 −6.78 – −31.23
−48.0 −39.50321 12.3136 −0.33466 −5.6023 – −27.300 −6.08 – −28.62
−46.0 −39.84347 16.4715 −0.17736 −4.9945 – −25.536 −5.43 – −26.17
−45.0 −40.02606 20.0638 −0.11633 −4.7058 −0.1168 −24.682 −5.13 – −24.96
−44.5 −40.12075 22.6041 −0.09038 −4.5654 −0.0920 −24.262 −4.98 – −24.41
−44.0 −40.21785 25.9589 −0.06756 −4.4278 −0.0705 −23.847 −4.83 – –
−43.5 −40.31744 30.5953 −0.04794 −4.2927 −0.0530 −23.437 −4.69 – –
−43.0 −40.41963 37.4216 −0.03158 −4.1605 −0.0385 −23.032 −4.55 – –
−42.5 −40.52453 48.4699 −0.01855 −4.0311 −0.0270 −22.633 −4.42 – –
−42.0 −40.63225 69.4131 −0.00891 −3.9044 −0.0182 −22.238 −4.28 – –
−41.5 −40.74293 124.3314 −0.00273 −3.7807 −0.0119 −21.850 −4.15 – –
−40.88363 −40.88363 ∞ 0 −3.6322 −0.0068 −21.378 −4.00 – –

with quantum numbers ST = 01, 10, 00, 11, we define the
following spin-isospin-dependent potential of Gaussian type:

V (r) =
∑

ST

VST e−(r/rST )2PST , (1)

where we have introduced the spin-isospin PST projectors.
The minimal requirement to construct a fully antisymmetric
two-body wave function with the lowest value of the angular
momentum L is to consider the spin-isospin channels S =
0, T = 1 and S = 1, T = 0. Therefore, in this first analysis,
the other two components of the potential are set to zero:
V00 = V11 = 0. In each of the two remaining terms, there are
two parameters, the strength of the Gaussian and its range;
we fix both ranges to be the same r10 = r01 = r0 = 1.65 fm,
and of the order of the nuclear range. With this choice, an
acceptable description of the two-body low-energy data is
obtained (a refinement of the model will be discussed in the
next section). The tuning of the two strengths allows us to con-
trol the scattering lengths; the value of V01 defines the singlet
scattering length a0, while the value of V10 defines the triplet
one a1. In all our calculations we fix the value of the nucleon
mass m such that h̄2/m = 41.47 MeV fm2. In some of the
following tables and figures, we use r0 = 1.65 fm as unit
length and E0 = h̄2/mr2

0 = 15.232 MeV as unit of energy.
In order to calculate the binding energies for the nuclear

systems having A = 3, 4, 6, we have solved the Schrödinger
equation using two different variational methods. One method
is based on the hyperspherical harmonic (HH) [32] basis in its
unsymmetrized version [33–35]. We have used this approach
mainly for A = 3, 4 since it is very accurate for states far from
thresholds. Close to a threshold, as for A = 6 or for the excited
states in A = 3, 4, the dimension of the basis tends to become
too big to have good precision. To overcome this problem we
implemented a version of the stochastic variational method
(SVM) [36] with correlated-Gaussian functions as the basis

set; this method allows for a more economical description of
the excited states close to the threshold.

By changing V10 and V01, the values of the scattering
lengths vary along the nuclear cut defined by the ratio a0/a1 =
−4.3066. Along this path, we have calculated the binding
energies of A = 2, 3, 4, 6 nucleon systems. The calculations,
for selected values of the potential strengths, are reported
in Table I in the case of positive triplet-scattering length
values, for which a two-body bound state in the 3S1 channel
exists. The calculations cover a region between the unitary
point, for which both scattering lengths attain an infinite
value and the physical point, for which the value of the two-
body state is E2 = −2.2255 MeV [the experimental binding
energy of the deuteron is 2.224575(9) MeV], and the two
scattering lengths have the values a1 = 5.4802 fm and a0 =
−23.601 fm, with the experimental values a1 = 5.424(3) fm
and a0 = −23.74(2) fm, respectively [37].

