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Three-body calculation of incoherent π0 photoproduction on a deuteron
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Incoherent π 0 photoproduction on a deuteron in the �(1232) region is treated in a three-body scattering
approach using separable two-body interactions. Results are presented for total and differential cross sections. It
turns out that the role of higher order terms beyond the first order in the multiple scattering series is insignificant,
and their inclusion cannot explain the existing discrepancy between theory and experiment.
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I. INTRODUCTION

The role of the final state interaction (FSI) in incoherent π0

photoproduction on a deuteron

γ + d → π0 + n + p (1)

has been studied by various groups [1–6]. In general, the
theoretical treatment of this reaction was based on the multiple
scattering picture, in which, however, only the first order terms
with respect to the final NN and πN interactions are taken
into account. According to these studies, the main FSI effect
arises from NN rescattering, whereas the contribution from
πN rescattering is rather small.

It is well known that in the reaction in Eq. (1) the first-order
inclusion of the NN interaction has a particularly strong effect
compared to the impulse approximation (IA). The reason
for this feature is the fact that in contrast to processes with
charged pions, γ d → π+nn/π− pp, for the incoherent π0

production (1) the impulse approximation contains a spurious
contribution of the coherent reaction (γ d → π0d) since the
final plane wave is not orthogonal to the deuteron ground
state [3,7,8]. Indeed, projecting out the ground state from the
final plane wave, the so-called modified IA, comprises already
the dominant part of the first order FSI correction [3]. The
remaining FSI effect is of the same order as for charged pion
production. Further incorporation of πN rescattering gives
an additional (however much less significant) decrease. Thus
the total first-order FSI effect in the �-resonance region is a
decrease of the total cross section by about 30% compared to
the one predicted by the pure spectator model (IA).

On the other hand, the calculation including only the first
order rescattering terms still overestimates the experimental
total cross section [9,10] by about 15% at the �(1232) peak.
It appears reasonable to assume that the remaining difference
could be assigned to the neglect of the higher order terms,
which can cause an additional broadening of the � resonance
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and, consequently, can lead to a lowering of the � peak in the
cross section.

In the present work we study the role of the higher orders
of the multiple scattering series in the reaction (1). To this
end, we calculate the reaction amplitude using the three-body
scattering theory. In the next section we briefly outline the
formalism. Our approach is based on a separable represen-
tation of the driving two-body πN and NN interactions. As
is well known, in this case the original three-body equations
simplify to a set of equations of Lippman-Schwinger type for
a system of coupled quasi-two-body channels. To reduce this
set into an easily solvable one-dimensional form, we apply an
expansion into partial waves. In Sec. III we present our results
and compare them with existing experimental data. We also
discuss the importance of the multiple scattering corrections.
Conclusions are given in the final section (Sec. IV).

II. FORMALISM

In the present approach we use for the description of the
final π0np three-body state two coupled two-body channels,
each consisting of a quasiparticle formed by two of the three
particles and the remaining one as a spectator. Thus each
quasiparticle is an interacting two-body system. The two
channels are in detail:

(i) Channel “d” consisting of a deuteron as a quasiparticle
with two interacting nucleons and a pion as spectator.

(ii) Channel “�” consisting of an interacting nucleon-pion
system forming a � as quasiparticle and a spectator
nucleon.

In the following we use α, β, . . . ∈ {d,�} to label the
channels and the corresponding quasiparticles, while a, b, . . .
are used for the corresponding spectators. In this notation
the channel α consists of a spectator a and two interacting
particles (bc) forming the quasiparticle α.

Treating the electromagnetic interaction perturbatively in
lowest order one obtains for the reaction T matrix

T =
∑

α∈{d,�}
X α ταgα , (2)
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FIG. 1. Diagrammatic representation of the T matrix in Eq. (2).

where X α denotes a channel amplitude, τα the channel prop-
agator, and gα the quasiparticle vertex for (bc) → b + c. A
graphical representation of the T matrix in terms of the
channel amplitudes is shown in Fig. 1.

The amplitudes X α obey a set of coupled equations, which
can be derived from the Faddeev three-body formalism under
the assumption of separable two-body interactions. In opera-
tor form they read

X α =
∑

β∈{d,�}
X β τβ Zβ,α + Zγ d,α , α ∈ {d,�} . (3)

These equations are shown in a graphical representation in
Fig. 2.

The driving terms Zα,β describe the exchange of a particle c
between the quasiparticles α and β. The term Zγ d,�, forming
the inhomogeneous part of the set (3), contains the electro-
magnetic vertex γ N → �. Obviously one has Zγ d,d = 0.

In momentum space the potentials Zα,β have the following
form:

Zα,β ( �pa, �pb;W )

= gα (qα )gβ (qβ )

W − Ea(pa) − Eb(pb) − Ec(| �pa + �pb|) + iε
. (4)

Here, W denotes the total energy in the center-of-mass (c.m.)
frame, �pa and �pb the c.m. momenta of the spectator particles
of the channels α and β, respectively. The relative momenta
�qα/β between the spectators of the channels β/α, respectively,
and the exchanged particle in the arguments of the vertices
gα/β (qα/β ) are treated nonrelativistically, e.g.,

�qα = �pb + Mb

Mb + Mc
�pa (5)

with Mc denoting the mass of the exchanged particle, whereas
for the particle energies we use the relativistic relation
Ea(p) = √

p2 + M2
a .

To reduce Eq. (3) to a numerically manageable form we
exploit a partial wave expansion of the amplitudes X α in terms
of the total angular momentum J and the isospin T . We use the
LS coupling scheme by coupling the total angular momentum
�jα of the quasiparticle with the spin �sa of the third particle to
the total channel spin �Sα . The orbital momentum �Lα is then
coupled with �Sα to the total angular momentum �J . For the
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FIG. 2. Diagrammatic representation of the system of three-body
equations of Eq. (3). The factor 2 in the first equation arises from the
symmetrization of the two nucleons.

given values of photon polarization �ελ, initial deuteron spin
projection Md , total spin Sα with projection MSα

, and total
isospin T of the final quasi-two-body state α the partial wave
expansion of the channel amplitudes X α,T

λMd SαMSα
(�k, �p;W ) reads

X α,T
λMd SαMSα

(k, �p ;W )

= Nd√
4π

∑
Jπ

∑
L,S,MS

√
2L + 1

∑
Lα,Mα

X α,T ;Jπ

LS,LαSα
(k, p;W )Y ∗

LαMα
( p̂)

×(1λ 1Md |SMS )(L0 SMS|JMS )(LαMα SαMSα
|JMS ), (6)

where the factor Nd takes into account the deuteron normal-
ization. In Eq. (6) the z axis is chosen along the initial photon
momentum �k.

With the help of this partial wave decomposition one ob-
tains from Eq. (3) a set of one-dimensional coupled equations
for each value of J , parity π , and isospin T in the following
form (for simplicity we drop the energy W in the arguments):

X α,T ;Jπ

LS,LαSα
(k, p) = Zγ d,α,T ;Jπ

LS,LαSα
(k, p) +

∑
β∈{d,�}

∑
Lβ ,Sβ

∫
p′ 2d p′

(2π )3

× X β,T ;Jπ

LS,Lβ Sβ
(k, p′) τβ (wβ (p′))Zβ,α,T ;Jπ

LβSβ ,LαSα
(p′, p),

(7)

where α ∈ {d,�}, and k denotes the momentum of the in-
cident photon. The argument wβ of the propagator τβ is the
quasiparticle energy calculated on the assumption that the
corresponding spectator b is on-shell:

w2
β (p′) = W 2 − 2W Eb(p′) + M2

b (8)

with Eb(p′) =
√

p′ 2 + M2
b . The spin S of the initial γ d state

in Eq. (7) is a vector sum of the deuteron spin �sd and
the photon circular polarization vector �ελ with components
(�ελ)μ = −δ−μλ. The partial wave components of the driving
terms Zβ,α,T ;Jπ

Lβ Sβ ,LαSα
are obtained using the formalism developed,

e.g., in Ref. [11].
In the present calculation we have included states with

total angular momentum up to Jmax = 7 of both parities with
a maximum orbital momentum Lmax = 9. Furthermore, since
the dominating � resonance term only enters states with total
isospin T = 1, we neglect contributions of the T = 0 part.
Therefore, we omit in the subsequent equations the isospin
notation. As a result, for each total spin and parity Jπ we have
at most six coupled one-dimensional integral equations, two
equations for the channel α = d and four for α = �.