In all of the calculations, the lowest state corresponds to
total orbital angular momentum L = 0. Moreover, in this first
analysis the Coulomb interaction between protons has been
disregarded, so the isospin is conserved. In the three-body
sector, the quantum numbers of 3H and of 3He are S = 1/2
and T = 1/2, and as we disregarded other charge-symmetry-
breaking terms the two nuclei have the same energy. We refer
to their ground-state energy as E3 and to their excited-state
energy as E∗

3 . The total wave function is antisymmetric with
the spatial wave function mostly symmetric. We would like
to stress a big difference between the bosonic and the nuclear
cut already mentioned above: in the bosonic case the first ex-
cited state never disappears into the particle-dimer continuum
whereas, in the nuclear case, the excited state disappears in the
continuum and it becomes a virtual state already for a large
value of a1 (a1 ≈ 20 fm). The motivation is the following: at
the unitary point, since we are using the same range for both
Gaussians, the system is equivalent to a bosonic system and an
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FIG. 1. Efimov plot for N = 2, 3, 4 particles along the nuclear
cut a0/a1 = −4.3066. The triplet scattering length a1 is in units
of r0 = 1.65 fm and the energies are expressed in units of E0 =
h̄2/mr2

0 = 15.232 MeV.

infinite set of excited states appears showing the Efimov effect
(in Table I only the first one is reported). Moreover, the system
is completely symmetric, no other symmetry is present. As the
strength of the potentials starts to vary, keeping the ratio a0/a1

constant, the three-body wave function develops a spatial
mixed symmetry component making the energy gain slower
than in the bosonic case. The two-body system is not affected
by the singlet potential (which is weaker) and its energy gain
is the same as in the bosonic case; as a consequence, the first
excited state crosses the particle-dimer continuum becoming
a virtual state.

From the results reported in Table I we also observe that
the three-body binding energy at the physical point is much
larger than the experimental value of −8.48 MeV; this is a
well-known fact related to the necessity of including a three-
body force, a point we are going to discuss in the next section.
In Fig. 1, we show the Efimov plot up to four particles; we
clearly see the three-body excited state disappearing in the
continuum. We also observe the usual feature of two four-
body states attached to the three-body ground state. The four-
body calculations are done for the same quantum numbers as
4He, that means S = 0 and T = 0, thus the two states have
mostly a symmetric spatial wave function. As in the bosonic
case [20,38–42] there are two-attached four-body states to the
three-body ground state. The ratio between the ground-state
energy of the four-body state and the ground state of the three-
body state E4/E3 is not constant along the path, but it varies
from E4/E3 = 5.89 at the unitary point to E4/E3 = 3.89 at
the physical point, close to the realistic case of 3.67. As far
as the excited state of the four-body system is concerned, the
ratio between its energy and that of the three-body state is
more or less constant along the path E∗

4 /E3 = 1.09 − 1.1; the
finite-range corrections result in a bigger value of this ratio
with respect to the zero-range limit [42].

It should be noticed that Fig. 1 is constructed in such a way
that it is independent of the particular Gaussian range r0 used
to perform the calculations. Results obtained with different
Gaussians will fall on the plotted curves, accordingly Fig. 1
has a universal character [31].

B. Universal behavior

To analyze the universal behavior of the few-nucleon sys-
tems we start recalling the Efimov radial law for three equal
bosons [1]

E3/E2 = tan2 ξ (2a)

κ∗a = e(n−n∗ )π/s0
e−�(ξ )/2s0

cos ξ
, (2b)

where, due to its zero-range character, E2 = −h̄2/ma2 and the
three-body binding energy of level n∗ at the unitary point is
h̄2κ2

∗/m. The function �(ξ ) is universal in the sense that it is
the same for all the energy levels. It can be calculated solving
the STM equations as explained for example in Ref. [1], and
its expression can be given in a parametric form [43]. Note
that the spectrum given by the above equation is not bounded
from below. For a real three-boson system located close to
the unitary limit and interacting through short-range forces
with a typical length �, the discrete spectrum is bounded from
below with the number of levels roughly approximated by
(s0/π ) ln(|a|/�).

The extension of Eqs. (2) to describe finite-range in-
teractions, considering more particles and eventually spin-
isospin degrees of freedom, is given in a series of papers,
Refs. [21,24,25,44,45], and it reads

Em
A /E2 = tan2 ξ (3a)

κm
A aB + �m

A = e−�(ξ )/2s0

cos ξ
, (3b)

where for three particles, Em
3 , m = 0, 1, . . ., is the energy of

the different branches; in Fig. 1 the first two branches (m =
0, 1) are shown. For four particles Em

4 , m = 0, 1, is the energy
of the two states attached to the lowest three-body branch, E0

3 .
The length aB is defined from the two-body energy as E2 =
−h̄2/ma2

B. Finally, we have introduced the shift parameter,
�m

A , which is more or less constant throughout the unitary
window. A recent analysis of the shift parameter for three
equal bosons is given in Ref. [43], where it has been related
to the running three-body parameter introduced in Ref. [46].
Equation (3b) can also be written as