Our basic ingredient is a separable representation of the
scattering amplitudes in the πN and NN two-body subsys-
tems. For πN → � → πN we take

t�( �q, �q ′; z) = g†
�( �q ) τ�(z) g�( �q ′) (9)

with

τ�(z) = 1

z − M0
� − ��(z)

, (10)
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FIG. 3. (a) Present fit to the P33 πN phase shifts using Eqs. (9)–(12). The data are taken from the compilation in Ref. [12]. (b) The M (+)
1+

multipole for γ N → πN . Solid and dashed curves are fit for real and imaginary parts, respectively. The full circles and squares show the
energy independent multipole analysis from Refs. [13,14].

where M0
� denotes the bare � mass, and

��(z) = 1

4

∑
m,m�

∫
d3q

(2π )3

∣∣〈 1
2 m

∣∣g�( �q )
∣∣ 3

2 m�

〉∣∣2

z − Eπ (q) − EN (q) + iε
(11)

the � → πN self-energy.
The vertex g� is taken in the standard form (the isospin

part is omitted) with a monopole form factor

g�( �q ) = fπN�

mπ

(�σ�N · �q )
β2

�

β2
� + q2

√
MN

2Eπ (q)EN (q)
, (12)

where mπ denotes the pion mass and �σ�N the N → � spin
transition operator. The parameters M0

�, fπN�, and β� were
adjusted to the πN phase shifts in the P33 channel. The
resulting fit, presented in panel (a) of Fig. 3, gives M0

� =
1306 MeV, f 2

πN�/4π = 0.8113, and β� = 295 MeV.
For the electromagnetic transition γ N → � only the dom-

inant M1 part is taken into account. The corresponding vertex
function was parametrized in the form

gγ

�(z, �k ) = e
GM1(z)

2MN
(�σ�N · (�k × �ελ)) (13)

with e for the elementary charge, and the magnetic transition
moment

GM1(z) = μ�(z) ei
�(z) (14)

with modulus μ�(z) and phase 
�(z).
The off shell-behavior of the vertex (13) is determined by

the analytic continuation of the transition moment GM1(z) of
Eq. (14) into the complex plane of z. Below the single-nucleon
threshold we use

GM1(z) = GM1(mπ + MN ) , (15)

for � z < mπ + MN . The approximation (15) obviously vi-
olates analyticity of the amplitude. However, as the direct
calculation shows, the subthreshold region provides only a
small fraction of the resulting cross section, at least in the
energy region not very close to the threshold, so that this
shortcoming of our model does not visibly affect the results.

Following Ref. [15] we fit the energy dependence of μ�(z)
and 
�(z) in such a way that the resulting γ N → � → πN
amplitude

tγ

�(�k, �q; z) = g†
�( �q ) τ�(z) gγ

�(z, �k ) (16)

reproduces the isovector magnetic amplitude M (+)
1+ in the

energy region from threshold up to 450 MeV [panel (b) in
Fig. 3]. Thus, we do not treat the background terms (crossed
nucleon pole and ω exchange) exactly, but their contribution is
effectively included via adjustment of the ansatz in Eqs. (13)–
(16) to the data of M (+)

1+ . The magnitude μ�(z) and the phase

�(z) in Eq. (14) are parametrized as

μ�(z) =
4∑

n=0

Cn

(
z

M�

)n

, 
�(z) =
4∑

n=0

Dn

(
z

M�

)n

(17)

with M� = 1232 MeV. The constants Cn and Dn resulting
from the fit in Fig. 3 are collected in Table I.

In the NN sector only the s waves 3S1 and 1S0 are taken into
account, neglecting the contribution of the tensor component
3D1. For the s-wave interactions we use the rank-one separable
parametrization of the Paris potential from Ref. [16]:

v
(s)
d ( �q, �q ′) = −g(s)

d (q) g(s)
d (q′ ) (18)

with

g(s)
d (q) = (2π )3/2

6∑
n=1

C(s)
n

q2 + (
β

(s)
n

)2 , (19)

where the index s refers to singlet or triplet states. The
parameters C(s)

n and β (s)
n are listed in [16].

The coupled integral equations in Eq. (7) were solved using
the matrix inversion method. To overcome the problem of

TABLE I. Listing of constants Cn and Dn of the parametrizations
in Eq. (17).

n 0 1 2 3 4

Cn 37.848 −29.789 −19.951 12.261 4.4393
Dn −12.901 19.163 4.4974 −14.938 4.2943
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FIG. 4. Integration contours and configuration of the cuts in the
complex p′ plane. The dashed line shows the part of the contour on
the second sheet.

singularities we used the well known procedure in which the
integration contour is shifted from the real axes to the fourth
quadrant of the complex p′ plane. This technique is quite well
known (e.g., see Ref. [17]), and there is no need to describe it
here in detail. Some formal aspects related to the relativistic
kinematics were considered in Ref. [18].

Here, we would like to comment only on some details
concerning the treatment of the singularities of the driving
terms Zβ,α,T ;Jπ

Lβ Sβ ,LαSα
having the configuration shown in Fig. 4. It is

known that in order to find the X α matrix at real momenta, one
has to perform a continuation of the driving terms Zβ,α,T ;Jπ

Lβ Sβ ,LαSα

in Eq. (7) onto the second Riemann sheet (the part BCD of the
integration contour in Fig. 4). However, in this case the driving
term Zβ,α,T ;Jπ

Lβ Sβ ,LαSα
(p′, p) behaves near p′ = 0 as (1/p′)L+1. As a

result the integrand in Eq. (7) strongly diverges at the origin
and one finds large contributions near the point C. However,
the resulting large contributions coming from the intervals
BC and CD essentially cancel each other thus leading to a
significant loss of numerical accuracy via a small difference
of two large numbers. This problem was also mentioned in
Ref. [19], where the break-up reaction nd → nnp was studied.
In Ref. [19] the three-body equations were solved only for low
values of L (L � 3), whereas for higher L only the first order
approximation or the inhomogeneous term was considered.

In the present case, we use another integration contour
(the polygonal curve AFG in Fig. 4). The driving terms
are always calculated on the first Riemann sheet, and the
integration does not pose any numerical problem. A certain
disadvantage of this method lies in the fact that the position
of the momentum p0, where the contour is squeezed between
the logarithmic cuts (see Fig. 4), depends on the value of the
on-shell momentum p in Eq. (7). For this reason one has to
solve the set of Eq. (7) separately for each value of p of the
chosen mesh.

After inversion of the system in Eq. (7) and the
determination of the partial wave amplitudes X α,T ;Jπ

LS,LαSα

(k, p;W ), one obtains the corresponding channel amplitudes
X α

λMd SαMSα
(�k, �p;W ) from Eq. (6), from which, finally, the

reaction amplitude TλMd m1m2 [see Eq. (2)] as function of the
momenta of the final particles �qπ , �p1, and �p2 follows

TλMd m1m2 (k, �p1, �p2, �qπ )

=
∑
M ′

d

X d
λMd 1M ′

d
(k, �qπ ;W )

(
1

2
m1

1

2
m2

∣∣∣∣1M ′
d

)
τ

(1)
d (wd (qπ )) g(1)

d (qNN )

+
[∑

m�

∑
S�,M�

√
2

3
X �

λMd S�M�
(k, �p1;W )

(
1

2
m2

3

2
m�

∣∣∣∣S�M�

)
τ�(w�(p1))

〈
3

2
m�

∣∣∣∣g�( �qπN2 )

∣∣∣∣1

2
m1

〉
− (1 ↔ 2)

]
. (20)

Here, the vector qπNi , i = 1, 2, denotes the relative momentum
in the subsystem πNi, and qNN the relative momentum of
the two final nucleons. As is mentioned above, in the present
calculation we took into account only configurations with total
isospin T = 1, since those with T = 0 do not contain the
dominant N� configuration. Therefore, in the first term on
the right-hand side of Eq. (20) only the two-nucleon states
with total spin Sd = 1 contribute.

Using the amplitude of Eq. (20), the fully exclusive dif-
ferential cross section for the present reaction in the over-
all center-of-mass frame is given in terms of the T matrix
[Eq. (20)]

dσ

dqπ d�π d�∗
NN

= 1

(2π )5

Ed Ep En q2
π p∗

NN

2W ωγ ωNN

1

6

×
∑

λ,Md ,m1,m2

∣∣TλMd m1m2 (k, �p1, �p2, �qπ )
∣∣2

,

(21)

where Ed , Ep, En, and ωγ denote the total energies of the
corresponding particles, and ωNN the invariant NN energy.
The nucleon momentum in the np center-of-mass system is
denoted by p∗

NN and its spherical angle by �∗
NN .

III. RESULTS AND DISCUSSION

Before applying the formalism to incoherent pion photo-
production, we first test our model by considering the in-
elastic scattering of pions on a deuteron. The corresponding
equations are obtained from Eq. (3) by the replacement of
the driving term according to Zγ d,� → Zπd,�. The method
of inversion of the corresponding three-particle equations
remains of course the same.