κm
A aB = e−�m

A (ξ )/2s0

cos ξ
, (4)

where the shift �m
A is absorbed in the level function �m

A (ξ );
in the present work it is calculated from a Gaussian potential
as in the bosonic case [30]. In Refs. [30,31] it has been
shown that the level function �m

A (ξ ), which incorporates the
finite-range corrections given by a Gaussian potential, is about
the same for different potentials close to the unitary limit.
Accordingly, a Gaussian potential can be thought of as a
universal representation of potential models inside the unitary
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TABLE II. We report for A = 3, 4 systems the Gaussian-energy
momenta (in units of r−1

0 ) at the unitary point for the branches
m = (0, 1). We also summarize the values of the square tangents
of the physical angles, the values of the two-body binding energies
corresponding to the same angles reproduced by a Gaussian poten-
tial, and the momenta and the energies at the unitary limit for the
real-nuclear systems as predicted by Eq. (6).

A m r0κ
m
A |G tan2 ξ |exp aB/r0|G κm

A |exp(fm−1) Em
A |exp(MeV)

3 0 0.4883 3.81 2.1866 0.2473 2.536
3 1 0.0211
4 0 1.1847 13.13 2.0774 0.570 13.474
4 1 0.5124

window. Moreover, the level function �m
A (ξ ) is unique for all

Gaussian potentials, it does not depend on the particular range
r0 used for the actual calculations because, as shown in Fig. 1,
this parameter is just used to have a dimensionless scattering
length and energy. This is an important point because the limit
r0/a1 → 0 can be read either as a1 → ∞ or as r0 → 0. In the
limit r0/a1 = 0, the unitary point coincides with the finite-
range-regularized scaling-limit point and the dimensionless
values of the binding momenta are the same for all Gaussian
potentials. They are given in the first column of Table II for
A = 3, 4 and m = 0, 1.

The uniqueness of the Gaussian-level functions and the fact
that the Gaussian potential is an universal representation of
potential models close to the unitary limit, allow us to use the
Gaussian potential to predict the values of the energies at the
unitary limit for real systems, which in principle are described
by more realistic potentials. We proceed in the following way:
from Eq. (2) we observe that the product κ∗a is a function of
the only angle ξ through the universal function �(ξ ). This
property is related to the DSI and it is well verified for real
systems, which, close to the unitary limit, are well represented
by the Gaussian level functions as given in Eq. (4). Therefore,
the product κm

A aB is function of solely the angle ξ verifying
the following equality

κm
A aB

∣∣
exp = κm

A aB

∣∣
G, (5)

where κm
A aB|exp is the function evaluated at the angle given by

the experimental values, and the function κm
A aB|G is evaluated

at the same angle but calculated with the Gaussian potential.
From Eq. (5) the energy momentum at the unitary point for
the real systems is

κm
A

∣∣
exp = 1

aB

∣∣∣∣
exp

κm
A aB

∣∣
G

= 1

aB

∣∣∣∣
exp

(
r0κ

m
A

)aB

r0

∣∣
G
, (6)

where the Gaussian values of r0κ
m
A |G are reported in Table II.

We can apply Eq. (6) to predict the value of the three- and
four-body energies at the unitary limit for nuclear physics.
For the three-body case, the experimental binding energies
of the deuteron, aB|exp = 4.3176 fm, and of the 3H fix the
experimental value of the angle ξ to be tan2 ξ |exp = 3.81.
Using the range value r0 = 1.65 fm, this angle is reproduced
by the Gaussian strengths V10 = −64.96 MeV and V01 =
−37.4855 MeV, which corresponds to a deuteron energy of

0 5 10 15 20
κm

AaB

0.0

2.5

5.0

7.5
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y
(ξ
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A = 4,m = 1

y(ξ) = κm
AaB

FIG. 2. Efimov plot for the nuclear cut in the form of y(ξ ),
Eq. (7), as a function of κm

A aB. The zero-range limit is given by the
straight line y(ξ ) = κm

A aB.

E2 = −3.1858639 MeV, or, equivalently, aB/r0|G = 2.1866.
Using the Gaussian value of r0κ

0
3 |G = 0.4883, from Eq. (6) we

obtain κ0
3 |exp = 0.2473 fm−1 corresponding to a three-nucleon

binding energy at unitary of E0
3 |exp = 2.536 MeV.

We proceed in the same way for the four-body case.
We take E0

4 = 29.1 MeV as the experimental value of 4He
without Coulomb interaction [47]; with this value and that of
the deuteron we obtain tan2 ξ |exp = 13.1, which can be repro-
duced using the Gaussian potential with V10 = −66.4 MeV
and V01 = −37.36047 MeV that also gives aB/r0|G = 2.0774.
Using Eq. (6) and the universal-Gaussian value r0κ

0
4 |G =

1.1847 we obtain κ0
4 |exp = 0.570 fm−1, or, equivalently,

E0
4 |exp = 13.474 MeV. All the results are summarized in

Table II, and it should be noted that predictions of the same
order exist for A = 3 [11].

In order to study further the close relation between the
zero- and finite-range descriptions we look at the behavior of

y(ξ ) = e−�(ξ )/2s0/cos ξ (7)

as a function of κm
A aB. For zero-range interaction this function

is a line going through the origin at 45◦. As already observed
[30,44] for bosons, if the shift parameter �m

A is almost con-
stant, three and four particles results should give a linear
relation between y(ξ ) and κm

A aB though not going through the
origin. The results are given in Fig. 2 showing the expected
behavior in a very extended range of κm

A aB values.

C. Including the A = 6 energies

In the following we study the six-body bound states as
a function of the triplet scattering length along the nuclear
cut; we expect a bigger deviation from the bosonic scenario
because the totally symmetric spatial component cannot be
anymore present; with only four internal degrees of freedom,
the spin and the isospin, there are only spatial-mixed compo-
nents. In the A = 6 case we distinguish two different states,
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E
/E

0

4He
4He+d
6He
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FIG. 3. Efimov plot in the nuclear cut for A = 6 particles. The
scattering length is in units of r0 = 1.65 fm and the energies in
units of E0 = h̄2/mr2

0 = 15.232 MeV. We distinguish between the
six-body state that has the quantum numbers of 6He and the one with
the quantum numbers of 6Li. We also report the energy of the A = 4,
which has the quantum number of 4He, and represents the threshold
for the 6He, and the energy of 4He + d , which represents the thresh-
old for 6Li. In the present calculations the Coulomb interaction has
not been taken into account.

one with quantum numbers S = 0 and T = 1, to which we
refer to as 6He even in absence of Coulomb interaction, and
one with quantum numbers S = 1 and T = 0, to which we
refer to as 6Li. The results of Table I are reported in Fig. 3;
clearly, we can observe the absence of those states close to
the unitary limit. This is a big difference with respect to the
bosonic case, where, for 6 � A > 3 the A-boson system at
the unitary point has two states, one deep and one shallow,
attached to the A − 1 ground state [21,40,44]. Instead, the two
fermionic A = 6 states are not bound below the 4He threshold
(at the unitary point the 4He and 4He + d threshold coincide
since the two-body system has zero energy). This is clearly a
sign of the absence of the symmetric component in the spatial
wave function. From the previous discussion we notice the
interesting result that, at the unitary limit, there is a mass gap
for A = 5, 6. This gap continues to exist only for the case
A = 5 at the physical point.

In fact, following the behavior of the A = 6 states in Fig. 3
we observe that, as the two-body system acquires energy,
there is a point around r0/a1 ≈ 0.07 in which 6Li emerges
from the 4He + d threshold and, at r0/a1 ≈ 0.2, 6He emerges
from the 4He threshold. The difference in energy between the
two states at this last point is of 2.64 MeV, of the order of
the experimental mass difference; it becomes of the order of
5.14 MeV at the physical point. We can conclude that this is
a subtle effect of the finite-range character of the force, as we
are going to discuss in the next sections.

Finally, we investigate the universal character of the
fermionic A = 6 states using Eq. (7). A linear behavior of the
function y(ξ ) indicates a behavior controlled by the scattering
lengths and the three-body parameter. In Fig. 4 we plot
the value of y(ξ ), calculated using the A = 6 energies as a

0 5 10 15 20
κ0

4aB

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

y
(ξ

)

4He
4He + d
6He
6Li

y(ξ) = κ0
4aB

FIG. 4. Efimov plot in the nuclear cut for A = 6 particles, the
same as in Fig. 3, in the form of y(ξ ) as a function of κ0

4 aB. With
respect to the A = 3, 4 cases, we observe a bigger deviation from the
universal prediction of Efimov physics.

function of κ0
4 aB; the latter has been chosen because, at the

unitary point, is the energy representing the threshold. We
find a dominant linear relation close to the thresholds where
the structure of the state is dominated by the 4He. For 6Li
deviations from the universal behavior appears close to the
physical point whereas the 6He energies follow nicely the
linear behavior showing a strongly universal character.