The results are presented in Fig. 5. As already noted in [20],
the significant influence of the final state interaction on the
magnitude and shape of the differential cross section is due to
the orthogonality of the wave functions of the initial and the
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FIG. 5. Differential cross section of the reaction π+d → π+np
for an incident pion laboratory kinetic energy of 96.5 MeV. The
dotted curve is the result of the impulse approximation (IA). Dashed
and dash-dotted curves are obtained with first order np and in
addition π+N rescattering contributions. Solid curve: three-body
calculation. The data are from Ref. [21].

final np states. In particular, this effect leads to a substantial
suppression of the plane wave cross section (I A) at forward
angles, and, as a result, to a general agreement with the data
[21] in the forward direction.

In the region around θlab = 90◦ our cross section underes-
timates the experimental results and turns out to be lower than
the theoretical cross section obtained in Ref. [20]. The latter
deviation is apparently caused by a disagreement seen already
between the IA results. Namely, our plane wave cross section
is almost twice as small in this region as that obtained in [20].
At the same time, the FSI effects predicted by our model and
in Ref. [20] are in reasonable agreement.

As the analysis of the curves in Fig. 5 shows, the FSI
effect is almost completely reproduced by including only
the first-order rescattering contributions. In particular, this
concerns the np interaction whereas pion rescattering gives
only a small addition at the level of 0.5–1 %. Inclusion of the
remaining higher order terms within the three-particle model

does not lead to any noticeable change in the cross section
in the entire range of pion angles. Since the dynamics of the
process γ d → π0np associated with FSI is essentially similar
to that of the inelastic π+d scattering, it is reasonable to
expect that qualitatively the same picture will be observed in
the incoherent pion photoproduction.

Turning now to the reaction γ d → π0np we start the
discussion by considering the role of different partial waves in
the total cross section as is shown in Fig. 6 for the IA [panel
(a)] and the full three-body calculation [panel (b)]. Similar
to the coherent photoproduction γ d → π0d [22] the largest
contribution in the incoherent reaction comes from the 2+
wave, which predominantly is an M1 transition, leading to
the production of pions with angular momentum lπ = 1 with
respect to the np system. This partial wave alone contributes
almost 45% to the total IA cross section in the � region.
The next important partial waves are 2− and 3− generating
basically pions with lπ = 2. The other partial waves give
much smaller contributions to the total cross section.

Inclusion of FSI [see panel (b) of Fig. 6] leads to a visible
decrease of σ (2+) by a factor of 2–3, whereas σ (3−) (pre-
dominantly M2) is considerably enhanced and becomes even
slightly larger than σ (2+). Next in importance is σ (2−), which
is also increased by FSI by about 10%. The contributions
of the higher partial waves is still quite insignificant. Most
of the FSI effects are already contained in the first order
rescattering contribution except for the dominant 2+-partial
wave as is demonstrated in Fig. 7 where the higher orders
still give a significant contribution. It is worth noting that
the state 2+ corresponds to the s-wave �N configuration 5S2.
In this respect, the importance of three-body effects in this
wave agrees with our naive expectation that the absence of the
centrifugal barrier in the 5S2 state leads to a significant overlap
of the potentials in all three two-body subsystems.

As already mentioned, the corresponding partial wave
series was cut off at Jmax = 7 and Lmax = 9. In order to
demonstrate the good convergence for this value of Jmax we
show in Fig. 8 the semiexclusive differential cross section with
respect to the final pion as function of a few lower Jmax values.
Similar to the results for the elastic pion-deuteron scattering of
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Ref. [23], this approximation provides a satisfactory conver-
gence in the �-resonance region as one can see: changing Jmax

from 5 to 7 has already quite a small effect, so that the choice
Jmax = 7 appears to be acceptable.

In Fig. 9 we show in panel (a) the total cross section as
function of the incident photon energy and in panel (b) the
differential cross section at Eγ = 330 MeV, calculated in the
present three-body model. These results can be compared with
our previous calculation in Ref. [3]. In the latter case the single
nucleon amplitude t (γ N → πN ) was taken from the MAID
analysis [24] and the inclusion of FSI was reduced to the first
order contributions (i.e., to np and πN rescatterings in the fi-
nal state). The present result, which is obtained in a somewhat
oversimplified model for γ N → πN (pure resonance ansatz
for the M (+)

1+ multipole, and neglect of the tensor component
of the deuteron wave function) agrees quite well with those of
Ref. [3]. Figure 9 clearly shows that the multiple scattering
corrections do not visibly change the reaction dynamics.
Inclusion of only the first order corrections, i.e., np and πN
rescatterings in the final state, turns out to be sufficient.