III. PHYSICAL POINT

From the calculations of Table I we clearly see that the
two-body potential Eq. (1) is too simple to describe the spec-
trum of light nuclei. On the other hand, it captures some
important aspects as the one-level three-nucleon spectrum, the
E4/E3 ratio and the A = 5 mass gap. As discussed in Sec. I,
the two-body Gaussian potential must be supplemented by
a three-body potential devised to reproduce the 3H energy.
This corresponds, in Efimov physics, to fix the three-body
parameter or, following EFT concepts, the promotion of the
three-body interaction to the LO in order to take into account
the unnatural large values of the scattering lengths [14,15].
Here we use an hypercentral three-body potential of the
following form:

W (ρ) = W0 e−(r2
12+r2

13+r2
23 )/ρ2

3 , (8)

where ri j is the relative distance between particle i and j
and ρ is the hyperradius. In this potential there are two
independent parameters, the strength of the potential W0 and
its range ρ3. In order to reproduce the 3H binding energy,
E3H = −8.482 MeV, an infinite number of pairs (W0, ρ3) can
be chosen. However, a very small number of such pairs (in
fact only two [24]) reproduce other physical inputs such as
the energy of the four-body system or the neutron-deuteron
scattering length and .
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TABLE III. Calculations for A = 3, 4 at the physical point, V10 = −60.575 MeV, V01 = −37.9 MeV, and E2 = −2.2255 MeV, for selected
three-body force parameters. In the left part, the calculations without the Coulomb interaction are reported for 3H, E4, and E∗

4 . In the right part
of the table, the Coulomb interaction has been included to calculate 3He, 4He, and the excited state 4He∗. The latter disappears as bound state
when the three-body force and the Coulomb interaction are considered together. The experimental values are reported in the last row.

W0(MeV) ρ3(fm) 3H(MeV) E4(MeV) E∗
4 (MeV) 3He(MeV) 4He(MeV) 4He∗(MeV)

0 – −10.2455 −39.843 −11.193 −9.426 −38.789 −10.655
11.922 2.5 −8.48 −28.670 −8.75 −7.722 −27.754 –
9.072 2.8 −8.48 −29.014 −8.79 −7.718 −28.060 –
7.8 3.0 −8.48 −29.223 −8.80 −7.715 −28.258 –
7.638 3.03 −8.48 −29.255 −8.80 −7.714 −28.290 –
7.612 3.035 −8.48 −29.260 −8.80 −7.714 −28.295 –
7.6044 3.035 −8.482 −29.269 −8.80 −7.716 −28.305 –

Experimental Values −8.482 −7.718 −28.296

In Table III we show selected parameters of the three-body
used to reproduce the energy of 3H. In the left part of Table III
we report the calculations without Coulomb interaction; we
observe the repulsive nature of the three-body force. Without
the Coulomb interaction 3He is degenerate with 3H and the
four-body state has an energy E4 lower than the one of 4He.
Moreover, the four-body system shows an unphysical excited
state E∗

4 ; this is a characteristic of the Efimov plot without
Coulomb interaction; for each three-body state there are two
attached four-body states. In the right part of Table III we
show the calculations where the Coulomb interaction has been
taken into account. We observe that there are values of ρ3 that
allow to reproduce 3He, and for these values, the description
of 4He is close to the experimental values.

The presence of the Coulomb interaction makes the four-
body excited state disappear. From Table III we select the
best value of the three-body force, W0 = 7.6044 MeV and
ρ3 = 3.035 fm, to follow the evolution of the 3He and 4He
binding energies as a function of a smooth switching-on of the
Coulomb interaction by means of a parameter ε. In Table IV
we report our calculations as a function of ε and the same
data are graphically represented in Fig. 5. For ε = 0, that
means no Coulomb interaction, there is only one three-body
bound state and the universal two-attached four-body states
[38–40,42,48]. As the value of the Coulomb interaction grows

TABLE IV. Calculations for A = 3, 4 for the case W0 =
7.6044 MeV and ρ3 = 3.035 fm with a slow switch on of the
Coulomb interaction controlled by the parameter ε. The threshold
of 3H + p is E3H = −8.482 MeV, which implies that the four-body
exited state 4He∗ is no more bounded for ε ≈ 0.75.

ε 3He(MeV) 4He(MeV) 4He∗(MeV)

0 −8.482 −29.269 −8.804
0.2 −8.327 −29.076 −8.706
0.4 −8.173 −28.882 −8.618
0.6 −8.020 −28.689 −8.536
0.65 −7.982 −28.641 −8.520
0.7 −7.944 −28.593 −8.501
0.75 −7.906 −28.545 –
0.8 −7.868 −28.497 –
1 −7.716 −28.305 –

to its full value, ε = 1, the degeneracy between the 3H and
3He is removed and also the value of the ground- and excited-
state energy of 4He start to change; for ε ≈ 0.75 the 4He
excited state goes behind the 3H + p threshold; a polynomial
fit gives the value of threshold at ε∗ = 0.754. One would
probably expect that the fate of this excited state is to become
the known 0+ resonance of 4He; in order to see this, one
should follow the state as it enters the continuum and mixes
with it. There are several different approaches to look for
resonances, for instance the complex-scaling method [49], the
analytic continuation of the coupling constant [50], or the
Padé approximation of the S matrix [51,52]. Some preliminary
studies1 do not support the resonance picture, but there are

1This is work in progress. We have performed preliminary calcu-
lations using the (i) coupling-constant analytic continuation [50] of
both Coulomb interaction and of a confining four-body force, and
(ii) by the analytic continuation of the four-body scattering p + 3H
[51,52]. We find a virtual state of energy −8.39(1) MeV.

−9

−8

0.0 0.2 0.4 0.6 0.8 1.0

−29

−28

3He
4He∗

3H
4He

.000 0.00200.. 000.004.44 000...66666 0..88888 100 .

ε

0.0

02222299

0−−2222488

0.699

0.888

1.0

E
A
(M

eV
)

FIG. 5. Evolution of the energies for A = 3, 4 as a function of a
smooth switching-on of the Coulomb interaction via a multiplica-
tive parameter ε. The three-body parameters have been fixed to
W0 = 7.6044 MeV and ρ3 = 3.035 fm. The full Coulomb interaction
corresponds to ε = 1. The four-body excited state disappears for a
critical value ε∗ = 0.754, while the energies of 3He and 4He go to
the experimental values better than 0.1%.
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0.0 0.2 0.4 0.6 0.8 1.0

ε

−8.8
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−8.6

−8.5

−8.4

4
H

e∗
(M

eV
)

Polynomial fit of order 2

Extrapolated energy = -8.40 MeV

FIG. 6. Energy of the excited four-body state 4He∗ as a function
of the switching-on of the Coulomb interaction. The grey zone
indicates the continuum, which the state enters at ε∗ = 0.754. We
extrapolate the state up to full Coulomb ε = 1, but this does not mean
that the extrapolated energy corresponds to a resonance because we
are not taking into account the mixing with the continuum. The
experimental position of 0+ resonance of 4He is −8.086 MeV.

some indications that the state becomes a virtual state as for
the neutron-deuteron case [53].

Just as an exercise, we can make a simple extrapolation
knowing that the mixing to the continuum can drastically
change the behavior of the state behind the threshold [54];
the result of such an exercise is reported in Fig. 6, where
the extrapolated energy is at −8.40 MeV, quite far from the
experimental energy of the resonance (−8.0860 MeV).

To summarize this section, a simple Gaussian potential
acting mainly on L = 0, supplemented by a three-body force
and by the Coulomb interaction, describes quite accurately the
spectrum of light nuclei up to four nucleons. The large values
of the scattering lengths and the three-nucleon binding energy,
strongly constrain the spectrum inside the universal window.
We have also investigated to what extent the energies of 6He
and 6Li are correlated to those observables; even though the
thresholds are well determined, our observation is that the L =
0 force, even without considering the Coulomb interaction, is
not able to bind the six-fermion system.

IV. ROLE OF P WAVES

From the previous discussion we have seen that the simple
version of the nuclear interaction dictated by Efimov physics
is not enough to describe the six-body sector of the light nuclei
spectrum. In fact, if we consider our potential-model approach
as the LO of a pionless EFT, our findings are in agreement
with early studies [55] asserting the unbound nature of the six-
body nuclei; indeed, one needs the next orders, which include,
for instance, the spin-orbit and the tensor force [13,16,17], or
even a four-body force [56,57], to obtain a better description.

In this section we investigate the possible role of the two
terms of the potential Eq. (1), V00, and V11, that in the previous
sections have been set to zero, in the same spirit as the AV 4′
potential of Ref. [58] and without any particular statement
on the relative importance of these terms with respect other
possible potential operators. These terms contribute to the

0.0 0.2 0.4 0.6 0.8 1.0
E(MeV)

−0.6

−0.4

−0.2

0.0

0.2

0.4

S
k
(f

m
− 3

) 3P0

1P1

3P1

FIG. 7. P-wave phase shifts calculated using the AV14 nucleon-
nucleon interaction. The points are the effective calculations, while
the solid lines are fits to that data allowing to extract the scattering
parameters, see Table V.

description of the P waves through the antisymmetric condi-
tion (−1)(L+S+T ) = −1. At the two-body level the low-energy
P-wave phase shifts can be described by an effective range
expansion which, for single channels, is of the form

Sk = k3 cot 2S+1PJ = −1
2S+1aJ

2S+1 + 1

2
2S+1rJ k2, (9)

where 2S+1PJ is the P-wave phase shift in spin channel S
coupled to total angular momentum J , 2S+1aJ is the scattering
volume and 2S+1rJ is the P-wave effective range. In Fig. 7 the
effective range function Sk is shown for the uncoupled phases
calculated using the AV14 nucleon-nucleon interaction [59]
(points) together with a fit for those results (solid lines). The
linear behavior is well verified in this energy region and allows
to extract the scattering parameters as given in Table V.