In the same Fig. 9 [panel (a)] we compare our results with
experimental total cross section data from Ref. [9]. Whereas
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FIG. 8. Differential cross section γ d → π 0np in the center-of-
mass frame at Eγ = 330 MeV for various values of the maximum
total angular momentum Jmax of the partial wave expansion.

in the region below the �(1232) peak the agreement is satis-
factory, the theory is too high in the region near the maximum
(Eγ � 300 MeV). This discrepancy was already discussed in
Refs. [2–4]. In particular it was conjectured in [3] that the
difference may come from the neglect of the �N interaction
which might lead to a broadening of the � resonance due
to additional inelasticities. The present calculation, which
effectively takes into account the �N interaction, shows, that
this effect is negligible in the incoherent reaction and cannot
explain the discrepancy.

There is still the unresolved question about the importance
of true pion absorption, which is not taken into account by
the present model. We however assume that its role in our
reaction is not significant for the following reasons. Firstly, the
two-nucleon absorption of pions is effective only in the region
of small internucleon distances, which are not important in the
breakup process. Secondly, the calculations performed by us
in the framework of the so-called bound state picture (BSP),
in which one of the nucleons is represented as a bound πN
state with the quantum numbers P11 [25], give a correction
to the total cross section of only about 0.5%. It is worth
noting, that the BSP-based approach is not entirely correct,
since in fact it treats the nucleons in the intermediate NN
states as distinguishable particles, and today various sophis-
ticated methods have been developed to incorporate the NN
channel into the three-particle πNN equations. However, one
can hardly expect that even a correct treatment of the NN
states will dramatically increase their role in our reaction. Our
assumption about the insignificance of true pion absorption is
also in accord with the results of Ref. [26] where a similar
conclusion was reached for the πd inelastic scattering.

IV. CONCLUSION

In this paper we have presented a calculation of total and
differential cross sections for the incoherent reaction γ d →
π0np in the energy region from threshold up to the � reso-
nance. The calculation is based on a three-body model for the
inclusion of the final πNN interaction. Although we use some
simplifications (nonrelativistic three-body equations, neglect
of the deuteron d wave), the most significant features of the
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process are preserved, including the importance of the M1
multipole transition γ N → � and the dominance of the �

resonance in πN scattering.
The results show that the corrections due to multiple

scattering are quite insignificant in the major part of the
kinematical region. As already mentioned in the introduction,
the major importance of FSI in the π0np channel is related to
the orthogonality of the initial and the final np wave functions.
This effect is taken into account essentially already by the
first order FSI contributions as can be seen from the fact
that inclusion of the np rescattering (dashed curve on the
right panel of Fig. 9) leads to a significant decrease of the
differential cross section at very forward pion angles, that is,
in the region where the momentum transferred to the nucleon
system is minimal.

According to our results, the full three-body calculation
changes the cross section compared to the first-order rescatter-
ings only by about 1–2 % in the � resonance region. Since the
multiple scattering corrections are insignificant their inclusion
cannot explain the existing deviation between the theoretical
and experimental results. The theory still visibly overesti-
mates the data, as is shown in panel (a) of Fig. 9. The problem
concerning the difficulties in describing the photoproduction
of π0 on a deuteron in the first resonance region was also
addressed in Ref. [10]. In this work the authors had analysed
the inclusive cross section γ d → π0X with X being either a
deuteron or a neutron-proton scattering state.

As is shown in Ref. [27] using the closure approximation
for the final two-nucleon state, the sum of both cross

sections should be equal to the sum of the free-nucleon cross
sections, folded with the nucleon momentum distribution in
a deuteron. The latter is approximately equal to the cross
section σIA of σ (γ d → π0np) calculated in the spectator
model. However, as the calculation in Ref. [10] shows, σIA

overestimates by about 15% the experimental total cross
section for γ d → π0X . Since the free proton cross section
is well known the natural conclusion would be that the
free neutron cross section is overestimated by the existing
multipole analyses (in Ref. [10] the MAID [24] and SAID
[28] analyses are considered). In order to bring the theory
into agreement with the data of [9,10] the theoretical neutron
cross section has to be decreased by about 25%. Such a strong
isospin dependence of the elementary amplitude can hardly
be explained within the existing models for γ N → πN .
According to these models the reaction is strongly dominated
by the �(1232) resonance so that the proton and neutron
cross sections are nearly equal. Thus the question about the
source of the discrepancy between theoretical predictions and
data in the �(1232) region remains open.
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