From the above analysis we can observe that the interaction
in channel S, T = 0, 0 is repulsive whereas the interaction in
channel S, T = 1, 1 is slightly attractive in J = 0 wave. In the
first case, we reproduce the scattering data with the interaction

V00 = +1.625 MeV, r00 = 4.03 fm, (10)

and, with this choice, even the 1P1 phases are well described.
The 3P0 phases are well described by the interaction

V11 = −3.857 MeV, r11 = 3.35 fm. (11)

However, the interaction defined in Eq. (1) cannot distinguish
between the different two-body J states. Accordingly, for
the S, T = 1, 1 channel we use a Gaussian interaction with
range r11 = 3.35 fm, and we allow variations of the strength
around the value −3.857 MeV. We make one step further and
we optimize the interactions in V10 and V01 to describe the

TABLE V. Scattering parameters of the effective range expansion
Eq. (9) for the P-wave phase shifts.

2S+1aJ [fm−3] 2S+1rJ [fm−1]

1a1 1.437 1r1 −6.308
3a1 1.231 3r1 −7.786
3a0 −1.457 3r0 3.328
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TABLE VI. For each choice of the V11 potential the three-body force in Eq. (13) has been tuned to reproduce the energy of the 3H. The
range of the potential has been fixed to r11 = 3.35 fm.

V11 (MeV) Z0 (MeV) R3 (fm) 3He (MeV) 4He (MeV) 6He (MeV) 6Li (MeV)

−3.857 7.8375 1.4 −7.746 −28.32 −30.93 −34.86
−3.0 7.8104 1.4 −7.746 −28.34 −29.90 −33.67
−3.0 13.461 1.2 −7.749 −28.20 −30.43 −34.35
−2.5 7.7940 1.4 −7.745 −28.35 −29.25 −33.07
−2.5 13.433 1.2 −7.749 −28.21 −29.81 −33.63
−2.0 13.405 1.2 −7.749 −28.22 −29.16 −32.93
−1.78 13.392 1.2 −7.749 −28.23 −28.87 −32.64

Experimental Values −7.718 −28.296 −29.268 −31.9938

L = 0 singlet and triplet scattering lengths and the corre-
sponding effective ranges. The choice for the potential param-
eter is the following:

V01 = −30.545885 MeV, r01 = 1.8310 fm,

V10 = −66.5824776 MeV, r10 = 1.5579 fm.
(12)

The potential of Eq. (1) is now defined in the four S, T . We
add a three-body term to the potential of the form [19]

∑

i 	= j 	=k

Z0 e−r2
i j/R2

3 e−r2
ik/R2

3 , (13)

to fix the value of the 3H, and we use two different ranges R3 to
explore how the six-body energies depend on this parameter.

In Table VI we report our calculations for different choices
of the strength V11 and the corresponding three-body strength
Z0; we remark that the different functional form of the three-
body force in Eq. (13) with respect to Eq. (8) implies smaller
values of R3 compared with those of ρ3 in the previous
calculations. In all cases the binding energies of 3He and 4He
are well described considering that the only charge symme-
try breaking component of the force taken into account is
the Coulomb interaction. It is interesting to notice that the
inclusion of the very weak attraction in channel S, T = 1, 1
is enough to bind 6He and 6Li, though their bindings are a bit
overpredicted (see first row of the table). By decreasing the
V11 strength it is possible to better describe the 6He binding
energy, for example using the strength −2.5 MeV, but 6Li
remains overbound by around 1 MeV. This is a consequence
of the lack of flexibility of the force defined in Eq. (1); it
does not distinguish between the different states in the two-
body P channels. This can be achieved by a spin-orbit term,
which can remove the degeneracy between the three 3PJ phase
shifts. In fact, the present interaction predicts a constant mass
difference between 6Li and 6He of 1 MeV greater than the
experimental value. In Fig. 8 we report the results for the
six-body sector using two different three-body ranges; we
observe a linear dependence of the energies with respect to
the strength of V11 potential, while the different three-body
ranges just shift the linear dependence.

In the pionless-EFT context the V11 and V00 terms are
beyond the LO description used in the previous sections.
Therefore, subleading terms in channels S, T = 0, 1 and 1,0
could be also considered, increasing the possible tuning of
low-energy quantities such as the effective ranges (see, for

example, Ref. [58]), and reducing the cutoff dependence of
the two- and three-body terms. Studies along these lines are at
present underway.

V. CONCLUSIONS

The fact that the two s-wave scattering lengths, a0 and a1,
are large with respect to the natural size of the NN interaction,
places nuclear physics inside the universal window. In this
context, it is of interest to analyze the spectrum of 1/2
spin-isospin fermions as a function of these two parameters.
This very simplified picture has been studied in the first part
of the present work up to six fermions using a Gaussian
potential model with variable strength. Assigning values to the
Gaussian strengths in the spin-isospin channels S, T = 0, 1
and 1,0 the two scattering lengths, a0 and a1, were allowed
to vary from infinite to their physical values following a
path, called nuclear cut, in which the ratio a0/a1 = −4.3066
has been kept constant. Considering only two-body Gaussian
potentials and disregarding the Coulomb interaction, the main
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Experimental 6Li
6Li R3 = 1.4 fm
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Experimental 6He
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Experimental 6He
6He R3 = 1.4 fm
6He R3 = 1.2 fm

Experimental 6He
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FIG. 8. Energy of 6He and 6Li as a function of the potential
strength V11 for two different values of the three-body range R3. For
the sake of comparison, we also draw the experimental values.
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results of this analysis are shown in Figs. 1 and 3, where
one can recognize the main characteristics of the spectrum
from two to six fermions. At the unitary point the A = 5, 6
nuclei are not bound with respect the A = 4 threshold. As the
system moves from the unitary point to the physical point,
the infinite tower of three-body states disappears and only one
state survives. At the same time the six-body system becomes
bound, first the state having the 6Li quantum numbers and
then the state having the 6He quantum numbers. Moreover,
the excited state of 4He remains bound with respect to the
three-nucleon threshold all along the path. Even though the
values of the energies are not well reproduced using a two-
body Gaussian interaction, the spectrum at the physical point
is formed by one two-nucleon state, one three-nucleon state,
two four-nucleon states, and two six-nucleon states.

Two ingredients are missing in this analysis: the first
one is trivial and consists in the inclusion of the Coulomb
interaction. The second ingredient is dictated by EFT concepts
and consists in a three-body force. Accordingly, in the second
part of the study we concentrate in the physical point adding
these additional terms in the interaction. The main results
are given in Table III, where selected parametrizations of the
three-body force are shown in order to describe the triton
binding energy. It should be noticed that adding the Coulomb
interaction without including the three-body force, or vice
versa, produces a four-nucleon spectrum with two bound
states.

The three- and four-nucleon spectra are well reproduced
once both interactions are included in the potential. A de-
tailed study of how the 4He∗ excited state crosses the thresh-
old to the 3H-p continuum is given in Fig. 6. Preliminary

studies indicate that, with the simple interaction used here,
the 4He∗ excited state becomes a virtual state. Furthermore,
when both the Coulomb interaction and the three-body force
are taken into account the two six-fermion states become
unbound.

The repulsive character of the three-body force, needed to
fix the triton binding energy, produces a delicate cancellation
between the different energy terms promoting both 6Li and
6He above the respective thresholds. In order to see how these
two nuclei emerge from their thresholds, in the final part of
this study, we extend the Gaussian potential model to include
interactions in the spin-isospin channels S, T = 0, 0 and 1,1.
The strengths and the ranges of these terms have been fixed
to reproduce the NN P-wave effective range expansion, as
given for example by the AV14 interaction. We observe that
a very weak attractive force in the S, T = 1, 1 channel is
sufficient to bind 6Li and 6He; however, their mass difference
is overpredicted by 1 MeV.

The present analysis supports the picture of a universal
window in which the light nuclear systems are located. In
this respect, the three control parameters, the two scattering
lengths and the triton binding energy, fix the spectrum of
A � 4 nuclei, explain the number of levels, the A = 5 mass
gap and locate the A = 6 thresholds. The very weak binding
of the A = 6 nuclei below the 4He and 4He + d thresholds is
due to a weakly attractive P-wave interaction. A more quan-
titative description of these weakly bound states necessitates
the consideration of a more complex set of operators in the
interactions as the spin-orbit force. For a similar analysis in
the context of chiral perturbation theory we refer to the recent
work [60].
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